Menopause-Related Changes in Sleep and the Associations with Cardiometabolic Health: A Narrative Review
Abstract
1. Introduction
2. Sleep During the Menopausal Transition and Postmenopausal Period
2.1. Self-Reported Sleep Disturbances
2.2. Objectively Measured Sleep Metrics
2.3. Factors Linked to Sleep Disturbances During the Menopausal Transition and Postmenopausal Period
3. Changes in Cardiometabolic Risks During the Menopausal Transition
3.1. Body Composition and Fat Distribution
3.2. Lipids and Glucose
3.3. Blood Pressure and Vascular Health
4. Association of Sleep with Cardiometabolic Risk and Diseases
5. Targeting Sleep to Reduce Menopause-Related Increases in Cardiometabolic Risk
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gold, E.B.; Bromberger, J.; Crawford, S.; Samuels, S.; Greendale, G.A.; Harlow, S.D.; Skurnick, J. Factors associated with age at natural menopause in a multiethnic sample of midlife women. Am. J. Epidemiol. 2001, 153, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Gold, E.B.; Crawford, S.L.; Avis, N.E.; Crandall, C.J.; Matthews, K.A.; Waetjen, L.E.; Lee, J.S.; Thurston, R.; Vuga, M.; Harlow, S.D. Factors related to age at natural menopause: Longitudinal analyses from SWAN. Am. J. Epidemiol. 2013, 178, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J.; Group, S.C. Executive summary of the Stages of Reproductive Aging Workshop + 10: Addressing the unfinished agenda of staging reproductive aging. Menopause 2012, 19, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Rostami-Moez, M.; Masoumi, S.Z.; Otogara, M.; Farahani, F.; Alimohammadi, S.; Oshvandi, K. Examining the Health-Related Needs of Females during Menopause: A Systematic Review Study. J. Menopausal Med. 2023, 29, 1–20. [Google Scholar] [CrossRef]
- Kracht, C.L.; Romain, J.S.; Hardee, J.C.; Santoro, N.; Redman, L.M.; Marlatt, K.L. “It just seems like people are talking about menopause, but nobody has a solution”: A qualitative exploration of menopause experiences and preferences for weight management among Black women. Maturitas 2022, 157, 16–26. [Google Scholar] [CrossRef]
- Converso, D.; Viotti, S.; Sottimano, I.; Loera, B.; Molinengo, G.; Guidetti, G. The relationship between menopausal symptoms and burnout. A cross-sectional study among nurses. BMC Women’s Health 2019, 19, 148. [Google Scholar] [CrossRef]
- Kannel, W.B.; Hjortland, M.C.; McNamara, P.M.; Gordon, T. Menopause and risk of cardiovascular disease: The Framingham study. Ann. Intern. Med. 1976, 85, 447–452. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Aggarwal, B.; Beckie, T.M.; Hodis, H.N.; Johnson, A.E.; Langer, R.D.; Limacher, M.C.; Manson, J.E.; Stefanick, M.L.; Allison, M.A.; et al. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e506–e532. [Google Scholar] [CrossRef]
- Greendale, G.A.; Sternfeld, B.; Huang, M.; Han, W.; Karvonen-Gutierrez, C.; Ruppert, K.; Cauley, J.A.; Finkelstein, J.S.; Jiang, S.F.; Karlamangla, A.S. Changes in body composition and weight during the menopause transition. JCI Insight 2019, 4, e124865. [Google Scholar] [CrossRef]
- Samargandy, S.; Matthews, K.A.; Brooks, M.M.; Barinas-Mitchell, E.; Magnani, J.W.; Janssen, I.; Kazlauskaite, R.; El Khoudary, S.R. Abdominal visceral adipose tissue over the menopause transition and carotid atherosclerosis: The SWAN heart study. Menopause 2021, 28, 626–633. [Google Scholar] [CrossRef]
- Greendale, G.A.; Han, W.; Finkelstein, J.S.; Burnett-Bowie, S.M.; Huang, M.; Martin, D.; Karlamangla, A.S. Changes in Regional Fat Distribution and Anthropometric Measures Across the Menopause Transition. J. Clin. Endocrinol. Metab. 2021, 106, 2520–2534. [Google Scholar] [CrossRef]
- Wenner, M.M.; Shenouda, N.; Shoemaker, L.; Kuczmarski, A.; Haigh, K.; Del Vecchio, A.; Schwab, A.; McGinty, S.J.; Edwards, D.G.; Pohlig, R.T.; et al. Characterizing vascular and hormonal changes in women across the life span: A cross-sectional analysis. Am. J. Physiol. Heart Circ. Physiol. 2024, 327, H1286–H1295. [Google Scholar] [CrossRef] [PubMed]
