Can the Components of Physical Fitness Be Linked to Creative Thinking and Fluid Intelligence in Spanish Schoolchildren?
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Materials and Procedures
2.2.1. Anthropometric Measures
2.2.2. Fitness Tests
2.2.3. Cognitive Functioning Tests
Torrance Creative Thinking Test (TTCT)
School Aptitude Test Level 1 (TEA-1)
2.3. Procedure
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Limitations and Strengths
4.2. Practical Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PF | Physical Fitness |
CRF | Cardiorespiratory Fitness |
PA | Physical Activity |
SLJ | Standing Long Jump |
VO2 peak | Maximum oxygen consumption |
20 m SRT | Shuttle Run Test |
References
- Sleiman, S.; Henry, J.; Al-Haddad, R.; El Hayek, L.; Haidar, E.; Stringer, T.; Ulja, Z.; Karuppagounder, S.S.; Holson, E.B.; Ratan, R.R.; et al. Exercise Promotes the Expression of Brain Derived Neurotrophic Factor (BDNF) through the Action of the Ketone Body β-Hydroxybutyrate. Elife 2016, 5, e15092. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.; Pontifex, M.; Castelli, D.; Khan, N.A.; Raine, L.; Scudder, M.; Drollette, E.; Moore, R.; Wu, C.-T.T.; Kamijo, K. Effects of the FITKids Randomized Controlled Trial on Executive Control and Brain Function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; Jia, S.; Yang, C. Physical Activity Promotes Brain Development through Serotonin during Early Childhood. Neuroscience 2024, 554, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Chen, S.; Sun, H.; Wen, X.; Xiang, P. Physical Activity in Children’s Health and Cognition. Biomed Res. Int. 2018, 2018, 8542403. [Google Scholar] [CrossRef]
- Ünlü, H.; Şimşek, S.; Filiz, B.; Konukman, F.; Sortwell, A. Developmentally Appropriate Physical Activities in the Classroom to Support Student Well-Being and Learning. J. Phys. Educ. Recreat. Danc. 2024, 95, 50–52. [Google Scholar] [CrossRef]
- Haapala, E.; Leppänen, M.; Skog, H.; Lubans, D.; Viitasalo, A.; Lintu, N.; Jalanko, P.; Määttä, S.; Lakka, T. Childhood Physical Fitness as a Predictor of Cognition and Mental Health in Adolescence: The PANIC Study. Sport. Med. 2024, 55, 487–497. [Google Scholar] [CrossRef]
- Kuzik, N.; da Costa, B.; Hwang, Y.; Verswijveren, J.J.M.; Rollo, S.; Tremblay, M.; Bélanger, S.; Carson, V.; Davis, M.; Hornby, S.; et al. School-Related Sedentary Behaviours and Indicators of Health and Well-Being among Children and Youth: A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 40. [Google Scholar] [CrossRef]
- López-Vicente, M.; Garcia-Aymerich, J.; Torrent-Pallicer, J.; Forns, J.; Ibarluzea, J.; Lertxundi, N.; González, L.; Valera-Gran, D.; Torrent, M.; Dadvand, P.; et al. Are Early Physical Activity and Sedentary Behaviors Related to Working Memory at 7 and 14 Years of Age? J. Pediatr. 2017, 188, 35–41.e1. [Google Scholar] [CrossRef]
- Latorre-Román, P.; Berrios-Aguayo, B.; Aragón-Vela, J.; Pantoja-Vallejo, A.; Latorre, P.; Berrios Aguayo, B.; Aragón Vela, J.; Pantoja Vallejo, A.; Latorre Román, P.; Berrios Aguayo, B.; et al. Effects of a 10-Week Active Recess Program in School Setting on Physical Fitness, School Aptitudes, Creativity and Cognitive Flexibility in Elementary School Children. A Randomised-Controlled Trial. J. Sports Sci. 2021, 39, 1277–1286. [Google Scholar] [CrossRef]
- Esteban-Cornejo, I.; Rodriguez-Ayllon, M.; Verdejo-Roman, J.; Cadenas-Sanchez, C.; Mora-Gonzalez, J.; Chaddock-Heyman, L.; Raine, L.; Stillman, C.; Kramer, A.; Erickson, K.; et al. Physical Fitness, White Matter Volume and Academic Performance in Children: Findings From the ActiveBrains and FITKids2 Projects. Front. Psychol. 2019, 10, 208. [Google Scholar] [CrossRef]
