Changes in Autonomic Balance, Cardiac Parasympathetic Modulation, and Cardiac Baroreflex Gain in Older Adults Under Different Orthostatic Stress Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Settings
2.3. Participants
2.4. Data Collection
2.4.1. Demographic and Anthropometric Measurements
2.4.2. Assessment of Heart Rate Variability, Cardiac Parasympathetic Modulation, and Cardiac Baroreflex Gain
2.4.3. Heart Rate Variability
2.4.4. Cardiac Parasympathetic Modulation
2.4.5. Cardiac Baroreflex Gain
2.5. Sample Size
2.6. Statistical Analysis
3. Results
3.1. Heart Rate Variability at Baseline in Supine Position
3.2. Cardiac Parasympathetic Modulation Responses During Active Standing Orthostatic Stress
3.3. Cardiac Baroreflex Gain Responses During Active Standing Orthostatic Stress Across Specific Phase Time Points
4. Discussion
4.1. Heart Rate Variability Responses
4.2. Cardiac Parasympathetic Modulation
4.3. Cardiac Baroreflex Gain Responses Across Specific Phase Time Points During Active Standing Orthostatic Stress
4.4. Symptoms of Orthostatic Intolerance
4.5. Implications for Older Adults’ Health and Clinical Practice
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANS | Autonomic Nervous System |
BP | Blood Pressure |
BRS | Baroreflex Sensitivity |
CBG | Cardiac Baroreflex Gain |
CI | Confidence Interval |
CO | Cardiac Output |
CPM | Cardiac Parasympathetic Modulation |
CSEP | Canadian Society for Exercise Physiology |
DBP | Diastolic Blood Pressure |
ECG | Electrocardiogram |
ES | Effect Size |
HF | High-Frequency Power |
HR | Heart Rate |
HRV | Heart Rate Variability |
IQR | Interquartile Range |
LF | Low-Frequency Power |
LF/HF | Low-Frequency to High-Frequency Ratio |
MAP | Mean Arterial Pressure |
OA | Older Adults |
OI | Orthostatic Intolerance |
OH | Orthostatic Hypotension |
RMSSD | Root Mean Square of Successive Differences |
RR | R-R Interval (Interval between Heartbeats) |
SBP | Systolic Blood Pressure |
SAGER | Sex and Gender Equity in Research |
SD | Standard Deviation |
SDRR | Standard Deviation of RR Intervals |
STROBE | Strengthening the Reporting of Observational Studies in Epidemiology |
YA | Younger Adults |
References
- Ricci, F.; de Caterina, R.; Fedorowski, A. Orthostatic Hypotension: Epidemiology, Prognosis, and Treatment. J. Am. Coll. Cardiol. 2015, 66, 848–860. [Google Scholar] [CrossRef]
- Fedorowski, A.; Ricci, F.; Hamrefors, V.; Sandau, K.E.; Hwan Chung, T.; Muldowney, J.A.S.; Gopinathannair, R.; Olshansky, B. Orthostatic Hypotension: Management of a Complex, But Common, Medical Problem. Circ. Arrhythmia Electrophysiol. 2022, 15, E010573. [Google Scholar] [CrossRef] [PubMed]
- Finucane, C.; van Wijnen, V.K.; Fan, C.W.; Soraghan, C.; Byrne, L.; Westerhof, B.E.; Freeman, R.; Fedorowski, A.; Harms, M.P.M.; Wieling, W.; et al. A Practical Guide to Active Stand Testing and Analysis Using Continuous Beat-to-Beat Non-Invasive Blood Pressure Monitoring. Clin. Auton. Res. 2019, 29, 427–441. [Google Scholar] [CrossRef]