- Samargandy, S.; Matthews, K.A.; Brooks, M.M.; Barinas-Mitchell, E.; Magnani, J.W.; Janssen, I.; Hollenberg, S.M.; El Khoudary, S.R. Arterial Stiffness Accelerates Within 1 Year of the Final Menstrual Period: The SWAN Heart Study. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, H.M.; Janssen, I.; Bromberger, J.T.; Matthews, K.A.; Hall, M.H.; Ruppert, K.; Joffe, H. Sleep Trajectories Before and After the Final Menstrual Period in The Study of Women’s Health Across the Nation (SWAN). Curr. Sleep Med. Rep. 2017, 3, 235–250. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Jones, D.M.; Allen, N.B.; Anderson, C.A.M.; Black, T.; Brewer, L.C.; Foraker, R.E.; Grandner, M.A.; Lavretsky, H.; Perak, A.M.; Sharma, G.; et al. Life’s Essential 8: Updating and Enhancing the American Heart Association’s Construct of Cardiovascular Health: A Presidential Advisory From the American Heart Association. Circulation 2022, 146, e18–e43. [Google Scholar] [CrossRef]
- Maki, P.M.; Panay, N.; Simon, J.A. Sleep disturbance associated with the menopause. Menopause 2024, 31, 724–733. [Google Scholar] [CrossRef]
- Tom, S.E.; Kuh, D.; Guralnik, J.M.; Mishra, G.D. Self-reported sleep difficulty during the menopausal transition: Results from a prospective cohort study. Menopause 2010, 17, 1128–1135. [Google Scholar] [CrossRef]
- Kravitz, H.M.; Joffe, H. Sleep during the perimenopause: A SWAN story. Obstet. Gynecol. Clin. N. Am. 2011, 38, 567–586. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lee, K.; Choi, E.; Cho, H.N.; Park, B.; Rhee, Y.; Choi, K.S. Sleep Quality and Associated Factors in Premenopausal, Perimenopausal, and Postmenopausal Women in Korea: Findings from the K-Stori 2016. Nat. Sci. Sleep 2021, 13, 1137–1145. [Google Scholar] [CrossRef]
- Vahratian, A. Sleep Duration and Quality Among Women Aged 40–59, by Menopausal Status; NCHS Data Brief No. 286; National Center for Health Statistics: Hyattsville, MD, USA, 2017; pp. 1–8.
- Coborn, J.; de Wit, A.; Crawford, S.; Nathan, M.; Rahman, S.; Finkelstein, L.; Wiley, A.; Joffe, H. Disruption of Sleep Continuity During the Perimenopause: Associations with Female Reproductive Hormone Profiles. J. Clin. Endocrinol. Metab. 2022, 107, e4144–e4153. [Google Scholar] [CrossRef]
- Lampio, L.; Polo-Kantola, P.; Himanen, S.L.; Kurki, S.; Huupponen, E.; Engblom, J.; Heinonen, O.J.; Polo, O.; Saaresranta, T. Sleep During Menopausal Transition: A 6-Year Follow-Up. Sleep 2017, 40, zsx090. [Google Scholar] [CrossRef]
- Kalleinen, N.; Aittokallio, J.; Lampio, L.; Kaisti, M.; Polo-Kantola, P.; Polo, O.; Heinonen, O.J.; Saaresranta, T. Sleep during menopausal transition: A 10-year follow-up. Sleep 2021, 44, zsaa283. [Google Scholar] [CrossRef]
- Matthews, K.A.; Kravitz, H.M.; Lee, L.; Harlow, S.D.; Bromberger, J.T.; Joffe, H.; Hall, M.H. Does midlife aging impact women’s sleep duration, continuity, and timing?: A longitudinal analysis from the Study of Women’s Health Across the Nation. Sleep 2020, 43, zsz259. [Google Scholar] [CrossRef] [PubMed]
- Young, T.; Rabago, D.; Zgierska, A.; Austin, D.; Laurel, F. Objective and subjective sleep quality in premenopausal, perimenopausal, and postmenopausal women in the Wisconsin Sleep Cohort Study. Sleep 2003, 26, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.Y.; Chiu, C.J.; Shea, J.L.; Wang, C.L.; Tang, H.H.; Kuo, P.C.; Yang, Y.C.; Wu, C.H. Role of age, menopausal status, and symptoms in midlife women: Examination of sleep patterns and rest-activity circadian rhythms. Sleep Med. 2024, 113, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Campbell, I.G.; Bromberger, J.T.; Buysse, D.J.; Hall, M.H.; Hardin, K.A.; Kravitz, H.M.; Matthews, K.A.; Rasor, M.O.; Utts, J.; Gold, E. Evaluation of the association of menopausal status with delta and beta EEG activity during sleep. Sleep 2011, 34, 1561–1568. [Google Scholar] [CrossRef]
- Matthews, K.A.; Lee, L.; Kravitz, H.M.; Joffe, H.; Neal-Perry, G.; Swanson, L.M.; Evans, M.A.; Hall, M.H. Influence of the menopausal transition on polysomnographic sleep characteristics: A longitudinal analysis. Sleep 2021, 44, zsab139. [Google Scholar] [CrossRef]
