Impact of Age and Years in the Fire Service on Firefighter Health and Physical Performance Outcomes †
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Experimental Design
2.2. Rationale for Age Groups
2.3. Testing Overview and Procedures
2.3.1. Demographics, Anthropometrics, and Body Composition Assessments
2.3.2. Physical Performance Parameters
2.3.3. Blood Collection and Analysis Procedures
2.4. Statistical Analysis
3. Results
3.1. Demographics Data
3.2. Anthropometrics and Body Composition
3.3. Blood Biomarkers
3.4. Physical Performance Parameters
3.5. Multicollinearity Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACSM | American College of Sports Medicine |
ApoB | Apolipoprotein B |
BSL-2 | Biosafety Level 2 |
BMI | Body Mass Index |
CVD | Cardiovascular Disease |
DEXA | Dual-Energy X-Ray Absorptiometry Scan |
EDTA | Ethylenediaminetetraacetic Acid |
GLM | General Linear Model |
HbA1c | Hemoglobin-A1c |
HDL-C | High-Density Lipoprotein |
HOMA-IR | Homeostatic Model Assessment for Insulin Resistance |
LDL-C | Low-Density Lipoprotein Cholesterol |
CPXT | Maximal Cardiopulmonary Exercise Test |
ηp2 | Partial Eta Squared |
SST | Serum Separation Tubes |
SD | Standard Deviations |
SE | Standard Error |
TTE | Time-To-Exhaustion |
TC | Total Cholesterol |
TAG | Triglycerides |
VO2max | Maximal Oxygen Uptake |
References
- Jahnke, S.A.; Jitnarin, N.; Haddock, C.K.; Kaipust, C.; Poston, W.S.C.; Hollerbach, B.S.; Crisp, C.; Naylor Metoyer, B. Meta-Analysis of Incidence and Mortality of Firefighter Cancer: An Update on Emerging Science. Asian Pac. J. Cancer Prev. 2024, 25, 801–811. [Google Scholar] [CrossRef]
- Kales, S.N.; Smith, D.L. Firefighting and the Heart: Implications for Prevention. Circulation 2017, 135, 1296–1299. [Google Scholar] [CrossRef]
- Oliveira, J.; Aires Dias, J.; Duarte, I.C.; Caldeira, S.; Marques, A.R.; Rodrigues, V.; Redondo, J.; Castelo-Branco, M. Mental health and post-traumatic stress disorder in firefighters: An integrated analysis from an action research study. Front. Psychol. 2023, 14, 1259388. [Google Scholar] [CrossRef]
- Campbell, R.; Petrillo, J.T. Fatal Firefighter Injuries in the United States; National Fire Protection Association: Quincy, MA, USA, 2023; pp. 1–17. [Google Scholar]
- Fahy, R.F. US Fire Service Fatalities in Structure Fires, 1977–2009; National Fire Protection Research Foundation: Quincy, MA, USA, 2010. [Google Scholar]
- LeBlanc, P.R.; Fahy, R.F. Full Report: Firefighter Fatalities in the United States–2002; Fire Analysis and Research Division, National Fire Protection Association: Quincy, MA, USA, 2005. [Google Scholar]
- U.S. Fire Administration. Firefighter Fatalities in the United States. Available online: https://apps.usfa.fema.gov/firefighter-fatalities/ (accessed on 28 May 2025).