- Bazalo, B.; Morales-Sánchez, V.; Pérez-Romero, N.; Contreras-Osorio, F.; Campos-Jara, C.; Hernández-Mendo, A.; Reigal, R.E. Associations between Fluid Intelligence and Physical Fitness in School Children. Healthcare 2024, 12, 963. [Google Scholar] [CrossRef] [PubMed]
- Kiely, K. Cognitive Function. Encycl. Qual. Life Well-Being Res. 2014, 12, 974–978. [Google Scholar] [CrossRef]
- Taylor, L.; Watkins, S.; Marshall, H.; Dascombe, B.; Foster, J. The Impact of Different Environmental Conditions on Cognitive Function: A Focused Review. Front. Physiol. 2016, 6, 372. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, S.; Finn, A. The Sweet Spot: When Children’s Developing Abilities, Brains, and Knowledge Make Them Better Learners Than Adults. Perspect. Psychol. Sci. 2022, 17, 1322. [Google Scholar] [CrossRef]
- Furnham, A.; Chamorro-Premuzic, T.; McDougall, F. Personality, Cognitive Ability, and Beliefs about Intelligence as Predictors of Academic Performance. Learn. Individ. Differ. 2003, 14, 47–64. [Google Scholar] [CrossRef]
- Starr, A.; Riemann, R. Common Genetic and Environmental Effects on Cognitive Ability, Conscientiousness, Self-Perceived Abilities, and School Performance. Intelligence 2022, 93, 101664. [Google Scholar] [CrossRef]
- Demetriou, A.; Kazi, S.; Spanoudis, G.; Makris, N. Predicting School Performance from Cognitive Ability, Self-Representation, and Personality from Primary School to Senior High School. Intelligence 2019, 76, 101381. [Google Scholar] [CrossRef]
- Torrance, E. The Torrance Tests of Creative Thinking Norms—Technical Manual Figural (Streamlined) Forms A & B; Scholastic Testing Service: Bensenville, IL, USA, 1990. [Google Scholar]
- Thurstone, L.L.; Thurstone, T.H. School Aptitude Test; TEA: Madrid, Spain, 2005. [Google Scholar]
- Cucina, J.; Peyton, S.; Su, C.; Byle, K. Role of Mental Abilities and Mental Tests in Explaining High-School Grades. Intelligence 2016, 54, 90–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Ma, F.; Cui, H.; Cheng, X.; Pan, Y. Interpersonal Educational Neuroscience: A Scoping Review of the Literature. Educ. Res. Rev. 2024, 42, 100593. [Google Scholar] [CrossRef]
- Pasarín-Lavín, T.; García, T.; Rodríguez, C.; Núñez, J.; Areces, D. Divergent Thinking and Executive Functions in Children: A Developmental Perspective Based on Intellectual Capacity. Think. Ski. Creat. 2024, 51, 101466. [Google Scholar] [CrossRef]
- Bollimbala, A.; James, P.S. Impact of Chronic Physical Activity on Individuals’ Creativity. Psychol. Res. 2024, 88, 684–694. [Google Scholar] [CrossRef] [PubMed]
- Almeida, L.; Prieto, L.; Ferrando, M.; Oliveira, E.; Ferrándiz, C. Torrance Test of Creative Thinking: The Question of Its Construct Validity. Think. Ski. Creat. 2008, 3, 53–58. [Google Scholar] [CrossRef]
- Chen, C. Exploring the Impact of Acute Physical Activity on Creative Thinking: A Comprehensive Narrative Review with a Focus on Activity Type and Intensity. Discov. Psychol. 2024, 4, 3. [Google Scholar] [CrossRef]
- Khadem, A.; Nadery, M.; Noori, S.; Ghaffarian-Ensaf, R.; Djazayery, A.; Movahedi, A. The Relationship between Food Habits and Physical Activity and the IQ of Primary School Children. J. Heal. Popul. Nutr. 2024, 43, 29. [Google Scholar] [CrossRef]
- Ren, X.; Schweizer, K.; Wang, T.; Xu, F. The Prediction of Students’ Academic Performance With Fluid Intelligence in Giving Special Consideration to the Contribution of Learning. Adv. Cogn. Psychol. 2015, 11, 97. [Google Scholar] [CrossRef]