- Meers, J.M.; Bower, J.; Nowakowski, S.; Alfano, C. Interaction of sleep and emotion across the menstrual cycle. J. Sleep Res. 2024, 33, e14185. [Google Scholar] [CrossRef]
- Alzueta, E.; Baker, F.C. The Menstrual Cycle and Sleep. Sleep Med. Clin. 2023, 18, 399–413. [Google Scholar] [CrossRef]
- Haufe, A.; Baker, F.C.; Leeners, B. The role of ovarian hormones in the pathophysiology of perimenopausal sleep disturbances: A systematic review. Sleep Med. Rev. 2022, 66, 101710. [Google Scholar] [CrossRef]
- Pan, Z.; Wen, S.; Qiao, X.; Yang, M.; Shen, X.; Xu, L. Different regimens of menopausal hormone therapy for improving sleep quality: A systematic review and meta-analysis. Menopause 2022, 29, 627–635. [Google Scholar] [CrossRef]
- Cheng, Y.S.; Tseng, P.T.; Wu, M.K.; Tu, Y.K.; Wu, Y.C.; Li, D.J.; Chen, T.Y.; Su, K.P.; Stubbs, B.; Carvalho, A.F.; et al. Pharmacologic and hormonal treatments for menopausal sleep disturbances: A network meta-analysis of 43 randomized controlled trials and 32,271 menopausal women. Sleep Med. Rev. 2021, 57, 101469. [Google Scholar] [CrossRef]
- Politi, M.C.; Schleinitz, M.D.; Col, N.F. Revisiting the duration of vasomotor symptoms of menopause: A meta-analysis. J. Gen. Intern. Med. 2008, 23, 1507–1513. [Google Scholar] [CrossRef]
- Col, N.F.; Guthrie, J.R.; Politi, M.; Dennerstein, L. Duration of vasomotor symptoms in middle-aged women: A longitudinal study. Menopause 2009, 16, 453–457. [Google Scholar] [CrossRef]
- Avis, N.E.; Crawford, S.L.; Greendale, G.; Bromberger, J.T.; Everson-Rose, S.A.; Gold, E.B.; Hess, R.; Joffe, H.; Kravitz, H.M.; Tepper, P.G.; et al. Duration of menopausal vasomotor symptoms over the menopause transition. JAMA Intern. Med. 2015, 175, 531–539. [Google Scholar] [CrossRef] [PubMed]
- DePree, B.; Shiozawa, A.; King, D.; Schild, A.; Zhou, M.; Yang, H.; Mancuso, S. Association of menopausal vasomotor symptom severity with sleep and work impairments: A US survey. Menopause 2023, 30, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Yim, G.; Park, H.Y. Vasomotor and physical menopausal symptoms are associated with sleep quality. PLoS ONE 2018, 13, e0192934. [Google Scholar] [CrossRef] [PubMed]
- Todorova, L.; Bonassi, R.; Guerrero Carreno, F.J.; Hirschberg, A.L.; Yuksel, N.; Rea, C.; Scrine, L.; Kim, J.S. Prevalence and impact of vasomotor symptoms due to menopause among women in Brazil, Canada, Mexico, and Nordic Europe: A cross-sectional survey. Menopause 2023, 30, 1179–1189. [Google Scholar] [CrossRef]
- Jones, H.J.; Zak, R.; Lee, K.A. Sleep Disturbances in Midlife Women at the Cusp of the Menopausal Transition. J. Clin. Sleep Med. 2018, 14, 1127–1133. [Google Scholar] [CrossRef]
- Hachul, H.; Castro, L.S.; Bezerra, A.G.; Pires, G.N.; Poyares, D.; Andersen, M.L.; Bittencourt, L.R.; Tufik, S. Hot flashes, insomnia, and the reproductive stages: A cross-sectional observation of women from the EPISONO study. J. Clin. Sleep Med. 2021, 17, 2257–2267. [Google Scholar] [CrossRef]
- Joffe, H.; Crawford, S.; Economou, N.; Kim, S.; Regan, S.; Hall, J.E.; White, D. A gonadotropin-releasing hormone agonist model demonstrates that nocturnal hot flashes interrupt objective sleep. Sleep 2013, 36, 1977–1985. [Google Scholar] [CrossRef]
- Thurston, R.C.; Santoro, N.; Matthews, K.A. Are vasomotor symptoms associated with sleep characteristics among symptomatic midlife women? Comparisons of self-report and objective measures. Menopause 2012, 19, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Thurston, R.C.; Chang, Y.; Buysse, D.J.; Hall, M.H.; Matthews, K.A. Hot flashes and awakenings among midlife women. Sleep 2019, 42, zsz131. [Google Scholar] [CrossRef] [PubMed]
- Crandall, C.J.; Mehta, J.M.; Manson, J.E. Management of Menopausal Symptoms: A Review. JAMA 2023, 329, 405–420. [Google Scholar] [CrossRef] [PubMed]
- Palacios, S.; Sven, S.; Beltrán, L.; Simoncini, T.; Celis-Gonzales, C.; Birkhaeuser, M.; Siseles, N.; Genazzani, A.R. Therapeutic approaches for vasomotor symptoms and sleep disorders in menopausal women. GREM Gynecol. Reprod. Endocrinol. Metab. 2022, 3, 74–83. [Google Scholar] [CrossRef]
