The Health Effects of Heated Tobacco Product Use—A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection Criteria
2.3. Data Extraction and Quality Assessment
3. Results
3.1. The Impact of Heated Tobacco Products on Human Health in In Vivo Human Studies
3.1.1. Respiratory System
3.1.2. Cardiovascular System
3.1.3. Nervous System
3.1.4. Oral Cavity
3.1.5. Reproductive System
3.1.6. Metabolic System
3.1.7. Biomarkers of Exposure and Biomarkers of Effect
3.1.8. Molecular Genetic Effects
3.1.9. Secondhand Exposure
3.2. The Impact of Heated Tobacco Product Use on Human Health in In Vitro Studies on Human Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FDA | Food and Drug Administration | %FEV1 | % predicted FEV1 |
EU | European Union | CAT | COPD Assessment Test |
WHO | World Health Organization | COPD | Chronic obstructive pulmonary disease |
FCTC | Framework Convention on Tobacco Control | 6MWD | 6 min walking distance |
HTP | Heated tobacco products | BoE | biomarkers of exposure |
IQOS | I-Quit-Ordinary-Smoking | BoBEs | biomarkers of biological effect |
THS | The Tobacco Heating System | DNAm | DNA methylation |
PD | probing depth | LRRN3 | DNAm biomarker genes |
CAL | clinical attachment loss | GPR15 | DNAm biomarker genes |
HnB | heat-not-burn | WID | Whiteness Index for Dentistry |
MDA | malondialdehyde | FR | fertilization rate |
4-HNE | 4-hydroxynonenal | HbA1c | hemoglobin A1c |
SFR | Salivary flow rate | CT | Computed tomography |
Lys | lysozyme secretion indicators | OSCC | oral squamous cell carcinoma |
Lac | lactoferrin secretion indicators | CSE | cigarette-smoke-extract |
CS | cigarette smokers | p38 | protein |
ICSI | Intracytoplasmic sperm injection | Ca2+ | calcium ions |
AMH | anti-Müllerian hormone | 3R4F | reference cigarette smoke |
SGA | small for gestational age | BEAS-2B | human bronchial epithelial cells |
IL-8 | interleukin (IL)-8 | DSBs | double-strand breaks |
IL-6 | Interleukin (IL)-6 | ATR-CHK1 | ataxia telangiectasia, and Rad3-related (ATR) checkpoint kinase 1 (CHK1) |
IL-2 | interleukin (IL)-2 | MDC1 | Mediators of the DNA damage checkpoint 1 |
WBC | white blood cells | DNA | deoxyribonucleic acid |
EVs | extracellular vesicles | NQO1 | target genes |
HNBC | Heat-Not-Burn cigarette | HMOX1 | target genes |
TCC | traditional combustion cigarette | VCAM1 | Vascular cell adhesion molecule 1 |
Nox2-dp | Nox2-derived peptide | CSCs | human atrial cardiac stromal cells |
ROS | reactive oxygen species | CpG | CpG (cytosine-guanine) dinucleotide in DNA |
sCD40L | soluble CD40 ligand | RC | reference cigarette |
H2O2 | hydrogen peroxide | mRNA | messenger RNA |
NO | nitric oxide | CYP1A1 | cytochrome P450 family 1 subfamily Member 1 |
FMD | flow-mediated dilation | hPDL | human periodontal ligament cells |
PLT | platelets | eCV | electronic cigarette vapor |
HDL-C | high-density lipoprotein cholesterol | S and G2/M | S and G2/M cell cycle phases |
NTV | novel tobacco vapor | p53, Bcl2, p21 | genes |
BoPH | biomarkers of potential harm | MRC5 | human lung fibroblast cells |
CC | conventional cigarette | HMC3 | human microglial cells |
NNAL | 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol | HSC-3 | human oral squamous cell carcinoma cell line |
2,3-d-TXB2 | 2,3-dinor thromboxane B2 | A549 | human lung adenocarcinoma cells |
NS | never-smokers | P450 | cytochrome P450 |
CO | carbon monoxide | γH2AX | phosphorylated H2AX |
CFR | coronary flow reserve | HOK | human oral keratinocytes |
TAC | total arterial compliance | H2AX | histone H2A variant |
GLS | global longitudinal strain | IL1ꞵ | Interleukin (IL)-1ꞵ |
GWW | wasted myocardial work | IL4 | Interleukin (IL)-4 |
TxB2 | thromboxane B2 | IL-13 | Interleukin (IL)-13 |
AEP | acute eosinophilic pneumonia | PBMC | peripheral blood mononuclear cells |
FEV 1 | forced expiratory volume in 1 s | J-ECOH | the Japan Epidemiology Collaboration on Occupational Health |
hs-CRP | high-sensitivity C-reactive protein | IL-16 | Interleukin (IL)-16 |
NOS | the Newcastle-Ottawa Scale | HGF | cytokines |
RCTs | Randomized controlled trials | Gro-α, MCP-1, SCF, MIG, IP-10 | chemokines |
NNK | biomarkers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone | G-CSF | granulocyte colony-stimulating factor |
PR | the prevalence ratio | TRAIL | protein TNF-related apoptosis-inducing ligand, cytokine |
IFNγ | interferon gamma | SFR | the salivary flow rate |
GO | Gene ontology | OR | odds ratio |
sICAM-1 | soluble intercellular adhesion molecule-1 | χ2 | Chi-square test |
HR | hazard ratio | NNN | N-nitrosonornicotine |
sNox2-p | Serum levels of Nox2-derived peptide |
References
- Ling, P.M.; Kim, M.; Egbe, C.O.; Patanavanich, R.; Pinho, M.; Hendlin, Y. Moving targets: How the rapidly changing tobacco and nicotine landscape creates advertising and promotion policy challenges. Tob. Control 2022, 31, 222–228. [Google Scholar] [CrossRef]
- ACTof 9 November 1995 on the Protection of Health Against the Effects of Using Tobacco Tobacco Products, (D.z.U. 2024. 1162). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20240001162 (accessed on 30 May 2025).
- FDA Permits the Sale of IQOS Tobacco Heating System through the Premarket Tobacco Product Application Pathway. Available online: https://www.fda.gov/news-events/press-announcements/fda-permits-sale-iqos-tobacco-heating-system-through-premarket-tobacco-product-application-pathway (accessed on 30 May 2025).
- Directive 2014/40/EU of the European Parliament and of the Council of 3 April 2014 on the Approximation of the Laws, Regulations and Administrative Provisions of the Member States Concerning the Manufacture, Presentation and Sale of Tobacco and Related Products and Repealing Directive 2001/37/EC (Dz.U.UE.L 2014.127, p.1). Available online: https://eur-lex.europa.eu/eli/dir/2014/40/oj/eng (accessed on 30 May 2025).
- Commission Delegated Directive (EU) 2022/2100 of 29 June 2022 amending Directive 2014/40/EU of the European Parliament and the Council as Regards the Abolition of Certain Exemptions for Heated Tobacco Products (OJ L 283, 3.11.2022, pp. 4–6) (Dz.U.UE.L.2022.283). Available online: https://eur-lex.europa.eu/eli/dir_del/2022/2100/oj/eng (accessed on 30 May 2025).