- Gomez-Pinilla, F.; Hillman, C. The Influence of Exercise on Cognitive Abilities. Compr. Physiol. 2013, 3, 403–428. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Román-Viñas, B.; Font-Lladó, R. Why Is It Important to Develop Motor Competence in Childhood and Adolescence? The Basis for a Healthy Lifestyle. Apunt. Med. l’Esport 2017, 52, 103–112. [Google Scholar] [CrossRef]
- Ortega, F.; Ruiz, J.; Castillo, M.; Sjöström, M. Physical Fitness in Childhood and Adolescence: A Powerful Marker of Health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef]
- Johansson, L.; Brissman, M.; Morinder, G.; Westerståhl, M.; Marcus, C. Reference Values and Secular Trends for Cardiorespiratory Fitness in Children and Adolescents with Obesity. Acta Paediatr. 2020, 109, 1665–1671. [Google Scholar] [CrossRef]
- Ortega, F.; Leskošek, B.; Blagus, R.; Gil-Cosano, J.; Mäestu, J.; Tomkinson, G.; Ruiz, J.; Mäestu, E.; Starc, G.; Milanovic, I.; et al. European Fitness Landscape for Children and Adolescents: Updated Reference Values, Fitness Maps and Country Rankings Based on Nearly 8 Million Test Results from 34 Countries Gathered by the FitBack Network. Br. J. Sports Med. 2023, 57, 299–310. [Google Scholar] [CrossRef]
- Kryst, Ł.; Żegleń, M.; Artymiak, P.; Kowal, M.; Woronkowicz, A. Analysis of Secular Trends in Physical Fitness of Children and Adolescents (8–18 Years) from Kraków (Poland) between 2010 and 2020. Am. J. Hum. Biol. 2023, 35, e23829. [Google Scholar] [CrossRef] [PubMed]
- Vandoni, M.; Marin, L.; Cavallo, C.; Gatti, A.; Grazi, R.; Albanese, I.; Taranto, S.; Silvestri, D.; Di Carlo, E.; Patanè, P.; et al. Poor Motor Competence Affects Functional Capacities and Healthcare in Children and Adolescents with Obesity. Sports 2024, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Telford, R.; Telford, R.; Olive, L.; Cochrane, T.; Davey, R. Why Are Girls Less Physically Active than Boys? Findings from the LOOK Longitudinal Study. PLoS ONE 2016, 11, e0150041. [Google Scholar] [CrossRef] [PubMed]
- Benavente-Marín, J.; Barón-López, F.; Gil Barcenilla, B.; Longo Abril, G.; Rumbao Aguirre, J.; Pérez-Farinós, N.; Wärnberg, J. Accelerometry-Assessed Daily Physical Activity and Compliance with Recommendations in Spanish Children: Importance of Physical Education Classes and Vigorous Intensity. PeerJ 2024, 12, e16990. [Google Scholar] [CrossRef] [PubMed]
- Delfa-De-La-Morena, J.; Bores-García, D.; Solera-Alfonso, A.; Romero-Parra, N. Barriers to Physical Activity in Spanish Children and Adolescents: Sex and Educational Stage Differences. Front. Psychol. 2022, 13, 910930. [Google Scholar] [CrossRef]
- Latorre-Román, P.; García Pinillos, F.; Pantoja Vallejo, A.; Berrios Aguayo, B. Creativity and Physical Fitness in Primary School-aged Children. Pediatr. Int. 2017, 59, 1194–1199. [Google Scholar] [CrossRef]
- Rodríguez-Negro, J.; Pasarín-Lavín, T.; Suarez-Manzano, S. Creativity Outcomes of Physical Activity Interventions for Children and Adolescents: A Systematic Review. Think. Ski. Creat. 2024, 54, 101644. [Google Scholar] [CrossRef]
- Romance, R.; Nielsen-Rodríguez, A.; Mendes, R.; Dobado-Castañeda, J.; Dias, G. The Influence of Physical Activity on the Creativity of 10 and 11-Year-Old School Children. Think. Ski. Creat. 2023, 48, 101295. [Google Scholar] [CrossRef]
- Caamaño-Navarrete, F.; Latorre-Román, P.; Párraga-Montilla, J.; Álvarez, C.; Delgado-Floody, P. Association between Creativity and Memory with Cardiorespiratory Fitness and Lifestyle among Chilean Schoolchildren. Nutrients 2021, 13, 1799. [Google Scholar] [CrossRef]