- Wehrwein, E.A.; Joyner, M.J. Regulation of Blood Pressure by the Arterial Baroreflex and Autonomic Nervous System. Handb. Clin. Neurol. 2013, 117, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Wieling, W.; Karemaker, J.M. Measurement of Heart Rate and Blood Pressure to Evaluate Disturbances in Neurocardiovascular Control. In Autonomic Failure; Oxford University Press: Oxford, UK, 2013; pp. 290–306. [Google Scholar] [CrossRef]
- David, E.M.; Lois, J.H. Cardiovascular Physiology, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2010; ISBN 978-0-07-179312-4. [Google Scholar]
- Christopher, J.M.; Roger, B. Autonomic Failure: A Textbook of Clinical Disorders of the Autonomic Nervous System, 5th ed.; Oxford University Press: Oxford, UK, 2013; ISBN 9788578110796. [Google Scholar]
- Billman, G.E. Heart Rate Variability—A Historical Perspective. Front. Physiol. 2011, 2, 86. [Google Scholar] [CrossRef] [PubMed]
- Jandackova, V.K.; Scholes, S.; Britton, A.; Steptoe, A. Are Changes in Heart Rate Variability in Middle-Aged and Older People Normative or Caused by Pathological Conditions? Findings from a Large Population-Based Longitudinal Cohort Study. J. Am. Heart Assoc. 2016, 5, e002365. [Google Scholar] [CrossRef]
- Parvaneh, S.; Howe, C.L.; Toosizadeh, N.; Honarvar, B.; Slepian, M.J.; Fain, M.; Mohler, J.; Najafi, B. Regulation of Cardiac Autonomic Nervous System Control across Frailty Statuses: A Systematic Review. Gerontology 2015, 62, 3–15. [Google Scholar] [CrossRef]
- Reardon, M.; Malik, M. Changes in Heart Rate Variability with Age. PACE Pacing Clin. Electrophysiol. 1996, 19, 1863–1866. [Google Scholar] [CrossRef]
- Schmitt, D.T.; Ivanov, P.C. Fractal Scale-Invariant and Nonlinear Properties of Cardiac Dynamics Remain Stable with Advanced Age: A New Mechanistic Picture of Cardiac Control in Healthy Elderly. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R1923–R1937. [Google Scholar] [CrossRef]
- Ewing, A.D.J.; Campbell, I.W.; Murray, A.; Neilson, J.M.M.; Clarke, B.F. Diabetes Immediate Autonomic Neuropathy In. Br. Med. J. 1978, 1, 145–147. [Google Scholar] [CrossRef]
- Monahan, K.D. Effect of Aging on Baroreflex Function in Humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R3–R12. [Google Scholar] [CrossRef]
- Mol, A.; Maier, A.B.; van Wezel, R.J.A.; Meskers, C.G.M. Multimodal Monitoring of Cardiovascular Responses to Postural Changes. Front. Physiol. 2020, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Borst, C.; van Brederode, J.F.M.; Wieling, W. Mechanisms of Initial Blood Pressure Response to Postural Change. Clin. Sci. 1984, 67, 321–327. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef]
- Heidari, S.; Babor, T.F.; De Castro, P.; Tort, S.; Curno, M. Sex and Gender Equity in Research: Rationale for the SAGER Guidelines and Recommended Use. Res. Integr. Peer Rev. 2016, 1, 2. [Google Scholar] [CrossRef]
- Canadian Society for Exercise Physiology. Canadian Physical Activity Guidelines for Older Adults 65 Years and Older; CSEP, Ed.; Ottawa: Ontario, ON, Canada, 2011. [Google Scholar]