- Santoro, N.; Roeca, C.; Peters, B.A.; Neal-Perry, G. The Menopause Transition: Signs, Symptoms, and Management Options. J. Clin. Endocrinol. Metab. 2021, 106, 1–15. [Google Scholar] [CrossRef]
- Monteleone, P.; Mascagni, G.; Giannini, A.; Genazzani, A.R.; Simoncini, T. Symptoms of menopause—Global prevalence, physiology and implications. Nat. Rev. Endocrinol. 2018, 14, 199–215. [Google Scholar] [CrossRef]
- Chung, H.F.; Pandeya, N.; Dobson, A.J.; Kuh, D.; Brunner, E.J.; Crawford, S.L.; Avis, N.E.; Gold, E.B.; Mitchell, E.S.; Woods, N.F.; et al. The role of sleep difficulties in the vasomotor menopausal symptoms and depressed mood relationships: An international pooled analysis of eight studies in the InterLACE consortium. Psychol. Med. 2018, 48, 2550–2561. [Google Scholar] [CrossRef]
- Joffe, H.; Petrillo, L.F.; Koukopoulos, A.; Viguera, A.C.; Hirschberg, A.; Nonacs, R.; Somley, B.; Pasciullo, E.; White, D.P.; Hall, J.E.; et al. Increased estradiol and improved sleep, but not hot flashes, predict enhanced mood during the menopausal transition. J. Clin. Endocrinol. Metab. 2011, 96, E1044–E1054. [Google Scholar] [CrossRef]
- Bowman, M.A.; Kline, C.E.; Buysse, D.J.; Kravitz, H.M.; Joffe, H.; Matthews, K.A.; Bromberger, J.T.; Roecklein, K.A.; Krafty, R.T.; Hall, M.H. Longitudinal Association Between Depressive Symptoms and Multidimensional Sleep Health: The SWAN Sleep Study. Ann. Behav. Med. 2021, 55, 641–652. [Google Scholar] [CrossRef]
- Jehan, S.; Jean-Louis, G.; Zizi, F.; Auguste, E.; Pandi-Perumal, S.R.; Gupta, R.; Attarian, H.; McFarlane, S.I.; Hardeland, R.; Brzezinski, A. Sleep, Melatonin, and the Menopausal Transition: What Are the Links? Sleep Sci. 2017, 10, 11–18. [Google Scholar] [CrossRef]
- Troìa, L.; Garassino, M.; Volpicelli, A.I.; Fornara, A.; Libretti, A.; Surico, D.; Remorgida, V. Sleep Disturbance and Perimenopause: A Narrative Review. J. Clin. Med. 2025, 14, 1479. [Google Scholar] [CrossRef]
- Papadopoulos, D.; Sosso, F.A.E. Socioeconomic status and sleep health: A narrative synthesis of 3 decades of empirical research. J. Clin. Sleep Med. 2023, 19, 605–620. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.A.; Anderson, R.A.; Ballantyne, E.; Bolognese, J.; Caetano, C.; Joffe, H.; Kerr, M.; Panay, N.; Seitz, C.; Seymore, S.; et al. Efficacy and safety of elinzanetant, a selective neurokinin-1,3 receptor antagonist for vasomotor symptoms: A dose-finding clinical trial (SWITCH-1). Menopause 2023, 30, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Pawsey, S.; Trower, M.; Seymore, S.; Kerr, M.; Joffe, H.; Ballantyne, E.; Anderson, R.A.; Simon, J. OR11-03 NT-814, a Non-Hormonal Dual Neurokinin 1,3 Receptor Antagonist Markedly Improves Vasomotor Symptoms in Post-Menopausal Women; Results of a Randomised, Double-Blind, Placebo-Controlled, Dose-Finding Study (SWITCH-1). J. Endocr. Soc. 2020, 4 (Suppl. S1), OR11-03. [Google Scholar] [CrossRef]
- Abdulnour, J.; Doucet, E.; Brochu, M.; Lavoie, J.M.; Strychar, I.; Rabasa-Lhoret, R.; Prud’homme, D. The effect of the menopausal transition on body composition and cardiometabolic risk factors: A Montreal-Ottawa New Emerging Team group study. Menopause 2012, 19, 760–767. [Google Scholar] [CrossRef]
- Banack, H.R.; Wactawski-Wende, J.; Hovey, K.M.; Stokes, A. Is BMI a valid measure of obesity in postmenopausal women? Menopause 2018, 25, 307–313. [Google Scholar] [CrossRef]
- Karlamangla, A.S.; Burnett-Bowie, S.M.; Crandall, C.J. Bone Health During the Menopause Transition and Beyond. Obstet. Gynecol. Clin. N. Am. 2018, 45, 695–708. [Google Scholar] [CrossRef]
- Greendale, G.A.; Sowers, M.; Han, W.; Huang, M.H.; Finkelstein, J.S.; Crandall, C.J.; Lee, J.S.; Karlamangla, A.S. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: Results from the Study of Women’s Health Across the Nation (SWAN). J. Bone Miner. Res. 2012, 27, 111–118. [Google Scholar] [CrossRef]
- Matthews, K.A.; Abrams, B.; Crawford, S.; Miles, T.; Neer, R.; Powell, L.H.; Wesley, D. Body mass index in mid-life women: Relative influence of menopause, hormone use, and ethnicity. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 863–873. [Google Scholar] [CrossRef]