- Rominger, C.; Schneider, M.; Fink, A.; Tran, U.; Perchtold-Stefan, C.; Schwerdtfeger, A. Acute and Chronic Physical Activity Increases Creative Ideation Performance: A Systematic Review and Multilevel Meta-Analysis. Sport. Med. 2022, 8, 62. [Google Scholar] [CrossRef]
- Lubans, D.; Morgan, P.; Cliff, D.; Barnett, L.; Okely, A. Fundamental Movement Skills in Children and Adolescents: Review of Associated Health Benefits. Sports Med. 2010, 40, 1019–1035. [Google Scholar] [CrossRef] [PubMed]
- Fochesatto, C.; Araujo Gaya, A.; Cristi-Montero, C.; Brand, C.; Fernandes Dias, A.; Ruschel Bandeira, D.; Riboli Marasca, A.; Reis Gaya, A. Association between Physical Fitness Components and Fluid Intelligence According to Body Mass Index in Schoolchildren. Appl. Neuropsychol. Child 2022, 11, 640–646. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, F.; Delgado-García, G.; Coll, J.; Silva, A.; Nobari, H.; Clemente, F. Relationship between Cognitive Functioning and Physical Fitness in Regard to Age and Sex. BMC Pediatr. 2023, 23, 204. [Google Scholar] [CrossRef]
- Fernandes, G.; da Costa, K.; Brito, K.; da Silva Oliveira, K.; de Cássia Nakano, T.; Fontes, E. Creativity In Children With Different Level Of Cardiorespiratory Fitness And Fat Mass: A Cross-Sectional Study. Med. Sci. Sport. Exerc. 2019, 51, 895–896. [Google Scholar] [CrossRef]
- World Medical Association. Helsinki World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA J. Am. Med. Assoc. 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Curilem Gatica, C.; Almagià Flores, A.; Rodríguez Rodríguez, F.; Yuing Farias, T.; Berral de la Rosa, F.; Martínez Salazar, C.; Jorquera Aguilera, C.; Bahamondes Ávila, C.; Solís Urra, P.; Cristi Montero, C.; et al. Assessment Body Composition in Children and Teens: Guidelines and Recommendations. Nutr. Hosp. 2016, 33, 734–738. [Google Scholar] [CrossRef]
- Andrade-Lara, K.E.; Serrano Huete, V.; Párraga Montilla, J.A.; Salas Sánchez, J.; Robles-Fuentes, A.; Conceição, F.; Latorre Román, P.Á. Physical Fitness and Motor Competence Percentiles: A Multi-Criteria Approach to Identify Sporting Potential in Children. Int. J. Sport. Sci. Coach. 2025. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Palacios-López, A.; Humberto Prieto-Benavides, D.; Enrique Correa-Bautista, J.; Izquierdo, M.; Alonso-Martínez, A.; Lobelo, F. Normative Reference Values for the 20 m Shuttle-Run Test in a Population-Based Sample of School-Aged Youth in Bogota, Colombia: The FUPRECOL Study. Am. J. Hum. Biol. 2017, 29, e22902. [Google Scholar] [CrossRef]
- Tomkinson, G.; Olds, T. Secular Changes in Pediatric Aerobic Fitness Test Performance: The Global Picture. Med. Sport Sci. 2007, 50, 46–66. [Google Scholar] [CrossRef]
- Reigal, R.; Moral-Campillo, L.; Juárez Ruiz, M.; Morillo-Baro, J.; Morales-Sánchez, V.; Pastrana, J.; Hernández-Mendo, A. Physical Fitness Level Is Related to Attention and Concentration in Adolescents. Front. Psychol. 2020, 11, 110. [Google Scholar] [CrossRef]
- Andrade-Lara, K.; de la Casa Pérez, A.; Cubero Pacheco, A.; Párraga Montilla, J.; Martínez Redondo, M.; Cabrera Linares, J.; Latorre-Román, P. Factors Influencing Gait Performance: Comfortable Linear Gait and Complex Gait in School-Aged Children in a Dual-Task Model. J. Mot. Behav. 2024, 57, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.; España-Romero, V.; Ortega, F.; Sjöström, M.; Castillo, M.; Gutierrez, A. Hand Span Influences Optimal Grip Span in Male and Female Teenagers. J. Hand Surg. Am. 2006, 31, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Léger, L.A.; Mercier, D.; Gadoury, C.; Lambert, J. The Multistage 20 Metre Shuttle Run Test for Aerobic Fitness. J. Sports Sci. 1988, 6, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Borg’s Perceived Exertion and Pain Scales. Dtsch. Z. Sportmed. 1998, 52, 252. [Google Scholar] [CrossRef]