- Guelen, I.; Westerhof, B.E.; van der Sar, G.L.; van Montfrans, G.A.; Kiemeneij, F.; Wesseling, K.H.; Bos, W.J.W. Finometer, Finger Pressure Measurements with the Possibility to Reconstruct Brachial Pressure. Blood Press. Monit. 2003, 8, 27–30. [Google Scholar] [CrossRef]
- Malik, M.; Camm, A.J.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart Rate Variability. Standards of Measurement, Physiological Interpretation, and Clinical Use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research-Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- van der Velde, N.; van den Meiracker, A.H.; Stricker, B.H.C.; van der Cammen, T.J.M. Measuring Orthostatic Hypotension with the Finometer Device: Is a Blood Pressure Drop of One Heartbeat Clinically Relevant? Blood Press. Monit. 2007, 12, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Mol, A.; Slangen, L.R.N.; Trappenburg, M.C.; Reijnierse, E.M.; van Wezel, R.J.A.; Meskers, C.G.M.; Maier, A.B. Blood Pressure Drop Rate after Standing up Is Associated with Frailty and Number of Falls in Geriatric Outpatients. J. Am. Heart Assoc. 2020, 9, e014688. [Google Scholar] [CrossRef]
- Balcıoğlu, A.S. Diabetes and Cardiac Autonomic Neuropathy: Clinical Manifestations, Cardiovascular Consequences, Diagnosis and Treatment. World J. Diabetes 2015, 6, 80. [Google Scholar] [CrossRef] [PubMed]
- Duque, A.; Mediano, M.F.F.; de Lorenzo, A.; Rodrigues Jr, L.F. Cardiovascular Autonomic Neuropathy in Diabetes: Pathophysiology, Clinical Assessment and Implications. World J. Diabetes 2021, 12, 855–867. [Google Scholar] [CrossRef]
- Norcliffe-Kaufmann, L.; Kaufmann, H.; Palma, J.A.; Shibao, C.A.; Biaggioni, I.; Peltier, A.C.; Singer, W.; Low, P.A.; Goldstein, D.S.; Gibbons, C.H.; et al. Orthostatic Heart Rate Changes in Patients with Autonomic Failure Caused by Neurodegenerative Synucleinopathies. Ann. Neurol. 2018, 83, 522–531. [Google Scholar] [CrossRef]
- Freeman, R.; Wieling, W.; Axelrod, F.B.; Benditt, D.G.; Benarroch, E.; Biaggioni, I.; Cheshire, W.P.; Chelimsky, T.; Cortelli, P.; Gibbons, C.H.; et al. Consensus Statement on the Definition of Orthostatic Hypotension, Neurally Mediated Syncope and the Postural Tachycardia Syndrome. Auton. Neurosci. Basic Clin. 2011, 161, 46–48. [Google Scholar] [CrossRef]
- La Rovere, M.T.; Pinna, G.D.; Raczak, G. Baroreflex Sensitivity: Measurement and Clinical Implications. Ann. Noninvasive Electrocardiol. 2008, 13, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Kerby, D.S. The Simple Difference Formula: An Approach to Teaching Nonparametric Correlation. Compr. Psychol. 2014, 3, 11.IT.3.1. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Uyama, O.; Konishi, M.; Nishiyama, T.; Iida, T. Orthostatic Hypotension in Elderly Persons during Passive Standing: A Comparison with Young Persons. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2001, 56, M273–M280. [Google Scholar] [CrossRef]
- Grässler, B.; Dordevic, M.; Darius, S.; Vogelmann, L.; Herold, F.; Langhans, C.; Halfpaap, N.; Böckelmann, I.; Müller, N.G.; Hökelmann, A. Age-Related Differences in Cardiac Autonomic Control at Resting State and in Response to Mental Stress. Diagnostics 2021, 11, 2218. [Google Scholar] [CrossRef]