- Perroni, F.; Tessitore, A.; Cibelli, G.; Lupo, C.; D’Artibale, E.; Cortis, C.; Cignitti, L.; De Rosas, M.; Capranica, L. Effects of simulated firefighting on the responses of salivary cortisol, alpha-amylase and psychological variables. Ergonomics 2009, 52, 484–491. [Google Scholar] [CrossRef]
- Agostinelli, P.J.; Bordonie, N.C.; Robbins, A.M.; Jones, P.L.; Reagan, L.F.; Mobley, C.B.; Miller, M.W.; Murrah, W.M.; Sefton, J.M. Impact of acute exercise on performance and physiological stress during simulated firefighter occupational tasks. Sci. Rep. 2024, 14, 29778. [Google Scholar] [CrossRef] [PubMed]
- Igboanugo, S.; Mielke, J. The allostatic load model: A framework to understand the cumulative multi-system impact of work-related psychosocial stress exposure among firefighters. Health Psychol. Behav. Med. 2023, 11, 2255026. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.E.; Coles, M.E.; Tanksley, P.T.; Martaindale, M.H.; Martin, S.E.; McAllister, M.J. Relationships between physiological stress biomarkers and cardiovascular disease risk factors among career firefighters. J. Occup. Environ. Med. 2025, 67, 535–541. [Google Scholar] [CrossRef] [PubMed]
- McAllister, M.J.; Gonzalez, D.E.; Leonard, M.; Martaindale, M.H.; Bloomer, R.J.; Pence, J.; Martin, S.E. Firefighters with Higher Cardiorespiratory Fitness Demonstrate Lower Markers of Cardiovascular Disease Risk. J. Occup. Environ. Med. 2022, 64, 1036–1040. [Google Scholar] [CrossRef]
- Mathias, K.C.; Bode, E.D.; Stewart, D.F.; Smith, D.L. Changes in Firefighter Weight and Cardiovascular Disease Risk Factors over Five Years. Med. Sci. Sports Exerc. 2020, 52, 2476–2482. [Google Scholar] [CrossRef]
- D’Agostino, R.B., Sr.; Vasan, R.S.; Pencina, M.J.; Wolf, P.A.; Cobain, M.; Massaro, J.M.; Kannel, W.B. General cardiovascular risk profile for use in primary care: The Framingham Heart Study. Circulation 2008, 117, 743–753. [Google Scholar] [CrossRef]
- Saupe, K.; Sothmann, M.; Jasenof, D. Aging and the fitness of fire fighters: The complex issues involved in abolishing mandatory retirement ages. Am. J. Public. Health 1991, 81, 1192–1194. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Jones, J.; Bolleddu, S.I.; Vanthenapalli, S.; Rodgers, L.E.; Shah, K.; Karia, K.; Panguluri, S.K. Cardiovascular Risks Associated with Gender and Aging. J. Cardiovasc. Dev. Dis. 2019, 6, 19. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, Y.; Wong, N.D.; Wang, J.a. Impact of Aging on Cardiovascular Diseases. JACC Asia 2024, 4, 345–358. [Google Scholar] [CrossRef]
- Bennett, A.I.; Hanley, J.; Buckle, P.; Bridger, R.S. Work demands during firefighting training: Does age matter?†. Ergonomics 2011, 54, 555–564. [Google Scholar] [CrossRef]