- Halpern-Felsher, B. Point-of-sale marketing of heated tobacco products in Israel: Cause for concern. Isr. J. Health Policy Res. 2019, 8, 47. [Google Scholar] [CrossRef]
- Szymański, J.; Pinkas, J.; Krzych-Fałta, E. Electronic cigarettes and innovative tobacco products—Current legal status and identification of new challenges for public health. Med. Ogólna Nauk. Zdrowiu 2022, 28, 95–102. [Google Scholar] [CrossRef]
- Jankowski, M.; Brożek, G.M.; Lawson, J.; Skoczyński, S.; Majek, P.; Zejda, J.E. New ideas, old problems? Heated tobacco products—A systematic review. Int. J. Occup. Med. Environ. Health 2019, 32, 595–634. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Heated Tobacco Products: Information Sheet, 2nd ed.; World Health Organization: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/WHO-HEP-HPR-2020.2 (accessed on 30 May 2025).
- Bialous, S.A.; Glantz, S.A. Heated tobacco products: Another tobacco industry global strategy to slow progress in tobacco control. Tob. Control 2018, 27 (Suppl. S1), 111–117. [Google Scholar] [CrossRef] [PubMed]
- Nicotine Consumption Quantitative Research Report for the Bureau for Chemical Substances, 4th ed.; Public Opinion Research Center: Warsaw, Poland, 2021. Available online: https://www.gov.pl/web/chemikalia/monitorowanie-rynku-e-papierosow (accessed on 30 May 2025).
- Kaleta, D. Educational Materials to Support Activities Aimed at Reducing the Use of Innovative Tobacco Products, Including for Health Care and Educational Institutions; Medical University of Lodz: Lodz, Poland, 2024. [Google Scholar]
- Bekki, K.; Inaba, Y.; Uchiyama, S.; Kunugita, N. Comparison of Chemicals in Mainstream Smoke in Heat-not-burn Tobacco and Combustion Cigarettes. J. UOEH 2017, 39, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Yannovits, N.; Sarri, T.; Voudris, V.; Poulas, K.; Leischow, S.J. Carbonyl emissions from a novel heated tobacco product (IQOS): Comparison with an e-cigarette and a tobacco cigarette. Addiction 2018, 113, 2099–2106. [Google Scholar] [CrossRef] [PubMed]
- Laverty, A.A.; Vardavas, C.I.; Filippidis, F.T. Prevalence and reasons for use of Heated Tobacco Products (HTP) in Europe: An analysis of Eurobarometer data in 28 countries. Lancet Reg. Health Eur. 2021, 8, 100159. [Google Scholar] [CrossRef]
- Ling, P.M.; Glantz, S.A. Why and How the Tobacco Industry Sells Cigarettes to Young Adults: Evidence from Industry Documents. Am. J. Public Health 2002, 92, 908–916. [Google Scholar] [CrossRef]
- Jenssen, B.P.; Walley, S.C.; Groner, J.A.; Rahmandar, M.; Boykan, R.; Mih, B.; Marbin, J.N.; Caldwell, A.L. Section on Tobacco Control. E-Cigarettes and Similar Devices. Pediatrics 2019, 143, e20183652. [Google Scholar] [CrossRef]
- Chirila, S.; Antohe, A.; Isar, C.; Panaitescu, C.; Malpass, A. Romanian young adult perceptions on using heated tobacco products following exposure to direct marketing methods. NPJ Prim. Care Respir. Med. 2023, 33, 8. [Google Scholar] [CrossRef] [PubMed]
- Tompkins, C.N.E.; Burnley, A.; McNeill, A.; Hitchman, S.C. Factors that influence smokers’ and ex-smokers’ use of IQOS: A qualitative study of IQOS users and ex-users in the UK. Tob. Control 2021, 30, 16–23. [Google Scholar] [CrossRef] [PubMed]
- McKelvey, K.; Popova, L.; Kim, M.; Chaffee, B.W.; Vijayaraghavan, M.; Ling, P.; Halpern-Felsher, B. Heated tobacco products likely appeal to adolescents and young adults. Tob. Control 2018, 27, 41–47. [Google Scholar] [CrossRef]
- Cho, Y.J.; Thrasher, J.F.; Reid, J.L.; Hitchman, S.; Hammond, D. Youth self-reported exposure to and perceptions of vaping advertisements: Findings from the 2017 International Tobacco Control Youth Tobacco and Vaping Survey. Prev. Med. 2019, 126, 105775. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.; Wysota, C.N.; Romm, K.F.; Levine, H.; Bar-Zeev, Y.; Choi, K.; Berg, C.J. Correlates of Perceptions, Use, and Intention to Use Heated Tobacco Products Among US Young Adults in 2020. Nicotine Tob. Res. 2022, 24, 1968–1977. [Google Scholar] [CrossRef]
- Jankowski, M.; Ostrowska, A.; Sierpiński, R.; Skowron, A.; Sytnik- Czetwertyński, J.; Giermaziak, W.; Gujski, M.; Wierzba, W.; Pinkas, J. The Prevalence of Tobacco, Heated Tobacco, and E-Cigarette Use in Poland: A 2022 Web-Based Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2022, 19, 4904. [Google Scholar] [CrossRef] [PubMed]
- Balwicki, Ł.; Cedzyńska, M.; Koczkodaj, P.; Stokłosa, M.; Balwicka-Szczyrba, M.; Sass-Szczepkowska, A.; Juszczyk, G. Recommendations for Protecting Children and Adolescents from the Consequences of Using Nicotine Products; National Institute of Public Health—National Institute of Hygiene: Warsaw, Poland, 2020. Available online: https://www.pzh.gov.pl/wp-content/uploads/2020/12/Raport-koncowy-projekt-tyton-2020.pdf (accessed on 30 May 2025).
- Imura, Y.; Tabuchi, T. Exposure to Secondhand Heated-Tobacco-Product Aerosol May Cause Similar Incidence of Asthma Attack and Chest Pain to Secondhand Cigarette Exposure: The JASTIS 2019 Study. Int. J. Environ. Res. Public Health 2021, 18, 1766. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.M.; Thakur, S.; Montes de Oca, R.; Rostron, B.L.; Cheng, Y.c.h.; Wright, M.J.; Bemmel, D.M.; Wang, L.; Hatsukami, D.K. Assessing the Relationship between Biomarkers of Exposure and Biomarkers of Potential Harm: PATH Study Wave 1 (2013 to 2014). Cancer Epidemiol. Biomark. Prev. 2024, 33, 1083–1090. [Google Scholar] [CrossRef]
- Sakaguchi, C.h.; Miura, N.; Ohara, H.; Nagata, Y. Effects of reduced exposure to cigarette smoking on changes in biomarkers of potential harm in adult smokers: Results of combined analysis of two clinical studies. Biomarkers 2019, 24, 457–468. [Google Scholar] [CrossRef]
- Haswell, L.E.; Gale, N.; Brown, E.; Azzopardi, D.; McEwan, M.; Thissen, J.; Meichanetzidis, F.; Hardie, G. Biomarkers of exposure and potential harm in exclusive users of electronic cigarettes and current, former, and never Smokers. Intern. Emerg. Med. 2023, 18, 1359–1371. [Google Scholar] [CrossRef]
- Makena, P.; Liu, G.; Chen, P.; Yates, C.h.R.; Prasad, G.L. Urinary Leukotriene E4 and 2,3-Dinor Thromboxane B2 Are Biomarkers of Potential Harm in Short-Term Tobacco Switching Studies. Cancer Epidemiol. Biomark. Prev. 2019, 28, 2095–2105. [Google Scholar] [CrossRef] [PubMed]
- Kanobe, M.N.; Nelson, P.R.; Brown, B.G.; Chen, P.; Makena, P.; Caraway, J.W.; Prasad, G.L.; Round, E.K. Changes in Biomarkers of Exposure and Potential Harm in Smokers Switched to Vuse Vibe or Vuse Ciro Electronic Nicotine Delivery Systems. Toxics 2023, 11, 564. [Google Scholar] [CrossRef]
- Makena, P.; Scott, E.; Chen, P.; Liu, H.-P.; Jones, B.A.; Prasad, G.L. Biomarkers of Exposure and Potential Harm in Two Weeks of Smoking Abstinence: Changes in Biomarkers of Platelet Function, Oxidative Stress, and Inflammation. Int. J. Mol. Sci. 2023, 24, 6286. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.T.; Vivar, J.C.; Tam, J.; Hammad, H.T.; Christensen, C.H.; van Bemmel, D.M.; Das, B.; Danilenko, U.; Chang, C.M. Biomarkers of Potential Harm among Adult Cigarette and Smokeless Tobacco Users in the PATH Study Wave 1 (2013–2014): A Cross-sectional Analysis. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1320–1327. [Google Scholar] [CrossRef]
- Znyk, M.; Jurewicz, J.; Kaleta, D. Exposure to heated tobacco products and adverse health effects, a Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 6651. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 30 May 2025).