- Droguett, V.S.L.; Santos, A.D.C.; de Medeiros, C.E.; Marques, D.P.; do Nascimento, L.S.; Brasileiro-Santos, M.D.S. Cardiac Autonomic Modulation in Healthy Elderly after Different Intensities of Dynamic Exercise. Clin. Interv. Aging 2015, 10, 203–208. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Voss, A.; Schroeder, R.; Heitmann, A.; Peters, A.; Perz, S. Short-Term Heart Rate Variability-Influence of Gender and Age in Healthy Subjects. PLoS ONE 2015, 10, e0118308. [Google Scholar] [CrossRef] [PubMed]
- Tegegne, B.S.; Man, T.; van Roon, A.M.; Snieder, H.; Riese, H. Reference Values of Heart Rate Variability from 10-Second Resting Electrocardiograms: The Lifelines Cohort Study. Eur. J. Prev. Cardiol. 2020, 27, 2191–2194. [Google Scholar] [CrossRef]
- Acharya, U.R.; Joseph, K.P.; Kannathal, N.; Lim, C.M.; Suri, J.S. Heart Rate Variability: A Review. Med. Biol. Eng. Comput. 2006, 44, 1031–1051. [Google Scholar] [CrossRef]
- Efremov, K.; Brisinda, D.; Venuti, A.; Iantorno, E.; Cataldi, C.; Fioravanti, F.; Fenici, R. Heart Rate Variability Analysis during Head-up Tilt Test Predicts Nitroglycerine-Induced Syncope. Open Heart 2014, 1, e000063. [Google Scholar] [CrossRef]
- Sumi, Y.; Nakayama, C.; Kadotani, H.; Matsuo, M.; Ozeki, Y.; Kinoshita, T.; Goto, Y.; Kano, M.; Yamakawa, T.; Hasegawa-Ohira, M.; et al. Resting Heart Rate Variability Is Associated With Subsequent Orthostatic Hypotension: Comparison Between Healthy Older People and Patients With Rapid Eye Movement Sleep Behavior Disorder. Front. Neurol. 2020, 11, 567984. [Google Scholar] [CrossRef]
- Yang, S.; Liao, X.; Lin, Y.; Chen, J.; Wu, H. Lead II Electrocardiograph-Derived Entropy Index for Autonomic Function Assessment in Type 2 Diabetes Mellitus. Biocybern. Biomed. Eng. 2024, 44, 513–520. [Google Scholar] [CrossRef]
- Mohrman, D.L.H. Cardiovascular Physiology, 8th ed.; McGraw-Hill Education: New York, NY, USA, 2013; ISBN 0071793119. [Google Scholar]
- Kim, Y.S.; Bogert, L.W.J.; Immink, R.V.; Harms, M.P.M.; Colier, W.N.J.M.; van Lieshout, J.J. Effects of Aging on the Cerebrovascular Orthostatic Response. Neurobiol. Aging 2011, 32, 344–353. [Google Scholar] [CrossRef]
- Lai, Y.H.; Yuan, Y.; Liang, Y.X.; Yu, J.H. Comparison of Aging Effect between Cardiac Complexity and Baroreceptor Sensitivity. In Proceedings of the 2021 International Conference on Information Technology and Biomedical Engineering (ICITBE), Nanchang, China, 24–26 December 2021; pp. 287–291. [Google Scholar] [CrossRef]
- Monahan, K.D.; Dinenno, F.A.; Seals, D.R.; Clevenger, C.M.; Desouza, C.A.; Tanaka, H. Age-Associated Changes in Cardiovagal Baroreflex Sensitivity Are Related to Central Arterial Compliance. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H284–H289. [Google Scholar] [CrossRef]
- Lambert, E.; Lambert, G.W. Sympathetic dysfunction in vasovagal syncope and the postural orthostatic tachycardia syndrome. Front. Physiol. 2014, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ortuno, R.; Cogan, L.; Foran, T.; Fan, C.W.; Kenny, R.A. Using the Finometer to Examine Sex Differences in Hemodynamic Responses to Orthostasis in Older People. Blood Press. Monit. 2010, 15, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Romero-Ortuno, R.; Cogan, L.; Fan, C.W.; Kenny, R.A. Intolerance to Initial Orthostasis Relates to Systolic BP Changes in Elders. Clin. Auton. Res. 2010, 20, 39–45. [Google Scholar] [CrossRef]