- Parpa, K.; Michaelides, M. Age-Related Differences in Physical Fitness and Performance of an “Ability Test” among Firefighters. Muscles 2024, 3, 88–99. [Google Scholar] [CrossRef]
- Saari, A.I.; Renz, G.; Davis, P.; Abel, M.G. The influence of age on firefighter combat challenge performance and exercise training habits. J. Strength. Cond. Res. 2020, 34, 2500–2506. [Google Scholar] [CrossRef]
- Mendelson, B.J.; Marciniak, R.A.; Wahl, C.A.; Ebersole, K.T. Body Composition Is Related to Maximal Effort Treadmill Test Time in Firefighters. Healthcare 2023, 11, 1607. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, M.A.; Parpa, K.M.; Thompson, J.; Brown, B. Predicting performance on a firefghter’s ability test from fitness parameters. Res. Q. Exerc. Sport 2008, 79, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Jeung, D.-Y.; Hyun, D.-S.; Kim, I.; Chang, S.-J. Effects of Emergency Duties on Cardiovascular Diseases in Firefighters: A 13-Year Retrospective Cohort Study. J. Occup. Environ. Med. 2022, 64, 510–514. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Jackson, A.S.; Pollock, M.L.; Taylor, M.M.; Hare, J.; Sennett, S.M.; Rod, J.L.; Sarwar, M.; Schmidt, D.H. Generalized equations for predicting functional capacity from treadmill performance. Am. Heart J. 1984, 107, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation. In Proceedings of the Report of a WHO Expert Consultation, Geneva, Switzerland, 8–11 December 2008. [Google Scholar]
- World Health Organization. WHO Guidelines on Drawing Blood: Best Practices in Phlebotomy; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Liguori, G.; Medicine ACoS. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2020. [Google Scholar]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.J.; Webb, H.E.; Zourdos, M.C.; Acevedo, E.O. Cardiovascular reactivity, stress, and physical activity. Front. Physiol. 2013, 4, 314. [Google Scholar] [CrossRef]
- Martin, J.; Toczko, M.; Miller, A.; Caswell, S. Firefighter Years: Mediating Effects of Years of Service on Physical Fitness. Res. Health Med. 2025, 5. [Google Scholar] [CrossRef]
- Moffatt, S.M.; Stewart, D.F.; Jack, K.; Dudar, M.D.; Bode, E.D.; Mathias, K.C.; Smith, D.L. Cardiometabolic health among United States firefighters by age. Prev. Med. Rep. 2021, 23, 101492. [Google Scholar] [CrossRef]
- Baur, D.M.; Christophi, C.A.; Cook, E.F.; Kales, S.N. Age-Related Decline in Cardiorespiratory Fitness among Career Firefighters: Modification by Physical Activity and Adiposity. J. Obes. 2012, 2012, 710903. [Google Scholar] [CrossRef]
- Bode, E.D.; Mathias, K.C.; Stewart, D.F.; Moffatt, S.M.; Jack, K.; Smith, D.L. Cardiovascular Disease Risk Factors by BMI and Age in United States Firefighters. Obesity 2021, 29, 1186–1194. [Google Scholar] [CrossRef]
- Chowdhury, R.; Shah, D.; Payal, A.R. Healthy Worker Effect Phenomenon: Revisited with Emphasis on Statistical Methods–A Review. Indian. J. Occup. Environ. Med. 2017, 21, 2–8. [Google Scholar] [CrossRef]