- Higgins, J.; Thomas, J. Cochrane Handbook for Systematic Reviews of Interventions (Current Version); Cochrane Collaboration and John Wiley & Sons Ltd.: London, UK, 2024; Available online: https://www.cochrane.org/authors/handbooks-and-manuals/handbook/current (accessed on 30 May 2025).
- Goebel, I.; Mohr, T.; Axt, P.N.; Watz, H.; Trinkmann, F.; Weckmann, M.; Drömann, D.; Franzen, K.F. Impact of Heated Tobacco Products, E-Cigarettes, and Combustible Cigarettes on Small Airways and Arterial Stiffness. Toxics 2023, 11, 758. [Google Scholar] [CrossRef]
- Majek, P.; Jankowski, M.; Brożek, G.M. Acute health effects of heated tobacco products: Comparative analysis with traditional cigarettes and electronic cigarettes in young adults. ERJ Open Res. 2023, 9, 595–2022. [Google Scholar] [CrossRef]
- Sharman, A.; Yermakova, I.; Erenchina, E.; Tyulebekova, G.; Bekzhanova, A. Respiratory function and physical capacity in combustible cigarettes and heated tobacco products users: A two-year follow-up cohort study. Glob. J. Respir. Care 2021, 7, 27–34. [Google Scholar] [CrossRef]
- Sakaguchi, C.; Nagata, Y.; Kikuchi, A.; Takeshige, Y.; Minami, N. Differences in Levels of Biomarkers of Potential Harm Among Users of a Heat-Not-Burn Tobacco Product, Cigarette Smokers, and Never-Smokers in Japan: A Post-Marketing Observational Study. Nicotine Tob. Res. 2021, 23, 1143–1152. [Google Scholar] [CrossRef]
- Thomas, M.; Hameed, M.; Alhadad, S.; Haq, I.U. Heated tobacco product (IQOS) induced pulmonary infiltrates. Respir. Med. Case Rep. 2024, 49, 102026. [Google Scholar] [CrossRef] [PubMed]
- Zaitsu, M.; Kono, K.; Hosokawa, Y.; Miyamoto, M.; Nanishi, K.; Okawa, S.; Niki, S.; Takahashi, K.; Yoshihara, S.; Kobashi, G.; et al. Maternal heated tobacco product use during pregnancy and allergy in offspring. Allergy 2023, 78, 1104–1112. [Google Scholar] [CrossRef] [PubMed]
- Harada, S.; Sata, M.; Matsumoto, M.; Iida, M.; Takeuchi, A.; Kato, S.; Hirata, A.; Kuwabara, K.; Shibuki, T.; Ishibashi, Y.; et al. Changes in Smoking Habits and Behaviors Following the Introduction and Spread of Heated Tobacco Products in Japan and Its Effect on FEV(1) Decline: A Longitudinal Cohort Study. J. Epidemiol. 2022, 32, 180–187. [Google Scholar] [CrossRef]
- Kang, B.H.; Lee, D.H.; Roh, M.S.; Um, S.J.; Kim, I. Acute eosinophilic pneumonia after combined use of conventional and heat-not-burn cigarettes: A case report. Medicina 2022, 58, 1527. [Google Scholar] [CrossRef]
- Gülensoy, S.E.; Yüksel, A.; Ogan, N.; Umudum, H.; Akpınar, E. Subacute lung injury associated with heated tobacco products. Duzce Med. J. August 2021, 23, 218–220. [Google Scholar] [CrossRef]
- Polosa, R.; Morjaria, J.B.; Prosperini, U.; Busà, B.; Pennisi, A.; Gussoni, G.; Rust, S.; Maglia, M.; Caponnetto, P. Health outcomes in COPD smokers using heated tobacco products: A 3-year follow-up. Intern. Emerg. Med. 2021, 16, 687–696. [Google Scholar] [CrossRef]
- Sharman, A.; Yermakova, I.; Erenchina, E.; Tyulebekova, G.; Bekzhanova, A. Respiratory function, physical capacity, and metabolic syndrome components in combustible cigarettes and heated tobacco product users: A four-year follow-up cohort study. Glob. J. Respir. Care 2022, 8, 4–10. [Google Scholar] [CrossRef]
- Antoniewicz, L.; Melnikov, G.; Lyytinen, G.; Blomberg, A.; Bosson, J.A.; Hedman, L.; Mobarrez, F.; Lundbäck, M. Vascular Stress Markers Following Inhalation of Heated Tobacco Products: A Study on Extracellular Vesicles. Cardiovasc. Toxicol. 2025, 25, 1–8. [Google Scholar] [CrossRef]
- Znyk, M.; Raciborski, F.; Kaleta, D. Evaluation of Morphology and Biochemical Parameters of Young Adults Using Heated Tobacco Products in Poland: A Case-Control Study. J. Clin. Med. 2025, 14, 2734. [Google Scholar] [CrossRef] [PubMed]
- Harada, S.; Ohmomo, H.; Matsumoto, M.; Sata, M.; Iida, M.; Hirata, A.; Miyagawa, N.; Kuwabara, K.; Kato, S.; Toki, R.; et al. Metabolomics Profiles Alterations in Cigarette Smokers and Heated Tobacco Product Users. J. Epidemiol. 2024, 34, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Nakagawa, T.; Honda, T.; Yamamoto, S.; Mizoue, T. Association of conventional cigarette smoking, heated tobacco product use and dual use with hypertension. Int. J. Epidemiol. 2024, 53, dyae114. [Google Scholar] [CrossRef]
- Świątkowska, B.; Jankowski, M.; Kaleta, D. Comparative evaluation of ten blood biomarkers of inflammation in regular heated tobacco users and non-smoking healthy males-a pilot study. Sci. Rep. 2024, 14, 8779. [Google Scholar] [CrossRef] [PubMed]
- Belkin, S.; Benthien, J.; Axt, P.N.; Mohr, T.; Mortensen, K.; Weckmann, M.; Dromann, D.; Franzen, K.F. Impact of heated tobacco products, e-cigarettes, and cigarettes on inflammation and endothelial dysfunction. Int. J. Mol. Sci. 2023, 24, 9432. [Google Scholar] [CrossRef] [PubMed]
- Koh, D.H. The relationship between heated cigarette smoking and blood white blood cell count: A population-based cross-sectional study. Public Health 2023, 222, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Lyytinen, G.; Melnikov, G.; Brynedal, A.; Anesäter, E.; Antoniewicz, L.; Blomberg, A.; Wallén, H.; Bosson, J.A.; Hedman, L.; Tehrani, S.; et al. Use of heated tobacco products (IQOS) causes an acute increase in arterial stiffness and platelet thrombus formation. Atherosclerosis 2024, 390, 117335. [Google Scholar] [CrossRef] [PubMed]
- Benthien, J.; Meusel, M.; Talavera, S.C.; Eitel, I.; Drömann, D.; Franzen, K.F. JUUL™ing and heating lead to a worsening of arterial stiffness. Medicines 2022, 9, 28. [Google Scholar] [CrossRef]
- Hu, H.; Nakagawa, T.; Honda, T.; Yamamoto, S.; Miyamoto, T.; Okazaki, H.; Eguchi, M.; Shirasaka, T.; Kochi, T.; Kabe, I.; et al. Heated tobacco products and circulating high-density lipoprotein cholesterol concentrations. Sci. Rep. 2022, 12, 17385. [Google Scholar] [CrossRef] [PubMed]