- Dani, M.; Dirksen, A.; Taraborrelli, P.; Panagopolous, D.; Torocastro, M.; Sutton, R.; Lim, P.B. Orthostatic Hypotension in Older People: Considerations, Diagnosis and Management. Clin. Med. 2021, 21, E275–E282. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Coscia, V.; Aran, L.; Bulli, G.; Curcio, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; et al. Orthostatic Hypotension in the Elderly: A Marker of Clinical Frailty? J. Am. Med. Dir. Assoc. 2018, 19, H779–H785. [Google Scholar] [CrossRef]
- Krediet, C.T.P.; van Lieshout, J.J.; Bogert, L.W.J.; Immink, R.V.; Kim, Y.S.; Wieling, W. Leg Crossing Improves Orthostatic Tolerance in Healthy Subjects: A Placebo-Controlled Crossover Study. Am. J. Physiol.-Heart Circ. Physiol. 2006, 291, 1768–1772. [Google Scholar] [CrossRef]
- Ten Harkel, A.D.J.; van Lieshout, J.J.; Wieling, W. Effects of Leg Muscle Pumping and Tensing on Orthostatic Arterial Pressure: A Study in Normal Subjects and Patients with Autonomic Failure. Clin. Sci. 1994, 87, 553–558. [Google Scholar] [CrossRef]
- Logan, A.; Freeman, J.; Pooler, J.; Kent, B.; Gunn, H.; Billings, S.; Cork, E.; Marsden, J. Effectiveness of Non-Pharmacological Interventions to Treat Orthostatic Hypotension in Elderly People and People with a Neurological Condition: A Systematic Review. JBI Evid. Synth. 2020, 18, 2556–2617. [Google Scholar] [CrossRef]
- Fu, Q.; Levine, B.D. Exercise and the Autonomic Nervous System. Handb. Clin. Neurol. 2013, 117, 147–160. [Google Scholar] [CrossRef]
- Fecchio, R.Y.; de Sousa, J.C.S.; Oliveira-Silva, L.; da Silva Junior, N.D.; Pio-Abreu, A.; da Silva, G.V.; Drager, L.F.; Low, D.A.; Forjaz, C.L.M. Effects of Dynamic, Isometric and Combined Resistance Training on Blood Pressure and Its Mechanisms in Hypertensive Men. Hypertens. Res. 2023, 46, 1031–1043. [Google Scholar] [CrossRef] [PubMed]
- Bellavere, F.; Cacciatori, V.; Bacchi, E.; Gemma, M.L.; Raimondo, D.; Negri, C.; Thomaseth, K.; Muggeo, M.; Bonora, E.; Moghetti, P. Effects of Aerobic or Resistance Exercise Training on Cardiovascular Autonomic Function of Subjects with Type 2 Diabetes: A Pilot Study. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 226–233. [Google Scholar] [CrossRef]
- Wahba, A.; Shibao, C.A.; Muldowney, J.A.S.; Peltier, A.; Habermann, R.; Biaggioni, I. Management of Orthostatic Hypotension in the Hospitalized Patient: A Narrative Review. Am. J. Med. 2022, 135, 24–31. [Google Scholar] [CrossRef]
- Fedorowski, A.; Melander, O. Syndromes of Orthostatic Intolerance: A Hidden Danger. J. Intern. Med. 2013, 273, 322–335. [Google Scholar] [CrossRef]
- Stice, J.P.; Lee, J.S.; Pechenino, A.S.; Knowlton, A.A. Estrogen, Aging and the Cardiovascular System. Future Cardiol. 2009, 5, 93–103. [Google Scholar] [CrossRef]