- Shah, D. Healthy worker effect phenomenon. Indian. J. Occup. Environ. Med. 2009, 13, 77–79. [Google Scholar] [CrossRef]
Variable | Age Group | n | Effect of Age | Effect of Age with Years of Experience Covariate a | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Mean | Univariate Results | Mean | Source | Univariate Results | |||||
(SD) | (SE) | p-Value | ηp2 | (SD) | p-Value | ηp2 | ||||
Body Mass | 20–29 years | 54 | 91.8 ± 14.0 | 91.8 ± 2.0 | 0.043 | 0.044 | 92.6 ± 2.6 | Exp | 0.635 | 0.002 |
(kg) | 30–39 year | 52 | 99.2 ± 17.3 | 99.2 ± 2.1 | 99.3 ± 2.1 | |||||
40+ | 36 | 94.6 ± 12.6 | 94.6 ± 2.5 | 93.3 ± 3.7 | Age | 0.053 | 0.042 | |||
Total | 142 | 95.2 ± 15.2 | 95.2 ± 1.3 | 95.1 ± 1.3 | ||||||
Height | 20–29 years | 54 | 180.5 ± 6.2 | 180.5 ± 0.9 | 0.905 | 0.001 | 180.7 ± 1.1 | Exp | 0.697 | 0.001 |
(cm) | 30–39 year | 52 | 180.4 ± 7.5 | 180.4 ± 0.9 | 180.5 ± 0.9 | |||||
40+ | 36 | 179.9 ± 5.3 | 179.9 ± 1.1 | 179.4 ± 1.6 | Age | 0.844 | 0.002 | |||
Total | 142 | 180.3 ± 6.4 | 180.3 ± 0.6 | 180.2 ± 0.6 | ||||||
Body Mass Index | 20–29 years | 54 | 28.2 ± 3.9 | 28.2 ± 0.5 | 0.023 | 0.053 | 28.3 ± 0.7 | Exp | 0.755 | 0.001 |
kg/m2 | 30–39 year | 52 | 30.3 ± 4.1 | 30.3 ± 0.6 | 30.4 ± 0.6 | |||||
40+ | 36 | 29.3 ± 3.9 | 29.3 ± 0.7 | 29.0 ± 1.0 | Age | 0.037 | 0.047 | |||
Total | 142 | 29.3 ± 4.1 | 29.3 ± 0.3 | 29.2 ± 0.4 |
Variable | Age Group | n | Effect of Age | Effect of Age with Years of Experience Covariate a | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Mean | Univariate Results | Mean | Source | Univariate Results | |||||
(SD) | (SE) | p-Value | ηp2 | (SD) | p-Value | ηp2 | ||||
Hip Circumference | 20–29 years | 54 | 103.3 ± 9.2 | 103.3 ± 1.2 | 0.217 | 0.022 | 103.4 ± 1.5 | Exp | 0.914 | 0.000 |
(cm) | 30–39 year | 52 | 106.2 ± 8.8 | 106.2 ± 1.2 | 106.2 ± 1.2 | |||||
40+ | 36 | 103.9 ± 7.8 | 103.9 ± 1.5 | 103.8 ± 2.2 | Age | 0.224 | 0.021 | |||
Total | 142 | 104.5 ± 8.8 | 104.5 ± 0.7 | 104.4 ± 0.8 | ||||||
Waist Circumference | 20–29 years | 54 | 90.0 ± 9.6 | 90.0 ± 1.4 | 0.000 | 0.118 | 91.5 ± 1.7 | Exp | 0.164 | 0.014 |
(cm) | 30–39 year | 52 | 97.3 ± 11.5 | 97.3 ± 1.4 | 97.5 ± 1.4 | |||||
40+ | 36 | 97.8 ± 8.5 | 97.8 ± 1.7 | 95.2 ± 2.5 | Age | 0.020 | 0.055 | |||
Total | 142 | 94.6 ± 10.7 | 95.0 ± 0.9 | 94.7 ± 0.9 | ||||||
Wasit-to-Hip Ratio | 20–29 years | 54 | 0.87 ± 0.06 | 0.87 ± 0.01 | 0.000 | 0.151 | 0.89 ± 0.01 | Exp | 0.071 | 0.023 |
30–39 year | 52 | 0.92 ± 0.08 | 0.92 ± 0.01 | 0.92 ± 0.01 | ||||||
40+ | 36 | 0.94 ± 0.06 | 0.94 ± 0.01 | 0.92 ± 0.02 | Age | 0.081 | 0.036 | |||
Total | 142 | 0.91 ± 0.07 | 0.91 ± 0.01 | 0.91 ± 0.01 | ||||||
Body Fat | 40+ | 54 | 22.1 ± 5.0 | 22.1 ± 0.7 | 0.003 | 0.078 | 22.5 ± 0.9 | Exp | 0.396 | 0.005 |