- Alabbasi, A.; Paek, S.; Kim, D.; Cramond, B. What Do Educators Need to Know about the Torrance Tests of Creative Thinking: A Comprehensive Review. Front. Psychol. 2022, 13, 1000385. [Google Scholar] [CrossRef]
- Rad, I.; Karimi, L.; Ramezani, V.; Ahmadi, M.; Heshmati, R.; Jafar, E. Psychometric Properties of Torrance Test (Persian Version) of Creative Thinking (A Form). Procedia Soc. Behav. Sci. 2010, 5, 1429–1433. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: New York, NY, USA, 13 May 2013; pp. 13–17. [Google Scholar]
- Haapala, E. Cardiorespiratory Fitness and Motor Skills in Relation to Cognition and Academic Performance in Children—A Review. J. Hum. Kinet. 2013, 36, 55–68. [Google Scholar] [CrossRef]
- Wick, K.; Kriemler, S.; Granacher, U. Associations between Measures of Physical Fitness and Cognitive Performance in Preschool Children. BMC Sports Sci. Med. Rehabil. 2022, 14, 80. [Google Scholar] [CrossRef]
- Aguayo, B.B.; Román, P.Á.L.; Sánchez, J.S.; Montilla, A.P.; Berrios Aguayo, B.; Latorre Román, P.; Salas Sánchez, J.; Pantoja Vallejo, A. Effect of Physical Activity and Fitness on Executive Functions and Academic Performance in Children of Elementary School. A Systematic Review. Cult. Cienc. Deport. 2022, 17, 85–103. [Google Scholar] [CrossRef]
- van der Fels, I.; te Wierike, S.; Hartman, E.; Elferink-Gemser, M.; Smith, J.; Visscher, C. The Relationship between Motor Skills and Cognitive Skills in 4-16 Year Old Typically Developing Children: A Systematic Review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef]
- Towlson, C.; Cumming, S.; Donnan, K.; Toner, J. The Effect of Maturation on Children’s Experience of Physical Education: Lessons Learned from Academy Sport. Eur. Phys. Educ. Rev. 2025, 31, 129–146. [Google Scholar] [CrossRef]
- Abe, T.; Thiebaud, R.; Ozaki, H.; Yamasaki, S.; Loenneke, J. Children with Low Handgrip Strength: A Narrative Review of Possible Exercise Strategies to Improve Its Development. Children 2022, 9, 1616. [Google Scholar] [CrossRef] [PubMed]
- van der Fels, I.; de Bruijn, A.; Renken, R.; Königs, M.; Meijer, A.; Oosterlaan, J.; Kostons, D.; Visscher, C.; Bosker, R.; Smith, J.; et al. Relationships between Gross Motor Skills, Cardiovascular Fitness, and Visuospatial Working Memory-Related Brain Activation in 8- to 10-Year-Old Children. Cogn. Affect. Behav. Neurosci. 2020, 20, 842–858. [Google Scholar] [CrossRef]
- Álvarez-Bueno, C.; Hillman, C.; Cavero-Redondo, I.; Sánchez-López, M.; Pozuelo-Carrascosa, D.; Martínez-Vizcaíno, V. Aerobic Fitness and Academic Achievement: A Systematic Review and Meta-Analysis. J. Sports Sci. 2020, 38, 582–589. [Google Scholar] [CrossRef]
- Morales, J.; Valenzuela, P.; Martínez-de-Quel, Ó.; Sánchez-Sánchez, J.; Muntaner-Mas, A.; Erickson, K.; Carbonell-Baeza, A.; Ortega, F.; Jiménez-Pavón, D. Exercise Interventions and Intelligence in Children and Adolescents: A Meta-Analysis. Pediatrics 2024, 154, e2023064771. [Google Scholar] [CrossRef]
- Piya-Amornphan, N.; Santiworakul, A.; Cetthakrikul, S.; Srirug, P. Physical Activity and Creativity of Children and Youths. BMC Pediatr. 2020, 20, 118. [Google Scholar] [CrossRef]