- Fu, Q.; Vangundy, T.B.; Shibata, S.; Auchus, R.J.; Williams, G.H.; Levine, B.D. Menstrual Cycle Affects Renal-Adrenal and Hemodynamic Responses During Prolonged Standing in the Postural Orthostatic Tachycardia Syndrome. Hypertension 2010, 56, 82–90. [Google Scholar] [CrossRef]
- Shankhwar, V.; Urvec, J.; Steuber, B.; Schmid Zalaudek, K.; Salon, A.; Hawliczek, A.; Bergauer, A.; Aljasmi, K.; Abdi, A.; Naser, A.; et al. Effects of Menstrual Cycle on Hemodynamic and Autonomic Responses to Central Hypovolemia. Front. Cardiovasc. Med. 2024, 11, 1290703. [Google Scholar] [CrossRef]
- Fu, Q.; Okazaki, K.; Shibata, S.; Shook, R.P.; Vangunday, T.B.; Galbreath, M.M.; Reelick, M.F.; Levine, B.D. Menstrual Cycle Effects on Sympathetic Neural Responses to Upright Tilt. J. Physiol. 2009, 587, 2019–2031. [Google Scholar] [CrossRef] [PubMed]
- Claydon, V.E.; Younis, N.R.; Hainsworth, R. Phase of the Menstrual Cycle Does Not Affect Orthostatic Tolerance in Healthy Women. Clin. Auton. Res. 2006, 16, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Mellingsæter, M.R.; Wyller, V.B.; Wyller, T.B.; Ranhoff, A.H. Gender Differences in Orthostatic Tolerance in the Elderly. Aging Clin. Exp. Res. 2013, 25, 659–665. [Google Scholar] [CrossRef]
- Sachse, C.; Trozic, I.; Brix, B.; Roessler, A.; Goswami, N. Sex Differences in Cardiovascular Responses to Orthostatic Challenge in Healthy Older Persons: A Pilot Study. Physiol. Int. 2019, 106, 236–249. [Google Scholar] [CrossRef] [PubMed]
- Geovanini, G.R.; Vasques, E.R.; de Oliveira Alvim, R.; Mill, J.G.; Andreão, R.V.; Vasques, B.K.; Pereira, A.C.; Krieger, J.E. Age and Sex Differences in Heart Rate Variability and Vagal Specific Patterns–Baependi Heart Study. Glob. Heart 2020, 15, 71. [Google Scholar] [CrossRef] [PubMed]
Variable | Younger Adults | Older Adults | p-Value | ||||
---|---|---|---|---|---|---|---|
Sex | n | % | - | n | % | - | - |
Experiment 1 | - | - | - | - | - | - | - |
Female | 13 | 50 | - | 35 | 72↑ | - | <0.001 * |
Male | 13 | 50 | - | 14 | 28 | - | <0.001 * |
Experiment 2 | - | - | - | - | - | - | - |
Female | 13 | 50 | - | 35 | 70↑ | - | <0.001 * |
Male | 13 | 50 | - | 15 | 30 | - | <0.001 * |
Anthropometric data | Mean ± SD | CI 95% | Min; Max | Mean ± | CI 95% | Min; Max | - |
Age (years) | 21.0 ± 2.3 | 20.8; 22.6 | 18.0; 28.0 | 70.5 ± 3.9↑ | 69.3; 71.5 | 63.0; 78.0 | <0.001 * |
Height (m) | 1.73 ± 0.07 | 1.69; 1.76 | 1.56; 1.86 | 1.64 ± 0.08↓ | 1.62; 1.66 | 1.46; 1.84 | <0.001 * |
Body mass (kg) | 67.6 ± 11.9 | 62.9–72.2 | 42.6; 90.5 | 73.7 ± 15.4 | 69.4; 78.0 | 42.5; 110.0 | 0.07 |
BMI (kg/m2) | 22.6 ± 3.38 | 21.3–23.9 | 16.5; 30.4 | 27.3 ± 5.6↑ | 25.8; 28.9 | 17.1; 48.4 | <0.001 * |
Orthostatic Intolerance * | n | % | - | n | % | - | - |
No | 26 | 100↑ | - | 43 | 86 | - | 0.041 * |
Yes | 0 | 0 | - | 7 | 14↑ | - | |
Number of cases | n | % | - | n | % | - | - |
Hypertension | 0 | 0 | - | 20 | 40 | - | <0.001 * |
Diabetes | 0 | 0 | - | 2 | 4 | - | 0.52 |
Medication use | n | % | - | n | % | - | - |
Cardiovascular | 0 | 0 | - | 20 | 40 | - | <0.001 * |
Psychotropic | 2 | 7 | - | 7 | 14 | - | 0.47 |
HRV (Time Domain) | ||||