(%) | 30–39 year | 52 | 24.3 ± 4.7 | 24.3 ± 0.7 | 24.4 ± 0.7 | |||||
40+ | 36 | 25.6 ± 5.1 | 25.6 ± 0.8 | 24.8 ± 1.2 | Age | 0.226 | 0.021 | |||
Total | 142 | 23.8 ± 5.1 | 24.0 ± 0.4 | 23.9 ± 0.4 | ||||||
Fat Mass | 20–29 years | 54 | 21.2 ± 7.7 | 21.2 ± 1.2 | 0.020 | 0.055 | 21.9 ± 1.5 | Exp | 0.479 | 0.004 |
(kg) | 30–39 year | 52 | 25.0 ± 8.3 | 25.0 ± 1.2 | 25.1 ± 1.2 | |||||
40+ | 36 | 26.0 ± 10.3 | 26.0 ± 1.4 | 24.9 ± 2.1 | Age | 0.246 | 0.020 | |||
Total | 142 | 23.8 ± 8.8 | 24.1 ± 0.7 | 24.0 ± 0.8 | ||||||
Lean Mass | 20–29 years | 54 | 70.0 ± 7.2 | 70.0 ± 1.3 | 0.021 | 0.054 | 70.1 ± 1.7 | Exp | 0.877 | 0.000 |
(kg) | 30–39 year | 52 | 73.5 ± 11.5 | 73.5 ± 1.3 | 73.5 ± 1.4 | |||||
40+ | 36 | 67.7 ± 10.1 | 67.7 ± 1.6 | 67.5 ± 2.4 | Age | 0.032 | 0.049 | |||
Total | 142 | 70.7 ± 9.9 | 70.4 ± 0.8 | 70.4 ± 0.9 | ||||||
Andriod Fat Distribution | 20–29 years | 54 | 24.5 ± 6.3 | 24.5 ± 0.9 | 0.000 | 0.122 | 25.3 ± 1.1 | Exp | 0.290 | 0.008 |
(%) | 30–39 year | 52 | 28.3 ± 6.7 | 28.3 ± 0.9 | 28.4 ± 0.9 | |||||
40+ | 36 | 30.4 ± 6.4 | 30.4 ± 1.1 | 29.1 ± 1.6 | Age | 0.078 | 0.036 | |||
Total | 142 | 27.4 ± 6.9 | 27.7 ± 0.6 | 27.6 ± 0.6 | ||||||
Gynoid Fat Distribution | 20–29 years | 54 | 24.0 ± 4.7 | 24.0 ± 0.7 | 0.055 | 0.041 | 23.9 ± 0.8 | Exp | 0.779 | 0.001 |
(%) | 30–39 year | 52 | 25.3 ± 4.4 | 25.3 ± 0.7 | 25.3 ± 0.7 | |||||
40+ | 36 | 26.5 ± 5.5 | 26.5 ± 0.8 | 26.8 ± 1.2 | Age | 0.231 | 0.021 | |||
Total | 142 | 25.1 ± 4.9 | 25.3 ± 0.4 | 25.3 ± 0.4 | ||||||
Visceral Adipose Tissue | 20–29 years | 54 | 77.4 ± 22.2 | 77.4 ± 5.1 | 0.000 | 0.226 | 86.1 ± 6.5 | Exp | 0.032 | 0.033 |
(g) | 30–39 year | 52 | 107.5 ± 46.2 | 107.5 ± 5.2 | 108.5 ± 5.2 | |||||
40+ | 36 | 127.4 ± 41.9 | 127.4 ± 6.3 | 112.8 ± 9.1 | Age | 0.021 | 0.054 | |||
Total | 142 | 101.1 ± 42.4 | 104.1 ± 3.2 | 102.5 ± 3.3 |
Variable | Age Group | n | Effect of Age | Effect of Age with Years of Experience Covariatea | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Mean | Univariate Results | Mean | Source | Univariate Results | |||||
(SD) | (SE) | p-Value | ηp2 | (SE) | p-Value | ηp2 | ||||
Total Cholesterol | 20–29 years | 52 | 174.5 ± 30.4 | 174.5 ± 5.0 | 0.001 | 0.099 | 188.1 ± 6.2 | Exp | 0.001 | 0.083 |
(mg/dL) | 30–39 year | 52 | 191.5 ± 38.3 | 191.5 ± 5.0 | 192.9 ± 4.9 | |||||
40+ | 35 | 204.6 ± 41.2 | 204.6 ± 6.1 | 182.3 ± 8.7 | Age | 0.480 | 0.011 | |||
Total | 139 | 188.4 ± 38.0 | 190.2 ± 3.1 | 187.8 ± 3.1 | ||||||
High-Density Lipoprotein Cholesterol | 20–29 years | 52 | 53.3 ± 8.9 | 53.3 ± 1.6 | 0.114 | 0.031 | 53.5 ± 2.1 | Exp | 0.929 | 0.000 |
(mg/dL) | 30–39 year | 52 | 48.8 ± 13.9 | 48.8 ± 1.6 | 48.8 ± 1.6 | |||||
40+ | 35 | 49.6 ± 11.9 | 49.6 ± 2.0 | 49.4 ± 2.9 | Age | 0.193 | 0.024 | |||
Total | 139 | 50.7 ± 11.8 | 50.6 ± 1.0 | 50.5 ± 1.0 | ||||||