- Schirone, L.; Loffredo, L.; Carnevale, R.; Battaglia, S.; Marti, R.; Pizzolo, S.; Bartimoccia, S.; Nocella, C.; Cammisotto, V.; Saade, W.; et al. Sex-related differences in oxidative, platelet, and vascular function in chronic users of heat-not-burn vs. traditional combustion cigarettes. Antioxidants 2022, 11, 1237. [Google Scholar] [CrossRef]
- Ikonomidis, I.; Vlastos, D.; Kostelli, G.; Kourea, K.; Katogiannis, K.; Tsoumani, M.; Parissis, J.; Andreadou, I.; Alxopoulos, D. Differential effects of heat-not-burn and conventional cigarettes on coronary flow, myocardial and vascular function. Sci. Rep. 2021, 11, 11808. [Google Scholar] [CrossRef]
- Lee, B.G.; Lee, H.; Kim, N. Association between exclusive or dual use of combustible cigarettes and heated tobacco products and depressive symptoms. PLoS ONE 2025, 20, e0314558. [Google Scholar] [CrossRef]
- Gupta, S.; Sahni, V.; Emma, R.; Gospodaru, S.; Bordeniuc, G.; Fala, V.; Amaliya, A.; La Rosa, G.R.M.; Pacino, S.A.; Urso, S.; et al. E-cigarettes and heated tobacco products impact on dental color parameters. Heliyon 2024, 10, e24084. [Google Scholar] [CrossRef]
- Mišković, I.; Kuiš, D.; Špalj, S.; Pupovac, A.; Prpić, J. Periodontal Health Status in Adults Exposed to Tobacco Heating System Aerosol and Cigarette Smoke vs. Non-Smokers: A Cross-Sectional Study. Dent. J. 2024, 12, 26. [Google Scholar] [CrossRef]
- Tadin, A.; Stazic, V.; Galic, N.; Zeljezic, D. Evaluation of Cytotoxic and Genotoxic Effects in Buccal Mucosal Cells in Non-Smokers and Users of Traditional Combustible Tobacco Products and Non-Combustible Alternatives. J. Xenobiot. 2024, 14, 154–165. [Google Scholar] [CrossRef]
- Zięba, S.; Maciejczyk, M.; Antonowicz, B.; Porydzaj, A.; Szuta, M.; Lo Giudice, G.; Lo Giudice, R.; Krokosz, S.; Zalewska, A. Comparison of Smoking Traditional, Heat Not Burn and Electronic Cigarettes on Salivary Cytokine, Chemokine and Growth Factor Profile in Healthy Young Adults–Pilot Study. Front. Physiol. 2024, 15, 1404944. [Google Scholar] [CrossRef]
- Zięba, S.; Błachnio-Zabielska, A.; Maciejczyk, M.; Pogodzińska, K.; Szuta, M.; Lo Giudice, G.; Lo Giudice, R.; Zalewska, A. Impact of Smoking on Salivary Lipid Profile and Oxidative Stress in Young Adults: A Comparative Analysis between Traditional Cigarettes, E-Cigarettes, and Heat-Not-Burn Products. Med. Sci. Monit. 2024, 30, e9407. [Google Scholar] [CrossRef]
- Sever, E.; Božac, E.; Saltović, E.; Simonić-Kocijan, S.; Brumini, M.; Glažar, I. Impact of the Tobacco Heating System and Cigarette Smoking on the Oral Cavity: A Pilot Study. Dent. J. 2023, 11, 251. [Google Scholar] [CrossRef]
- Mori, Y.; Tanaka, M.; Kozai, H.; Aoyma, Y.; Shigeno, Y.; Hotta, K.; Aoike, M.; Kawamura, H.; Tsurudome, M.; Ito, M. Effects of heat-not-burn cigarette smoking on the secretion of saliva and its innate immune system components. Healthcare 2022, 11, 132. [Google Scholar] [CrossRef]
- Pouly, S.; Ng, W.T.; Benzimra, M.; Soulan, A.; Blanc, N.; Zanetti, F.; Picavet, P.; Baker, G.; Haziza, C. Effect of Switching to the Tobacco Heating System Versus Continued Cigarette Smoking on Chronic Generalized Periodontitis Treatment Outcome: Protocol for a Randomized Controlled Multicenter Study. JMIR Res. Protoc. 2021, 10, e15350. [Google Scholar] [CrossRef] [PubMed]
- Incognito, G.G.; Grassi, L.; Palumbo, M. Use of cigarettes and heated tobacco products during pregnancy and maternal-fetal outcomes: A retrospective, monocentric study. Arch. Gynecol. Obstet. 2024, 309, 1981–1989. [Google Scholar] [CrossRef] [PubMed]
- Galanti, F.; Licata, E.; Paciotti, G.; Gallo, M.; Riccio, S.; Miriello, D.; Dal Laggo, A.; Meneghini, C.; Fabiani, C.; Antonaci, D.; et al. Impact of different typologies of smoking on ovarian reserve and oocyte quality in women performing ICSI cycles: An observational prospective study. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 5190–5199. [Google Scholar] [CrossRef]
- Hosokawa, Y.; Zaitsu, M.; Okawa, S.; Morisaki, N.; Hori, A.; Nishihama, Y.; Nakayama, S.F.; Fujiwara, T.; Hamada, H.; Satoh, T.; et al. Association between heated tobacco product use during pregnancy and fetal growth in Japan: A nationwide web-based survey. Int. J. Environ. Res. Public Health 2022, 19, 11826. [Google Scholar] [CrossRef] [PubMed]
- Jee, Y.; Shin, S.Y.; Ryu, M.; Samet, J.M. The effect of heated tobacco products on metabolic syndrome: A cohort study. Tob. Induc. Dis. 2024, 22, 187. [Google Scholar] [CrossRef]
- Hu, H.; Miyamoto, T.; Okazaki, H.; Eguchi, M.; Shirasaka, T.; Kochi, T.; Kabe, I.; Tomizawa, A.; Nakagawa, T.; Honda, T.; et al. Heated tobacco product use and abnormal glucose metabolism: A working population-based study. Acta Diabetol. 2023, 60, 371–378. [Google Scholar] [CrossRef]
- Chu, S.; Li, X.; Zhang, D.; Jing, H.; Feng, L.; Zuo, Y.; Li, J.; Ma, H.; Tong, Z.; Liang, L. Impact of Heating Conventional Cigarettes with a Novel Device on Health-related Biomarkers and Cigarette Use Patterns among Chinese Adult Smokers Unwilling to Quit: A Pilot Randomized Controlled Trial. Nicotine Tob. Res. 2025, 27, 873–883. [Google Scholar] [CrossRef]
- Gale, N.; McEwan, M.; Hardie, G.; Proctor, C.J.; Murphy, J. Changes in biomarkers of exposure and biomarkers of potential harm after 360 days in smokers who either continue to smoke, switch to a tobacco heating product or quit smoking. Intern. Emerg. Med. 2022, 17, 2017–2030. [Google Scholar] [CrossRef]
- Gale, N.; McEwan, M.; Camacho, O.M.; Hardie, G.; Proctor, C.J.; Murphy, J. Changes in biomarkers after 180 days of tobacco heating product use: A randomised trial. Intern. Emerg. Med. 2021, 16, 2201–2212. [Google Scholar] [CrossRef] [PubMed]