- Matthews, K.A.; Crawford, S.L.; Chae, C.U.; Everson-Rose, S.A.; Sowers, M.F.; Sternfeld, B.; Sutton-Tyrrell, K. Are changes in cardiovascular disease risk factors in midlife women due to chronological aging or to the menopausal transition? J. Am. Coll. Cardiol. 2009, 54, 2366–2373. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.R.; Castelo-Branco, C.; Chedraui, P.; Lumsden, M.A.; Nappi, R.E.; Shah, D.; Villaseca, P.; Writing Group of the International Menopause Society for World Menopause Day 2012. Understanding weight gain at menopause. Climacteric 2012, 15, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Thurston, R.C.; Karvonen-Gutierrez, C.A.; Derby, C.A.; El Khoudary, S.R.; Kravitz, H.M.; Manson, J.E. Menopause versus chronologic aging: Their roles in women’s health. Menopause 2018, 25, 849–854. [Google Scholar] [CrossRef] [PubMed]
- van der Leeuw, J.; Wassink, A.M.J.; van der Graaf, Y.; Westerveld, H.E.; Visseren, F.L.J.; on behalf of the Second Manifestations of ARTerial Disease (SMART) Study Group. Age-related differences in abdominal fat distribution in premenopausal and postmenopausal women with cardiovascular disease. Menopause 2013, 20, 409–417. [Google Scholar] [CrossRef]
- Kotani, K.; Tokunaga, K.; Fujioka, S.; Kobatake, T.; Keno, Y.; Yoshida, S.; Shimomura, I.; Tarui, S.; Matsuzawa, Y. Sexual dimorphism of age-related changes in whole-body fat distribution in the obese. Int. J. Obes. Relat. Metab. Disord. 1994, 18, 207–212. [Google Scholar]
- Lovejoy, J.C.; Champagne, C.M.; de Jonge, L.; Xie, H.; Smith, S.R. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int. J. Obes. 2008, 32, 949–958. [Google Scholar] [CrossRef]
- Wu, B.; Fan, B.; Qu, Y.; Li, C.; Chen, J.; Liu, Y.; Wang, J.; Zhang, T.; Chen, Y. Trajectories of Blood Lipids Profile in Midlife Women: Does Menopause Matter? J. Am. Heart Assoc. 2023, 12, e030388. [Google Scholar] [CrossRef]
- El Khoudary, S.R. HDL and the menopause. Curr. Opin. Lipidol. 2017, 28, 328–336. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Wang, L.; Brooks, M.M.; Thurston, R.C.; Derby, C.A.; Matthews, K.A. Increase HDL-C level over the menopausal transition is associated with greater atherosclerotic progression. J. Clin. Lipidol. 2016, 10, 962–969. [Google Scholar] [CrossRef]
- Dai, Q.; Wu, S.; Cao, Z.; Chen, S.; Song, Y.; Wang, X.; Zhang, Y.; Ma, X. Trajectories of lipids around the menopause transition in Chinese women: Results of the Kailuan cohort study. Fertil. Steril. 2023, 119, 1057–1067. [Google Scholar] [CrossRef]
- Guthrie, J.R.; Ball, M.; Dudley, E.C.; Garamszegi, C.V.; Wahlqvist, M.L.; Dennerstein, L.; Burger, H.G. Impaired fasting glycaemia in middle-aged women: A prospective study. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 646–651. [Google Scholar] [CrossRef]
- Cerdas Perez, S. Menopause and diabetes. Climacteric 2023, 26, 216–221. [Google Scholar] [CrossRef]
- Choi, M.J.; Yu, J. Menopause and Diabetes Risk Along with Trajectory of beta-Cell Function and Insulin Sensitivity: A Community-Based Cohort Study. Healthcare 2025, 13, 1062. [Google Scholar] [CrossRef]
- Wenger, N.K.; Arnold, A.; Bairey Merz, C.N.; Cooper-DeHoff, R.M.; Ferdinand, K.C.; Fleg, J.L.; Gulati, M.; Isiadinso, I.; Itchhaporia, D.; Light-McGroary, K.; et al. Hypertension Across a Woman’s Life Cycle. J. Am. Coll. Cardiol. 2018, 71, 1797–1813. [Google Scholar] [CrossRef]
- Samargandy, S.; Matthews, K.A.; Brooks, M.M.; Barinas-Mitchell, E.; Magnani, J.W.; Thurston, R.C.; El Khoudary, S.R. Trajectories of Blood Pressure in Midlife Women: Does Menopause Matter? Circ. Res. 2022, 130, 312–322. [Google Scholar] [CrossRef]
- Lau, E.S.; Michos, E.D. Blood Pressure Trajectories Through the Menopause Transition: Different Paths, Same Journey. Circ. Res. 2022, 130, 323–325. [Google Scholar] [CrossRef] [PubMed]
- Reutrakul, S.; Van Cauter, E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism 2018, 84, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Cappuccio, F.P.; Miller, M.A. Sleep and Cardio-Metabolic Disease. Curr. Cardiol. Rep. 2017, 19, 110. [Google Scholar] [CrossRef] [PubMed]