Low-Density Lipoprotein Cholesterol | 20–29 years | 52 | 104.6 ± 27.5 | 104.6 ± 4.4 | 0.000 | 0.106 | 116.5 ± 5.4 | Exp | 0.001 | 0.082 |
(mg/dL) | 30–39 year | 52 | 120.0 ± 35.4 | 120.0 ± 4.4 | 121.2 ± 4.2 | |||||
40+ | 35 | 131.9 ± 32.0 | 131.9 ± 5.4 | 112.5 ± 7.6 | Age | 0.486 | 0.011 | |||
Total | 139 | 117.2 ± 33.3 | 118.8 ± 2.7 | 116.7 ± 2.7 | ||||||
Apolipoprotein B | 20–29 years | 52 | 82.8 ± 18.6 | 82.8 ± 3.3 | 0.000 | 0.158 | 89.5 ± 4.2 | Exp | 0.010 | 0.048 |
(mg/dL) | 30–39 year | 52 | 98.0 ± 27.4 | 98.0 ± 3.3 | 98.7 ± 3.2 | |||||
40+ | 35 | 108.4 ± 25.0 | 108.4 ± 4.0 | 97.3 ± 5.8 | Age | 0.207 | 0.023 | |||
Total | 139 | 94.9 ± 25.8 | 96.4 ± 2.1 | 95.2 ± 2.1 | ||||||
Triglycerides | 20–29 years | 52 | 74.9 ± 37.9 | 74.9 ± 8.6 | 0.000 | 0.111 | 83.8 ± 11.0 | Exp | 0.197 | 0.012 |
(mg/dL) | 30–39 year | 52 | 119.8 ± 81.1 | 119.8 ± 8.6 | 120.7 ± 8.6 | |||||
40+ | 35 | 119.1 ± 57.3 | 119.1 ± 10.5 | 104.5 ± 15.3 | Age | 0.019 | 0.057 | |||
Total | 139 | 102.8 ± 65.1 | 104.6 ± 5.3 | 103.0 ± 5.5 | ||||||
Fasting Plasma Glucose | 20–29 years | 52 | 87.8 ± 10.1 | 87.8 ± 1.4 | 0.138 | 0.029 | 88.7 ± 1.8 | Exp | 0.433 | 0.005 |
(mg/dL) | 30–39 year | 52 | 90.1 ± 7.7 | 90.1 ± 1.4 | 90.2 ± 1.4 | |||||
40+ | 35 | 92.3 ± 13.1 | 92.3 ± 1.7 | 90.8 ± 2.5 | Age | 0.788 | 0.004 | |||
Total | 139 | 89.8 ± 10.2 | 90.1 ± 0.9 | 89.9 ± 0.9 | ||||||
Hemoglobin A1c | 20–29 years | 52 | 5.4 ± 0.2 | 5.4 ± 0.0 | 0.026 | 0.052 | 5.4 ± 0.0 | Exp | 0.235 | 0.010 |
(%) | 30–39 year | 52 | 5.4 ± 0.3 | 5.4 ± 0.0 | 5.4 ± 0.0 | |||||
40+ | 35 | 5.5 ± 0.3 | 5.5 ± 0.0 | 5.5 ± 0.1 | Age | 0.583 | 0.008 | |||
Total | 139 | 5.4 ± 0.3 | 5.4 ± 0.0 | 5.4 ± 0.0 | ||||||
FPInsulin | 20–29 years | 52 | 8.9 ± 5.4 | 8.9 ± 1.0 | 0.047 | 0.044 | 9.8 ± 1.3 | Exp | 0.254 | 0.010 |
(µU/mL) | 30–39 year | 52 | 11.6 ± 7.3 | 11.6 ± 1.0 | 11.7 ± 1.0 | |||||
40+ | 35 | 12.4 ± 8.7 | 12.4 ± 1.2 | 10.9 ± 1.8 | Age | 0.452 | 0.012 | |||
Total | 139 | 10.8 ± 7.2 | 10.9 ± 0.6 | 10.8 ± 0.6 | ||||||
HOMA-IR | 20–29 years | 52 | 1.9 ± 1.2 | 1.9 ± 0.3 | 0.024 | 0.053 | 2.2 ± 0.3 | Exp | 0.159 | 0.015 |
30–39 year | 52 | 2.6 ± 1.8 | 2.6 ± 0.3 | 2.6 ± 0.3 | ||||||
40+ | 35 | 3.0 ± 2.5 | 3.0 ± 0.3 | 2.5 ± 0.5 | Age | 0.549 | 0.009 | |||
Total | 139 | 2.4 ± 1.9 | 2.5 ± 0.2 | 2.5 ± 0.2 |
Variable | Age Group | n | Effect of Age | Effect of Age with Years of Experience Covariate a | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | Mean | Univariate Results | Mean | Source | Univariate Results | |||||
(SD) | (SE) | p-Value | ηp2 | (SE) | p-Value | ηp2 | ||||
CPXT Time-to-Exhaustion | 20–29 years | 54 | 12.1 ± 1.5 | 12.1 ± 0.2 | 0.000 | 0.206 | 11.6 ± 0.3 | Exp | 0.008 | 0.051 |
(minutes) | 30–39 year | 51 | 10.8 ± 1.5 | 10.8 ± 0.2 | 10.8 ± 0.2 | |||||
40+ | 34 | 10.2 ± 1.5 | 10.2 ± 0.3 | 10.9 ± 0.4 | Age | 0.034 | 0.049 | |||