- Ohmomo, H.; Harada, S.; Komaki, S.; Kanaka, O.; Sutoh, Y.; Otomo, R.; Umekage, S.; Hachiya, T.; Katanoda, K.; Takebayashi, T.; et al. DNA methylation abnormalities and altered whole transcriptome profiles after switching from combustible tobacco smoking to heated tobacco products. Cancer Epidemiol. Biomark. Prev. 2022, 31, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, T.; Shinozaki, T.; Hori, A.; Okawa, S.; Nakashima, K.; Tabuchi, T. Association between exposure to secondhand aerosol from heated tobacco products and respiratory symptoms among current non-smokers in Japan: A cross-sectional study. BMJ Open 2023, 13, e065322. [Google Scholar] [CrossRef] [PubMed]
- Furnari, S.; Emma, R.; Caruso, M.; Furneri, P.M.; Fuochi, V. Evaluating the Risks of Heated Tobacco Products: Toxicological Effects on Two Selected Respiratory Bacteria and Human Lung Cells. Toxics 2025, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Distefano, A.; Orlando, L.; Partsinevelos, K.; Longhitano, L.; Emma, R.; Caruso, M.; Vicario, N.; Denaro, S.; Sun, A.; Giordano, A.; et al. Comparative evaluation of cigarette smoke and a heated tobacco product on microglial toxicity, oxidative stress and inflammatory response. J. Transl. Med. 2024, 22, 876. [Google Scholar] [CrossRef]
- Kagemichi, N.; Umemura, M.; Ishikawa, S.; Iida, Y.; Takayasu, S.; Nagasako, A.; Nakakaji, R.; Akimoto, T.; Ohtake, M.; Horinouchi, T.; et al. Cytotoxic effects of the cigarette smoke extract of heated tobacco products on human oral squamous cell carcinoma: The role of reactive oxygen species and CaMKK2. J. Physiol. Sci. 2024, 74, 35. [Google Scholar] [CrossRef]
- Lenski, M.; Zarcone, G.; Maallem, S.; Garçon, G.; Lo-Guidice, J.M.; Allorge, D.; Anthérieu, S. Metabolomics Provides Novel Insights into the Potential Toxicity Associated with Heated Tobacco Products, Electronic Cigarettes, and Tobacco Cigarettes on Human Bronchial Epithelial BEAS-2B Cells. Toxics 2024, 12, 128. [Google Scholar] [CrossRef] [PubMed]
- Zarcone, G.; Lenski, M.; Martinez, T.; Talahari, S.; Simonin, O.; Garçon, G.; Allorge, D.; Nesslany, F.; Lo-Guidice, J.M.; Platel, A.; et al. Impact of Electronic Cigarettes, Heated Tobacco Products and Conventional Cigarettes on the Generation of Oxidative Stress and Genetic and Epigenetic Lesions in Human Bronchial Epithelial BEAS-2B Cells. Toxics 2023, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Morishita, Y.; Hasegawa, S.; Koie, S.; Ueda, S.; Miyabe, S.; Watanabe, S.; Goto, M.; Miyachi, H.; Nomoto, S.; Nagao, T. Cytotoxic, genotoxic, and toxicogenomic effects of heated tobacco products and cigarette smoke in human primary keratinocytes. Tob. Induc. Dis. 2022, 20, 82. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Irmler, M.; Introna, M.; Beckers, J.; Palmberg, L.; Johanson, G.; Upadhyay, S.; Ganguly, K. Insight into the pulmonary molecular toxicity of heated tobacco products using human bronchial and alveolar mucosa models at air-liquid interface. Sci. Rep. 2022, 12, 16396. [Google Scholar] [CrossRef]
- Giebe, S.; Hofmann, A.; Brux, M.; Lowe, F.; Breheny, D.; Morawietz, H.; Brunssen, C. Comparative study of the effects of cigarette smoke versus next generation tobacco and nicotine product extracts on endothelial function. Redox Biol. 2021, 47, 102150. [Google Scholar] [CrossRef]
- Picchio, V.; Pagano, F.; Carnevale, R.; D’Amico, A.; Cozzolino, C.; Floris, E.; Bordin, A.; Schirone, L.; Vecchio, D.; Saade, W.; et al. Exposure to serum from exclusive heated tobacco product smokers induces mTOR activation and fibrotic features in human cardiac stromal cells. Biochim. Biophys. Acta Mol. Basis Dis. 2024, 1870, 167350. [Google Scholar] [CrossRef]
- Sato, A.; Ishigami, A. Effects of heated tobacco product aerosol extracts on DNA methylation and gene transcription in lung epithelial cells. Toxicol. Appl. Pharmacol. 2023, 475, 116637. [Google Scholar] [CrossRef]
- Wiesmann-Imilowski, N.; Becker, P.; Gielisch, M.W.; Ziebolz, D.; Vermehren, F.; Bitschnau, M.; Langguth, N.; Brieger, J.; Deschner, J.; Kämmerer, P.W. Cytotoxic impact of nicotine products on periodontal ligament cells. Clin. Oral. Investig. 2024, 28, 399. [Google Scholar] [CrossRef]
- Uehara, O.; Nakamoto, N.; Hiraki, D.; Paudel, D.; Sugiyama, N.; Morikawa, T.; Yoshida, K.; Kawano, Y.; Shimo, T.; Furuichi, Y.; et al. Effects of prolonged stimulation with heated tobacco products (Ploom TECH(+)) on gingival epithelial cells. J. Periodontal Res. 2023, 58, 553–563. [Google Scholar] [CrossRef]
- Pagano, S.; Negri, P.; Coniglio, M.; Bruscoli, S.; Di Michele, A.; Marchetti, M.C.; Valenti, C.; Gambelunghe, A.; Fanasca, L.; Billi, M.; et al. Heat-not-burn tobacco (IQOS), oral fibroblasts and keratinocytes: Cytotoxicity, morphological analysis, apoptosis and cellular cycle. An in vitro study. J. Periodontal Res. 2021, 56, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.T.; Grigg, J.; Filippidis, F.T. European Respiratory Society statement on novel nicotine and tobacco products, their role in tobacco control and “harm reduction”. Eur. Respir. J. 2024, 63, 2301808. [Google Scholar] [CrossRef]
- Magna, A.; Polisena, N.; Polisena, L.; Bagnato, C.; Pacella, E.; Carnevale, R.; Nocella, C.; Loffredo, L. The Hidden Dangers: E-Cigarettes, Heated Tobacco, and Their Impact on Oxidative Stress and Atherosclerosis- A Systematic Review and Narrative Synthesis of the Evidence. Antioxidants 2024, 13, 1395. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Kimm, H.; Lee, J.A.; Lee, C.h.; Cho, H.J. Heated tobacco product use and its relationship to quitting combustible cigarettes in Korean adults. PLoS ONE 2021, 16, e0251243. [Google Scholar] [CrossRef]
- Liu, X.; Lugo, A.; Spizzichino, L.; Tabuchi, T.; Pacifici, R.; Gallus, S. Heat-not-burn tobacco products: Concerns from the Italian experience. Tob. Control 2019, 28, 113–114. [Google Scholar] [CrossRef]