---|---|---|---|---|
Lie-to-stand | Stats | |||
Younger adults | Older adults | p | ES | |
RR (ms) | 888.7 | 316.6 (977.9; 1.01) | 825.0 | 898.8 (999.7; 1.01) | 0.213 | −0.480 |
SDRR (ms) | 63.9 ± 24.0 (54.1; 73.6) | 36.0 ± 15.9↓ (31.5; 40.6) | <0.001 * | −1.462 |
RMSSD (ms) | 77.7 | 51.2 (20.9; 141.0) | 24.9 | 19.2↓ (7.2; 86.2) | <0.001 * | −1.758 |
HRV (frequency domain) | ||||
Lie-to-stand | Stats | |||
Younger adults | Older adults | p | ES | |
LF (ms) | 1060.0 | 1417.7 (95.8; 5352.0) | 342.3 | 460.1↓ (31.4; 2226.0) | <0.001 * | −1.029 |
HF (ms) | 2893.0 | 3984.7 (1.0; 9555.0) | 402.5 | 640.0↓ (13.1; 5756.0) | <0.001 * | −1.322 |
LF/HF | 0.4 | 0.2 (0.0; 0.8) | 0.7 | 0.9↑ (0.1; 3.6) | 0.002 * | 1.306 |
- | Sit-to-Stand | ||||
---|---|---|---|---|---|
Variable | Group | Phase 1 (30 s) | Phase 2 (60 s) | Phase 3 (180 s) | Phase 4 (420 s) |
CBG (bpm.mmHg−1) | Younger adults | 0.6 | 0.2 (0.4; 1.1) | 0.6 | 0.2 (0.4; 1.1) | 0.7 | 0.1 (0.5; 1.1) | 0.7 | 0.2 (0.5; 1.0) |
Older adults | 0.5 | 0.1 (0.3; 0.9) | 0.5 | 0.1↓ (0.3; 0.9) | 0.5 | 0.1↓ (0.3; 0.8) | 0.6 | 0.9↓ (0.3; 0.8) | |
Adj p | 0.10 | 0.0013 * | 0.0013 * | 0.0013 * | |
ES | 0.2 | 0.4 | 0.7 | 0.7 | |
Lie-to-Stand | |||||
CBG (bpm.mmHg−1) | Younger adults | 0.5 | 0.1 (0.4; 1.4) | 0.6 | 0.1 (0.4; 1.2) | 0.6 | 0.2 (0.5; 1.1) | 0.7 | 0.1 (0.4; 1.2) |
Older adults | 0.5 | 0.1 (0.3; 1.0) | 0.5 | 0.1 (0.3; 1.1) | 0.5 | 0.1↓ (0.3; 0.9) | 0.5 | 0.1↓ (0.3; 1.0) | |
Adj p | 0.6 | 0.06 | 0.002 * | 0.002 * | |
ES | 0.07 | 0.3 | 0.5 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Matos, D.G.; de Santana, J.L.; Aidar, F.J.; Cornish, S.M.; Giesbrecht, G.G.; Nunes-Silva, A.; Romero-Ortuno, R.; Duhamel, T.A.; Villar, R. Changes in Autonomic Balance, Cardiac Parasympathetic Modulation, and Cardiac Baroreflex Gain in Older Adults Under Different Orthostatic Stress Conditions. Healthcare 2025, 13, 2404. https://doi.org/10.3390/healthcare13192404
de Matos DG, de Santana JL, Aidar FJ, Cornish SM, Giesbrecht GG, Nunes-Silva A, Romero-Ortuno R, Duhamel TA, Villar R. Changes in Autonomic Balance, Cardiac Parasympathetic Modulation, and Cardiac Baroreflex Gain in Older Adults Under Different Orthostatic Stress Conditions. Healthcare. 2025; 13(19):2404. https://doi.org/10.3390/healthcare13192404
Chicago/Turabian Stylede Matos, Dihogo Gama, Jefferson Lima de Santana, Felipe J. Aidar, Stephen M. Cornish, Gordon G. Giesbrecht, Albena Nunes-Silva, Roman Romero-Ortuno, Todd A. Duhamel, and Rodrigo Villar. 2025. "Changes in Autonomic Balance, Cardiac Parasympathetic Modulation, and Cardiac Baroreflex Gain in Older Adults Under Different Orthostatic Stress Conditions" Healthcare 13, no. 19: 2404. https://doi.org/10.3390/healthcare13192404
APA Stylede Matos, D. G., de Santana, J. L., Aidar, F. J., Cornish, S. M., Giesbrecht, G. G., Nunes-Silva, A., Romero-Ortuno, R., Duhamel, T. A., & Villar, R. (2025). Changes in Autonomic Balance, Cardiac Parasympathetic Modulation, and Cardiac Baroreflex Gain in Older Adults Under Different Orthostatic Stress Conditions. Healthcare, 13(19), 2404. https://doi.org/10.3390/healthcare13192404