- Saz-Lara, A.; Luceron-Lucas-Torres, M.; Mesas, A.E.; Notario-Pacheco, B.; Lopez-Gil, J.F.; Cavero-Redondo, I. Association between sleep duration and sleep quality with arterial stiffness: A systematic review and meta-analysis. Sleep Health 2022, 8, 663–670. [Google Scholar] [CrossRef]
- Duan, D.; Kim, L.J.; Jun, J.C.; Polotsky, V.Y. Connecting insufficient sleep and insomnia with metabolic dysfunction. Ann. N. Y. Acad. Sci. 2023, 1519, 94–117. [Google Scholar] [CrossRef]
- Aziz, M.; Ali, S.S.; Das, S.; Younus, A.; Malik, R.; Latif, M.A.; Humayun, C.; Anugula, D.; Abbas, G.; Salami, J.; et al. Association of Subjective and Objective Sleep Duration as well as Sleep Quality with Non-Invasive Markers of Sub-Clinical Cardiovascular Disease (CVD): A Systematic Review. J. Atheroscler. Thromb. 2017, 24, 208–226. [Google Scholar] [CrossRef]
- Bonsen, T.; Wijnstok, N.J.; Hoekstra, T.; Eringa, E.C.; Serne, E.H.; Smulders, Y.M.; Twisk, J.W. Sleep quality and duration are related to microvascular function: The Amsterdam Growth and Health Longitudinal Study. J. Sleep Res. 2015, 24, 140–147. [Google Scholar] [CrossRef]
- Kim, C.W.; Chang, Y.; Zhao, D.; Cainzos-Achirica, M.; Ryu, S.; Jung, H.S.; Yun, K.E.; Choi, Y.; Ahn, J.; Zhang, Y.; et al. Sleep Duration, Sleep Quality, and Markers of Subclinical Arterial Disease in Healthy Men and Women. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 2238–2245. [Google Scholar] [CrossRef]
- Cappuccio, F.P.; Cooper, D.; D’Elia, L.; Strazzullo, P.; Miller, M.A. Sleep duration predicts cardiovascular outcomes: A systematic review and meta-analysis of prospective studies. Eur. Heart J. 2011, 32, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Z.; Wang, X.; Guo, S.; Sun, Y.; Li, G.; Zhao, C.; Yuan, W.; Li, M.; Li, X.; et al. Associations between sleep duration and cardiovascular diseases: A meta-review and meta-analysis of observational and Mendelian randomization studies. Front. Cardiovasc. Med. 2022, 9, 930000. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Jin, X.; Shan, Z.; Li, S.; Huang, H.; Li, P.; Peng, X.; Peng, Z.; Yu, K.; Bao, W.; et al. Relationship of Sleep Duration with All-Cause Mortality and Cardiovascular Events: A Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. J. Am. Heart Assoc. 2017, 6, e005947. [Google Scholar] [CrossRef]
- Lao, X.Q.; Liu, X.; Deng, H.B.; Chan, T.C.; Ho, K.F.; Wang, F.; Vermeulen, R.; Tam, T.; Wong, M.C.S.; Tse, L.A.; et al. Sleep Quality, Sleep Duration, and the Risk of Coronary Heart Disease: A Prospective Cohort Study with 60,586 Adults. J. Clin. Sleep Med. 2018, 14, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Ji, A.; Lou, H.; Lou, P.; Xu, C.; Zhang, P.; Qiao, C.; Yang, Q. Interactive effect of sleep duration and sleep quality on risk of stroke: An 8-year follow-up study in China. Sci. Rep. 2020, 10, 8690. [Google Scholar] [CrossRef]
- Tao, F.; Cao, Z.; Jiang, Y.; Fan, N.; Xu, F.; Yang, H.; Li, S.; Zhang, Y.; Zhang, X.; Sun, L.; et al. Associations of sleep duration and quality with incident cardiovascular disease, cancer, and mortality: A prospective cohort study of 407,500 UK biobank participants. Sleep Med. 2021, 81, 401–409. [Google Scholar] [CrossRef]
- Huang, B.H.; Del Pozo Cruz, B.; Teixeira-Pinto, A.; Cistulli, P.A.; Stamatakis, E. Influence of poor sleep on cardiovascular disease-free life expectancy: A multi-resource-based population cohort study. BMC Med. 2023, 21, 75. [Google Scholar] [CrossRef]
- Ujma, P.P.; Bodizs, R. Sleep alterations as a function of 88 health indicators. BMC Med. 2024, 22, 134. [Google Scholar] [CrossRef]
- Kanclerska, J.; Szymanska-Chabowska, A.; Poreba, R.; Michalek-Zrabkowska, M.; Lachowicz, G.; Mazur, G.; Martynowicz, H. A Systematic Review of Publications on the Associations Between Sleep Architecture and Arterial Hypertension. Med. Sci. Monit. 2023, 29, e941066. [Google Scholar] [CrossRef] [PubMed]
- Taporoski, T.P.; Beijamini, F.; Alexandria, S.J.; Aaby, D.; Krieger, J.E.; von Schantz, M.; Pereira, A.C.; Knutson, K.L. Gender-specific associations between sleep stages and cardiovascular risk factors. Sleep 2025, 48, zsae242. [Google Scholar] [CrossRef] [PubMed]