- Brose, L.S.; Simonavicius, E.; Cheeseman, H. Awareness and use of heat-not-burn tobacco products in Great Britain. Tob. Regul. Sci. 2018, 4, 44–50. [Google Scholar] [CrossRef]
- Nyman, A.L.; Weaver, S.R.; Popova, L.; Pechacek, T.F.; Huang, J.; Ashley, D.L.; Eriksen, M.P. Awareness and use of heated tobacco products among US adults, 2016–2017. Tob. Control 2018, 27 (Suppl. S1), 55–61. [Google Scholar] [CrossRef]
- Tabuchi, T.; Gallus, S.; Shinozaki, T.; Nakaya, T.; Kunugita, N.; Colwell, B. Heat-not-burn tobacco product use in Japan: Its prevalence, predictors and perceived symptoms from exposure to secondhand heat-not-burn tobacco aerosol. Tob. Control 2018, 27, e25–e33. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.S.; Wang, M.P.; Ho, S.Y.; Li, H.C.W.; Cheung, Y.T.D.; Tabuchi, T.; Kwong, A.C.; Lai, V.; Lam, T.H. Heated tobacco products use in Chinese adults in Hong Kong: A population-based cross-sectional study. Tob. Control 2020, 29, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Simonavicius, E.; McNeill, A.; Shahab, L.; Brose, L.S. Heat-not-burn tobacco products: A systematic literature review. Tob. Control. 2018, 28, 582–594. [Google Scholar] [CrossRef] [PubMed]
- Benowitz, N.L. Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Tattan-Birch, H.; Hartmann-Boyce, J.; Kock, L.; Simonavicius, E.; Brose, L.; Jackson, S.; Shahab, L.; Brown, J. Heated tobacco products for smoking cessation and reducing smoking prevalence. Cochrane Database Syst. Rev. 2022, 1, CD013790. [Google Scholar] [CrossRef]
- Hair, E.C.; Bennett, M.; Sheen, E.; Cantrell, J.; Briggs, J.; Fenn, Z.; Willett, J.G.; Vallone, D. Examining perceptions about IQOS heated tobacco product: Consumer studies in Japan and Switzerland. Tob. Control 2018, 27 (Suppl. S1), 70–73. [Google Scholar] [CrossRef]
- Levy, D.T.; Cadham, C.J.; Li, Y.; Yuan, Z.; Liber, A.C.; Oh, H.; Travis, N.; Issabakhsh, M.; Sweanor, D.T.; Sánchez-Romero, L.M.; et al. A Decision-Theoretic Public Health Framework for Heated Tobacco and Nicotine Vaping Products. Int. J. Environ. Res. Public Health 2022, 19, 13431. [Google Scholar] [CrossRef]
- Cruz-Jiménez, L.; Barrientos-Gutiérrez, I.; Vidaña-Pérez, D.; Gallegos-Carrillo, K.; Arillo-Santillán, E.; Rodríguez-Bolaños, R.; Hardin, J.W.; Kim, M.; Thrasher, J.F. Heated tobacco product use frequency, smoking quit attempts, and smoking reduction among Mexican adult smokers. Tob. Induc. Dis. 2024, 22, 90. [Google Scholar] [CrossRef]
- Won, D.; Jung, W.; Shin, D. Comparison of the Smoking Cessation of Heated Tobacco Product Users and Conventional Cigarette Smokers in Korea. Korean J. Fam. Med. 2023, 44, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.; Ma, Y.; Fisher, S.L.; Ramsey, A.T.; Chen, L.S.; Hartz, S.M.; Culverhouse, R.C.; Grucza, R.A.; Saccone, N.L.; Baker, T.B.; et al. E-cigarette Usage Is Associated with Increased Past-12-Month Quit Attempts and Successful Smoking Cessation in Two US Population-Based Surveys. Nicotine Tob. Res. 2019, 21, 1331–1338. [Google Scholar] [CrossRef]
- Levy, D.T.; Yuan, Z.; Luo, Y.; Abrams, D.B. The Relationship of E-Cigarette Use to Cigarette Quit Attempts and Cessation: Insights from a Large, Nationally Representative U.S. Survey. Nicotine Tob. Res. 2018, 20, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, B.G. Associations between the Frequency and Quantity of Heated Tobacco Product Use and Smoking Characteristics among Korean Smoking Adolescents. J. Korean Acad. Nurs. 2023, 53, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.Y.; Lee, S.; Cho, H.J. Prevalence and predictors of heated tobacco product use and its relationship with attempts to quit cigarette smoking among Korean adolescents. Tob. Control 2021, 30, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, J.A.; Cho, H.J. Association Between Heated Tobacco Product Use and Quitting Combustible Cigarette Smoking Among Korean Adults. Nicotine Tob. Res. 2025, 27, 1447–1452. [Google Scholar] [CrossRef]
- Xu, S.S.; Meng, G.; Yan, M.; Gravely, S.; Quah, A.C.K.; Ouimet, J.; O’Connor, R.J.; Sutanto, E.; Yoshimi, I.; Mochizuki, Y.; et al. Reasons for Regularly Using Heated Tobacco Products among Adult Current and Former Smokers in Japan: Finding from 2018 ITC Japan Survey. Int. J. Environ. Res. Public Health 2020, 17, 8030. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, Y.; Tabuchi, T. Heated tobacco product use and combustible cigarette smoking relapse/initiation among former/never smokers in Japan: The JASTIS 2019 study with 1-year follow-up. Tob. Control 2022, 31, 520–526. [Google Scholar] [CrossRef]
- Brown, C.; Nkemjika, S.; Yankey, B.; Okusun, I. Alternative Tobacco Product Use and Smoking Quit Attempts Among Teenagers in the United States: A Cross-Sectional Study. Cureus 2021, 13, e16740. [Google Scholar] [CrossRef] [PubMed]
- Ho, L.L.K.; Li, W.H.C.; Cheung, A.T.; Xia, W.; Lam, T.H. Awareness and Use of Heated Tobacco Products among Youth Smokers in Hong Kong: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 8575. [Google Scholar] [CrossRef]
- Upadhyay, S.; Rahman, M.; Johanson, G.; Palmberg, L.; Ganguly, K. Heated Tobacco Products: Insights into Composition and Toxicity. Toxics 2023, 11, 667. [Google Scholar] [CrossRef]
- Sreeramareddy, C.T.; Syuen, M.O.S.; Hon, M.I.; Daher, A.M. Electronic Cigarette and Heated Tobacco Product Use and Their Association with Tobacco Control Factors Among Adults in Indonesia, Kazakhstan, and the Philippines. Nicotine Tob. Res. 2025, 27, 254–261. [Google Scholar] [CrossRef]
- Bosilkovska, M.; Tran, C.T.; de La Bourdonnaye, G.; Taranu, B.; Benzimra, M.; Haziza, C. Exposure to harmful and potentially harmful constituents decreased in smokers switching to Carbon-Heated Tobacco Product. Toxicol. Lett. 2020, 330, 30–40. [Google Scholar] [CrossRef]