- Ruiz-Ariza, A.; Suárez-Manzano, S.; López-Serrano, S.; Martínez-López, E. Physical Activity as Means of Cultivating Intelligence in a School Context. Rev. Esp. Pedagog. 2021, 79, 161–177. [Google Scholar] [CrossRef]
- Hillman, C.; Castelli, D.; Buck, S. Aerobic Fitness and Neurocognitive Function in Healthy Preadolescent Children. Med. Sci. Sports Exerc. 2005, 37, 1967–1974. [Google Scholar] [CrossRef]
- Herting, M.; Chu, X. Exercise, Cognition, and the Adolescent Brain. Birth defects Res. 2017, 109, 1672. [Google Scholar] [CrossRef]
- Cadenas-Sánchez, C.; Mora-González, J.; Migueles, J.; Martín-Matillas, M.; Gómez-Vida, J.; Escolano-Margarit, M.; Maldonado, J.; Enriquez, G.; Pastor-Villaescusa, B.; de Teresa, C.; et al. An Exercise-Based Randomized Controlled Trial on Brain, Cognition, Physical Health and Mental Health in Overweight/Obese Children (ActiveBrains Project): Rationale, Design and Methods. Contemp. Clin. Trials 2016, 47, 315–324. [Google Scholar] [CrossRef]
- Davis, C.; Tomporowski, P.; Gregoski, M.; Boyle, C.; Waller, J.; Miller, P.; Naglieri, J. Effects of Aerobic Exercise on Overweight Children’s Cognitive Functioning: A Randomized Controlled Trial. Res. Q. Exerc. Sport 2007, 78, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Drenowatz, C.; Greier, K.; Hinterkörner, F.; Ferrari, G.; Greier, K.; Hinterkörner, F. Relative Age Effect in Physical Fitness during the Elementary School Years. Pediatr. Rep. 2021, 13, 322–333. [Google Scholar] [CrossRef] [PubMed]
- Tomkinson, G.; Carver, K.; Atkinson, F.; Daniell, N.; Lewis, L.; Fitzgerald, J.; Lang, J.; Ortega, F. European Normative Values for Physical Fitness in Children and Adolescents Aged 9–17 Years: Results from 2 779 165 Eurofit Performances Representing 30 Countries. Br. J. Sports Med. 2018, 52, 1445–1456. [Google Scholar] [CrossRef] [PubMed]
- Nakata, H.; Akido, M.; Naruse, K.; Fujiwara, M. Relative Age Effect in Physical Fitness Among Elementary and Junior High School Students. Percept. Mot. Skills 2017, 124, 900–911. [Google Scholar] [CrossRef]
- Malina, R.M.; Rogol, A.D.; Cumming, S.P.; Coelho E Silva, M.J.; Figueiredo, A.J. Biological Maturation of Youth Athletes: Assessment and Implications. Br. J. Sports Med. 2015, 49, 852–859. [Google Scholar] [CrossRef]
- Sandercock, G.; Cohen, D. Temporal Trends in Muscular Fitness of English 10-Year-Olds 1998-2014: An Allometric Approach. J. Sci. Med. Sport 2019, 22, 201–205. [Google Scholar] [CrossRef]
- Canli, T.; Canli, U.; Taskin, C.; Aldhahi, M. Motor Coordination in Primary School Students: The Role of Age, Sex, and Physical Activity Participation in Turkey. Children 2023, 10, 1524. [Google Scholar] [CrossRef]
- Benedek, M.; Jauk, E.; Sommer, M.; Arendasy, M.; Neubauer, A. Intelligence, Creativity, and Cognitive Control: The Common and Differential Involvement of Executive Functions in Intelligence and Creativity. Intelligence 2014, 46, 73–83. [Google Scholar] [CrossRef]
- Baer, J.; Kaufman, J. Gender Differences in Creativity. J. Creat. Behav. 2008, 42, 75–105. [Google Scholar] [CrossRef]
- Lau, S.; Cheung, P. Developmental Trends of Creativity: What Twists of Turn Do Boys and Girls Take at Different Grades? Creat. Res. J. 2010, 22, 329–336. [Google Scholar] [CrossRef]
- Smare, Z.; Elfatihi, M. A Systematic Review on Factors Influencing the Development of Children’s Creativity. J. Child. Educ. Soc. 2024, 5, 176–200. [Google Scholar] [CrossRef]
- Lee, J.; Lee, S. Relationships between Physical Environments and Creativity: A Scoping Review. Think. Ski. Creat. 2023, 48, 101276. [Google Scholar] [CrossRef]