Total | 139 | 11.1 ± 1.7 | 11.0 ± 0.1 | 11.1 ± 0.1 | ||||||
Maximal Oxygen Uptake | 20–29 years | 54 | 42.7 ± 6.2 | 42.7 ± 0.8 | 0.000 | 0.211 | 41.1 ± 1.1 | Exp | 0.015 | 0.043 |
(ml/kg/min) | 30–39 year | 51 | 37.4 ± 6.3 | 37.4 ± 0.9 | 37.2 ± 0.9 | |||||
40+ | 34 | 35.1 ± 6.0 | 35.1 ± 1.1 | 37.8 ± 1.5 | Age | 0.016 | 0.060 | |||
Total | 139 | 38.9 ± 6.9 | 38.4 ± 0.5 | 38.7 ± 0.5 | ||||||
Sit-Ups | 20–29 years | 54 | 44.5 ± 8.0 | 44.5 ± 1.3 | 0.085 | 0.036 | 41.3 ± 1.6 | Exp | 0.002 | 0.070 |
(repetitions) | 30–39 year | 51 | 40.5 ± 11.1 | 40.5 ± 1.3 | 40.2 ± 1.3 | |||||
40+ | 34 | 41.1 ± 9.7 | 41.1 ± 1.6 | 46.6 ± 2.3 | Age | 0.062 | 0.040 | |||
Total | 139 | 42.2 ± 9.7 | 42.0 ± 0.8 | 42.7 ± 0.8 | ||||||
Push-Ups | 20–29 years | 54 | 60.1 ± 15.1 | 60.1 ± 2.3 | 0.000 | 0.160 | 57.0 ± 2.9 | Exp | 0.089 | 0.021 |
(repetitions) | 30–39 year | 51 | 49.1 ± 17.4 | 49.1 ± 2.4 | 48.8 ± 2.4 | |||||
40+ | 34 | 41.7 ± 19.6 | 41.7 ± 2.9 | 47.0 ± 4.3 | Age | 0.082 | 0.036 | |||
Total | 139 | 51.6 ± 18.5 | 50.3 ± 1.5 | 51.0 ± 1.5 | ||||||
Sit-and-Reach | 20–29 years | 54 | 17.1 ± 3.3 | 17.1 ± 0.4 | 0.000 | 0.117 | 16.7 ± 0.6 | Exp | 0.179 | 0.013 |
(inches) | 30–39 year | 51 | 15.4 ± 3.1 | 15.4 ± 0.5 | 15.3 ± 0.5 | |||||
40+ | 34 | 14.2 ± 3.2 | 14.2 ± 0.6 | 15.0 ± 0.8 | Age | 0.158 | 0.027 | |||
Total | 139 | 15.8 ± 3.4 | 15.6 ± 0.3 | 15.7 ± 0.3 | ||||||
Handgrip Strength | 20–29 years | 54 | 57.6 ± 6.5 | 57.6 ± 1.0 | 0.116 | 0.031 | 57.4 ± 1.2 | Exp | 0.858 | 0.000 |
(kg) | 30–39 year | 51 | 60.4 ± 7.9 | 60.4 ± 1.0 | 60.4 ± 1.0 | |||||
40+ | 34 | 58.1 ± 7.1 | 58.1 ± 1.2 | 58.3 ± 1.8 | Age | 0.116 | 0.031 | |||
Total | 139 | 58.7 ± 7.3 | 58.7 ± 0.6 | 58.7 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chun, J.; Conner, M.J.; Mota, J.A.; Newman, B.; Dawes, J.J.; Martin, S.E.; Gonzalez, D.E. Impact of Age and Years in the Fire Service on Firefighter Health and Physical Performance Outcomes. Healthcare 2025, 13, 1946. https://doi.org/10.3390/healthcare13161946
Chun J, Conner MJ, Mota JA, Newman B, Dawes JJ, Martin SE, Gonzalez DE. Impact of Age and Years in the Fire Service on Firefighter Health and Physical Performance Outcomes. Healthcare. 2025; 13(16):1946. https://doi.org/10.3390/healthcare13161946
Chicago/Turabian StyleChun, Jisun, Michael J. Conner, Jacob A. Mota, Brian Newman, J. Jay Dawes, Steven E. Martin, and Drew Edward Gonzalez. 2025. "Impact of Age and Years in the Fire Service on Firefighter Health and Physical Performance Outcomes" Healthcare 13, no. 16: 1946. https://doi.org/10.3390/healthcare13161946
APA StyleChun, J., Conner, M. J., Mota, J. A., Newman, B., Dawes, J. J., Martin, S. E., & Gonzalez, D. E. (2025). Impact of Age and Years in the Fire Service on Firefighter Health and Physical Performance Outcomes. Healthcare, 13(16), 1946. https://doi.org/10.3390/healthcare13161946