- Drovandi, A.; Salem, S.; Barker, D.; Booth, D.; Kairuz, T. Human Biomarker Exposure from Cigarettes Versus Novel Heat-Not-Burn Devices: A Systematic Review and Meta-Analysis. Nicotine Tob. Res. 2020, 22, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Yannovits, N.; Sarri, T.; Voudris, V.; Poulas, K. Nicotine Delivery to the Aerosol of a Heat-Not-Burn Tobacco Product: Comparison with a Tobacco Cigarette and E-Cigarettes. Nicotine Tob. Res. 2018, 20, 1004–1009. [Google Scholar] [CrossRef]
- Lüdicke, F.; Ansari, S.M.; Lama, N.; Blanc, N.; Bosilkovska, M.; Donelli, A.; Picavet, P.; Baker, G.; Haziza, C.; Peitsch, M.; et al. Effects of Switching to a Heat-Not-Burn Tobacco Product on Biologically Relevant Biomarkers to Assess a Candidate Modified Risk Tobacco Product: A Randomized Trial. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1934–1943. [Google Scholar] [CrossRef]
- Mallock, N.; Pieper, E.; Hutzler, C.; Henkler-Stephani, F.; Luch, A. Heated Tobacco Products: A Review of Current Knowledge and Initial Assessments. Front. Public Health 2019, 7, 287. [Google Scholar] [CrossRef] [PubMed]
Author | Health Effects |
---|---|
Respiratory system | |
(+) | |
Sharman A, 2022, 2021 [38,46] | ↓ lung function |
Sakaguchi Ch, 2021 [39] | ↓ plasma cotinine levels, ↓ NNAL (NTV compared to CC) |
Polosa R, 2021 [45] | ↓ annual COPD exacerbations, ↑ (improvement) CAT and 6MWD ↑ (improvement) respiratory symptoms, exercise tolerance, quality of life, and frequency of disease exacerbations |
(−) | |
Thomas M, 2024 [40] | abnormalities on chest radiograph, peripheral mild eosinophilia, pulmonary nodules, and ground-glass opacities on CT scan |
Goebel I, 2023 [36] | ↑ resistance and obstruction of small airways after consumption of substitute products and cigarettes |
Majek P, 2023 [37] | ↓ FENO fraction of nitric oxide in exhaled air |
Zaitsu M, 2023 [41] | ↑ frequency of allergies among offspring of current HTP smokers during pregnancy |
Harada S, 2022 [42] | ↓ FEV 1 |
Kang BH, 2022 [43] | AEP on radiography, bilateral patches of pulmonary infiltrate, bilateral multifocal, patchy consolidations with multiple small nodular ground-glass opacities and thickened interlobar septa on computed tomography |
Gülensoy SE, 2021 [44] | pleural atelectasia, fibro-atelectatic changes, pleural effusion, fibro-atelectatic changes in the lung lobe and pleural thickening in the left lung, nodular lymphoid aggregation, extensive anthracosis around the lung, fibrous material resembling a hyaline membrane in the alveoli, type 2 pneumocyte hyperplasia, interstitial organization, picture of subacute lung injury with exogenous lipid material |
Sakaguchi Ch, 2021 [39] | ↓ FEV1, %FEV1 levels among NTV users compared to NS group |
Cardiovascular system | |
(+) | |
Sakaguchi Ch, 2021 [39] | ↓TG, ↑ HDL-C, ↓sICAM-1, ↓WBC (NTV and CC) |
Ikonomidis I, 2021 [58] | switching to HNBC improved CO (exhaled carbon monoxide), FMD, CFR, TAC, GLS, GWW, MDA, TxB2 ↓ effect on vascular and cardiac function of HNBC than tobacco cigarettes |
(−) | |
Antoniewicz Ł, 2025 [47] | ↑ EVs of endothelial and platelet origin after short-term inhalation of HTP with nicotine |
Znyk M, 2025 [48] | ↑ PLT |
Harada S, 2024 [49] | effects on the glutamate pathway, biomarkers involved in glutamate metabolism were associated with HTP use |
Hu H, 2024 [50] | ↑ risk of hypertension |
Świątkowska B, 2024 [51] | ↑ IL-8 |
Lyytinen G, 2024 [54] | ↑ pulse wave velocity, ↑ blood pressure and heart rate, ↑ platelet clot formation, ↑ arterial stiffness |
Belkin S, 2023 [52] | ↑ white blood cell count, proinflammatory cytokines ↑ leukocytes, eosinophils, IL-6, IL-2, IL-8, ↑ inflammatory reaction followed by endothelial dysfunction ↑ arterial stiffness |
Goebel I, 2023 [36] | ↑ blood pressure and arterial stiffness |
Koh DH, 2023 [53] | potential dose-response relationship with WBC counts in heated cigarette smokers |
Majek P, 2023 [37] | ↑ heart rate and blood pressure |
Benthien J, 2022 [55] | ↑ blood pressure and artery stiffness |
Hu H, 2022 [56] | ↓ HDL-C |
Sharman A, 2021 [38] | ↑ systolic blood pressure |
Schirone L, 2022 [57] | TCC and HNBC similarly harmful for NO, H2O2, sCD40L, platelet aggregation, cotinine and FMD HNBC less harmful than TCC, for No Nox2-dp and P-selectin HNBCs harmful effects on oxidative stress and platelet activation |
Sakaguchi Ch, 2021 [39] | ↑ total NNAL, ↑ 2,3-d-TXB2 |
Nervous system | |
(−) | |
Lee BG, 2025 [59] | ↑ anhedonia and depressed mood ↑ likelihood of moderate to severe depressive symptoms |
Oral cavity | |
(+) | |
Gupta S, 2024 [60] | ↑ Whiteness Index for Dentistry (WID) |
Mišković I, 2024 [61] | ↓ harmful effect on periodontal tissues (PD and CAL) compared to traditional cigarettes |
Pouly S, 2021 [67] | ↓ the risk of smoking-related diseases if beneficial changes are observed in the development of chronic generalized periodontitis after mechanical therapy |
(−) | |
Tadin A, 2024 [62] | ↑ all parameters in the micronucleus test, except the number of cells with micronuclei, ↑ pyknotic cells, ↑ cytotoxic and genotoxic damage |
Zięba S, 2024 [63] | HnB seem to have a similar mechanism of action on the immune system of unstimulated saliva, leading to the inhibition of the local inflammatory response in the oral cavity |
Zięba S, 2024 [64] | ↓ salivary lipid concentrations, ↑ MDA and 4-HNE concentration |
Sever E, 2023 [65] | ↓ SFR, ↑ halitosis, ↑ prevalence of intraoral findings ↑ dry mouth |
Mori Y, 2022 [66] | ↓ salivary secretion, ↓ salivary Lac, Lys secretion indices |
Reproductive system | |
(−) | |
Incognito GG, 2024 [68] | ↑ premature birth |
Galanti F, 2023 [69] | ↓ AMH, ↓ number of oocytes retrieved, ↑ number of empty oocytes with zona pellucida ↓ FR, ↓ reduced ovarian reserve and ovarian quality |