- Castellucci, B.; Barrea, L.; Laudisio, D.; Aprano, S.; Pugliese, G.; Savastano, S.; Colao, A.; Muscogiuri, G. Improving sleep disturbances in obesity by nutritional strategies: Review of current evidence and practical guide. Int. J. Food Sci. Nutr. 2021, 72, 579–591. [Google Scholar] [CrossRef]
- Soltanieh, S.; Solgi, S.; Ansari, M.; Santos, H.O.; Abbasi, B. Effect of sleep duration on dietary intake, desire to eat, measures of food intake and metabolic hormones: A systematic review of clinical trials. Clin. Nutr. ESPEN 2021, 45, 55–65. [Google Scholar] [CrossRef]
- Rodrigues, G.D.; Fiorelli, E.M.; Furlan, L.; Montano, N.; Tobaldini, E. Obesity and sleep disturbances: The “chicken or the egg” question. Eur. J. Intern. Med. 2021, 92, 11–16. [Google Scholar] [CrossRef]
- Crnko, S.; Du Pre, B.C.; Sluijter, J.P.G.; Van Laake, L.W. Circadian rhythms and the molecular clock in cardiovascular biology and disease. Nat. Rev. Cardiol. 2019, 16, 437–447. [Google Scholar] [CrossRef]
- Stenvers, D.J.; Scheer, F.; Schrauwen, P.; la Fleur, S.E.; Kalsbeek, A. Circadian clocks and insulin resistance. Nat. Rev. Endocrinol. 2019, 15, 75–89. [Google Scholar] [CrossRef]
- Huang, T.; Mariani, S.; Redline, S. Sleep Irregularity and Risk of Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis. J. Am. Coll. Cardiol. 2020, 75, 991–999. [Google Scholar] [CrossRef]
- Belloir, J.; Makarem, N.; Shechter, A. Sleep and Circadian Disturbance in Cardiovascular Risk. Curr. Cardiol. Rep. 2022, 24, 2097–2107. [Google Scholar] [CrossRef]
- Thurston, R.C.; Chang, Y.; Kline, C.E.; Swanson, L.M.; El Khoudary, S.R.; Jackson, E.A.; Derby, C.A. Trajectories of Sleep Over Midlife and Incident Cardiovascular Disease Events in the Study of Women’s Health Across the Nation. Circulation 2024, 149, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.A.; Everson-Rose, S.A.; Kravitz, H.M.; Lee, L.; Janssen, I.; Sutton-Tyrrell, K. Do reports of sleep disturbance relate to coronary and aortic calcification in healthy middle-aged women?: Study of women’s health across the nation. Sleep Med. 2013, 14, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, J.; Hu, X.; Xie, H. Transition of nighttime sleep duration and sleep quality with incident cardiovascular disease among middle-aged and older adults: Results from a national cohort study. Arch. Public Health 2025, 83, 91. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Su, Y.; Zhang, D.; Wu, J.; Zheng, H.; Wang, X. Joint effects of self-reported sleep and modifiable physical activity on risk of dyslipidaemia in women aged 45–55 years: A cross-sectional study. BMJ Open 2022, 12, e049351. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, R.; Li, C.; Tao, M. Sleep disorder, an independent risk associated with arterial stiffness in menopause. Sci. Rep. 2017, 7, 1904. [Google Scholar] [CrossRef]
- Barragan, R.; Zuraikat, F.M.; Cheng, B.; Scaccia, S.E.; Cochran, J.; Aggarwal, B.; Jelic, S.; St-Onge, M.P. Paradoxical Effects of Prolonged Insufficient Sleep on Lipid Profile: A Pooled Analysis of 2 Randomized Trials. J. Am. Heart Assoc. 2023, 12, e032078. [Google Scholar] [CrossRef]
- Bennett, D. Cognitive-Behavioral Therapy for Insomnia (CBT-I). In Sleep Medicine and Mental Health; Sedky, K., Nazir, R., Bennett, D., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 47–66. [Google Scholar]
- Albakri, U.; Drotos, E.; Meertens, R. Sleep Health Promotion Interventions and Their Effectiveness: An Umbrella Review. Int. J. Environ. Res. Public Health 2021, 18, 5533. [Google Scholar] [CrossRef]
- Savin, K.L.; Clark, T.L.; Perez-Ramirez, P.; Allen, T.S.; Tristao Parra, M.; Gallo, L.C. The Effect of Cognitive Behavioral Therapy for Insomnia (CBT-I) on Cardiometabolic Health Biomarkers: A Systematic Review of Randomized Controlled Trials. Behav. Sleep Med. 2023, 21, 671–694. [Google Scholar] [CrossRef]
- So-Ngern, A.; Chirakalwasan, N.; Saetung, S.; Chanprasertyothin, S.; Thakkinstian, A.; Reutrakul, S. Effects of Two-Week Sleep Extension on Glucose Metabolism in Chronically Sleep-Deprived Individuals. J. Clin. Sleep Med. 2019, 15, 711–718. [Google Scholar] [CrossRef]