Hosokawa Y, 2022 [70] | ↑ incidence of SGA in women smoking HTP during pregnancy |
Metabolic system | |
(−) | |
Jee Y, 2024 [71] | ↑ metabolic risk |
Hu H, 2023 [72] | ↑ HbA1c and fasting glucose among exclusive HTP users, and dual users compared to never smokers ↑ likelihood of prediabetes and diabetes |
Sharman A, 2022 [46] | ↓ fasting blood glucose ↑ CAT results, waist circumference |
Biomarkers of exposure and biomarkers of effect | |
(+) | |
Chu S, 2025 [73] | ↓ BoE levels, no BoBE changes |
Gale N, 2022 [74] | ↓ BoE levels, several BoPH changed in a favorable direction (toward never-smoking levels) in participants who switched completely to HTP or quit smoking, BoPHs such as soluble intercellular adhesion molecule-1 changed in an unfavorable direction |
Gale N, 2021 [75] | ↓ most BoE levels in HTP users BoPH, including total 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol, 8-epi-prostaglandin F2α type III, fractional exhaled nitric oxide concentration, and white blood cell count, were directionally consistent with reduced health effects |
Molecular genetic effects | |
(−) | |
Ohmomo H, 2022 [76] | ↑ LRRN3 and GPR15 more hypomethylated in HTP users ↑ GPR15 expression HTP users show abnormal DNAm and transcriptome profiles |
Secondhand exposure | |
(−) | |
Yoshioka T, 2023 [77] | ↑ asthma attacks/asthma-like symptoms, ↑ persistent cough |
Human cells | Effect | Author |
---|---|---|
(+) | ||
human lung fibroblast cells (MRC5) | ability to inhibit the growth of S. pneumoniae, K. pneumoniae minimal cytotoxicity to human lung fibroblasts reduced short-term toxicological profile | Furnari S, 2025 [78] |
human microglial cells (HMC3) | HTP showed a lower degree of microglial toxicity, with reduced ROS production, lipid peroxidation, and mitochondrial dysfunction compared to traditional cigarettes | Distefano A, 2024 [79] |
human periodontal ligament cells (hPDL) | HTP exposure led to a decrease in cell counts 48 h and 72 h after exposure HTP showed less harmful effects on hPDL compared to CS | Wiesmann-Imilowski N, 2024 [88] |
human gingival fibroblasts and human keratinocytes | ↑ cell viability (fibroblasts, keratinocytes), ↑ migration, ↑ number of cells in S and G2/M phase ↑ proliferation of oral cells | Pagano S, 2021 [90] |
(−) | ||
a human oral squamous cell carcinoma (OSCC) cell line, HSC-3 | cytotoxic effect in OSCC cells exposure to CSE (HTP and traditional tobacco) from both sources led to an increase in intracellular Ca2+ concentration, induced p38 phosphorylation and cell apoptosis, and increased ROS levels | Kagemichi N, 2024 [80] |
human bronchial epithelial BEAS-2B cells | 3R4F and HTP emissions affected the profiles of exogenous compounds (one carcinogenic) and the profiles of endogenous metabolites from the following pathways: oxidative stress, energy metabolism, and lipid metabolism | Lenski M, 2024 [81] |
human atrial cardiac stromal cells (CSCs) | cells cultured with HTP serum showed increased levels of profibrotic markers and decreased expression of connexin-43 TCC and HTP sera increased collagen release and decreased secretion of angiogenic protective factors from CSCs compared with NS serum circulating molecules in the serum of chronic exclusive HTP smokers induced fibrotic behavior in CSCs via activation of the mTOR pathway and decreased their beneficial paracrine effects on endothelial cells and cardiomyocytes | Picchio V, 2024 [86] |
human lung adenocarcinoma (A549) cells with type II alveolar epithelial | HTP altered the CpG methylation pattern, affected gene expression, and affected mRNA expression and promoter methylation of CYP1A1, which is associated with carcinogenic risk | Sato A, 2023 [87] |
gingival epithelial cells | Long-term HTP stimulation influenced epithelial differentiation and keratinization of gingival epithelial cells | Uehara O, 2023 [89] |
human bronchial epithelial cells BEAS-2B | HTP was less cytotoxic than conventional cigarettes; HTP and cigarettes induced oxidative DNA damage and significantly increased DNA strand breaks and chromosomal aberrations. | Zarcone G, 2023 [82] |
primary human oral keratinocytes (HOKs) | HTP increased the formation of γH2AX foci in HOK, and ATR ATR expression decreased in cells exposed to CSE with CC and HTP | Morishita Y, 2022 [83] |
human models of bronchial and alveolar mucosa | ↑ levels of total cellular reactive oxygen species, stress-responsive nuclear factor kappa-B, and DNA damage markers [8-hydroxy-2′-deoxyguanosine, phosphorylated histone H2AX, cleaved poly(ADP-ribose) polymerase] were detected in bronchial and/or alveolar models exposed to HTP smoke, ↑ IL1ꞵ and IL8 in the bronchial model, ↑ interferon-γ and IL4 in the alveolar model, ↓ IL13 in the alveolar model | Rahman M, 2022 [84] |
endothelial cells | HTP treatment showed induction of HMOX1 and NQO1, ↓ VCAM1 expression in a dose-dependent manner, ↑ activation of antioxidant or pro-inflammatory patterns | Giebe S, 2021 [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znyk, M.; Kaleta, D. The Health Effects of Heated Tobacco Product Use—A Narrative Review. Healthcare 2025, 13, 2042. https://doi.org/10.3390/healthcare13162042
Znyk M, Kaleta D. The Health Effects of Heated Tobacco Product Use—A Narrative Review. Healthcare. 2025; 13(16):2042. https://doi.org/10.3390/healthcare13162042
Chicago/Turabian StyleZnyk, Małgorzata, and Dorota Kaleta. 2025. "The Health Effects of Heated Tobacco Product Use—A Narrative Review" Healthcare 13, no. 16: 2042. https://doi.org/10.3390/healthcare13162042
APA StyleZnyk, M., & Kaleta, D. (2025). The Health Effects of Heated Tobacco Product Use—A Narrative Review. Healthcare, 13(16), 2042. https://doi.org/10.3390/healthcare13162042