- Hartescu, I.; Stensel, D.J.; Thackray, A.E.; King, J.A.; Dorling, J.L.; Rogers, E.N.; Hall, A.P.; Brady, E.M.; Davies, M.J.; Yates, T.; et al. Sleep extension and metabolic health in male overweight/obese short sleepers: A randomised controlled trial. J. Sleep Res. 2022, 31, e13469. [Google Scholar] [CrossRef]
- Tasali, E.; Chapotot, F.; Wroblewski, K.; Schoeller, D. The effects of extended bedtimes on sleep duration and food desire in overweight young adults: A home-based intervention. Appetite 2014, 80, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Tasali, E.; Wroblewski, K.; Kahn, E.; Kilkus, J.; Schoeller, D.A. Effect of Sleep Extension on Objectively Assessed Energy Intake Among Adults with Overweight in Real-life Settings: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Al Khatib, H.K.; Hall, W.L.; Creedon, A.; Ooi, E.; Masri, T.; McGowan, L.; Harding, S.V.; Darzi, J.; Pot, G.K. Sleep extension is a feasible lifestyle intervention in free-living adults who are habitually short sleepers: A potential strategy for decreasing intake of free sugars? A randomized controlled pilot study. Am. J. Clin. Nutr. 2018, 107, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Leproult, R.; Deliens, G.; Gilson, M.; Peigneux, P. Beneficial impact of sleep extension on fasting insulin sensitivity in adults with habitual sleep restriction. Sleep 2015, 38, 707–715. [Google Scholar] [CrossRef]
- Musgrave, R.H.; Nowakowski, S.; Watermeyer, T.J.; Arentson-Lantz, E.J.; Elder, G.J. Dietary interventions to support and improve sleep disturbances and insomnia disorder in menopause: From bench to bedside. Post Reprod. Health 2025, 31, 122–126. [Google Scholar] [CrossRef]
- Carmona, N.E.; Starick, E.; Millett, G.E.; Green, S.M.; Carney, C.E. Sleep effects of psychological therapies for menopausal symptoms in women with hot flashes and night sweats: A systematic review. Post Reprod. Health 2024, 30, 166–181. [Google Scholar] [CrossRef]
- Polasek, D.; Santhi, N.; Alfonso-Miller, P.; Walshe, I.H.; Haskell-Ramsay, C.F.; Elder, G.J. Nutritional interventions in treating menopause-related sleep disturbances: A systematic review. Nutr. Rev. 2024, 82, 1087–1110. [Google Scholar] [CrossRef]
- Nowakowski, S.; Meers, J.M. Cognitive Behavioral Therapy for Insomnia and Women’s Health: Sex as a Biological Variable. Sleep Med. Clin. 2019, 14, 185–197. [Google Scholar] [CrossRef]
- Pérez-Medina-Carballo, R.; Kosmadopoulos, A.; Boudreau, P.; Robert, M.; Walker, C.D.; Boivin, D.B. The circadian variation of sleep and alertness of postmenopausal women. Sleep 2023, 46, zsac272. [Google Scholar] [CrossRef]
- Malhan, D.; Yalçin, M.; Liedtke, S.; Grötsch, R.; Enzmann, C.; Rau, M.; Relógio, A. A prospective study to investigate circadian rhythms as health indicator in women’s aging. npj Women’s Health 2025, 3, 18. [Google Scholar] [CrossRef]
- James, D.L.; Larkey, L.K.; Evans, B.; Sebren, A.; Goldsmith, K.; Ahlich, E.; Hawley, N.A.; Kechter, A.; Sears, D.D. Mechanisms of improved body composition among perimenopausal women practicing Meditative Movement: A proposed biobehavioral model. Menopause 2023, 30, 1114–1123. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sparks, J.R.; Wang, X. Menopause-Related Changes in Sleep and the Associations with Cardiometabolic Health: A Narrative Review. Healthcare 2025, 13, 2085. https://doi.org/10.3390/healthcare13172085
Sparks JR, Wang X. Menopause-Related Changes in Sleep and the Associations with Cardiometabolic Health: A Narrative Review. Healthcare. 2025; 13(17):2085. https://doi.org/10.3390/healthcare13172085
Chicago/Turabian StyleSparks, Joshua R., and Xuewen Wang. 2025. "Menopause-Related Changes in Sleep and the Associations with Cardiometabolic Health: A Narrative Review" Healthcare 13, no. 17: 2085. https://doi.org/10.3390/healthcare13172085
APA StyleSparks, J. R., & Wang, X. (2025). Menopause-Related Changes in Sleep and the Associations with Cardiometabolic Health: A Narrative Review. Healthcare, 13(17), 2085. https://doi.org/10.3390/healthcare13172085