- Vidaci, A.; Vega-Ramírez, L.; Cortell-Tormo, J. Development of Creative Intelligence in Physical Education and Sports Science Students through Body Expression. Int. J. Environ. Res. Public Health 2021, 18, 5406. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qin, C.; Shu, D.; Liu, D. Effects of Short-Term Aerobic Exercise on Creativity. Think. Ski. Creat. 2022, 44, 101033. [Google Scholar] [CrossRef]
- Rastelli, C.; Greco, A.; Finocchiaro, C. Revealing the Role of Divergent Thinking and Fluid Intelligence in Children’s Semantic Memory Organization. J. Intell. 2020, 8, 43. [Google Scholar] [CrossRef]
- Vasilopoulos, F.; Jeffrey, H.; Wu, Y.; Dumontheil, I. Multi-Level Meta-Analysis of Physical Activity Interventions During Childhood: Effects of Physical Activity on Cognition and Academic Achievement. Educ. Psychol. Rev. 2023, 35, 59. [Google Scholar] [CrossRef]
- Cadenas-Sanchez, C.; Migueles, J.; Erickson, K.; Esteban-Cornejo, I.; Catena, A.; Ortega, F. Do Fitter Kids Have Bigger Brains? Scand. J. Med. Sci. Sports 2020, 30, 2498–2502. [Google Scholar] [CrossRef]
- Skolasinska, P.; Basak, C.; Qin, S. Influence of Strenuous Physical Activity and Cardiorespiratory Fitness on Age-Related Differences in Brain Activations During Varieties of Cognitive Control. Neuroscience 2023, 520, 58–83. [Google Scholar] [CrossRef]
- Erickson, K.; Hillman, C.; Stillman, C.; Ballard, R.; Bloodgood, B.; Conroy, D.; Macko, R.; Marquez, D.; Petruzzello, S.; Powell, K. Physical Activity, Cognition, and Brain Outcomes: A Review of the 2018 Physical Activity Guidelines. Med. Sci. Sports Exerc. 2019, 51, 1242–1251. [Google Scholar] [CrossRef]
- Vints, W.; Gökçe, E.; Langeard, A.; Pavlova, I.; Çevik, Ö.; Ziaaldini, M.; Todri, J.; Lena, O.; Sakkas, G.; Jak, S.; et al. Myokines as Mediators of Exercise-Induced Cognitive Changes in Older Adults: Protocol for a Comprehensive Living Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2023, 15, 1213057. [Google Scholar] [CrossRef]
- Bracero-Malagón, J.; Juárez-Ruiz de Mier, R.; Reigal, R.; Caballero-Cerbán, M.; Hernández-Mendo, A.; Morales-Sánchez, V. Logical Intelligence and Mathematical Competence Are Determined by Physical Fitness in a Sample of School Children. Front. Psychol. 2022, 13, 833844. [Google Scholar] [CrossRef] [PubMed]
- Frith, E.; Loprinzi, P.; Miller, S. Role of Embodied Movement in Assessing Creative Behavior in Early Childhood: A Focused Review. Percept. Mot. Skills 2019, 126, 1058–1083. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Shi, Y.; Miao, H.; Wang, L. Parenting Behaviors and Creativity: The Roles of Autonomous and Controlled Motivation. J. Child Fam. Stud. 2024, 4, 1148–1157. [Google Scholar] [CrossRef]
- Rodríguez-Negro, J.; Pesola, J.; Yanci, J. Effects and Retention of Different Physical Exercise Programs on Children’s Cognitive and Motor Development. J. Educ. Res. 2020, 113, 431–437. [Google Scholar] [CrossRef]
- Tocci, N.; Scibinetti, P.; Mazzoli, E.; Mavilidi, M.; Masci, I.; Schmidt, M.; Pesce, C. Giving Ideas Some Legs or Legs Some Ideas? Children’s Motor Creativity Is Enhanced by Physical Activity Enrichment: Direct and Mediated Paths. Front. Psychol. 2022, 13, 806065. [Google Scholar] [CrossRef]
- Musálek, M.; Malambo, C.; Chrudimský, J.; Kokštejn, J.; Bačáková, R.; Vokounová, Š. Strength-Agility and Fine Motor Are Differently Associated with Non-Verbal Intelligence in Dependency to Sex and Age in School Children: Structural Equation Modelling Multigroup Approach. Acta Psychol. 2024, 251, 104546. [Google Scholar] [CrossRef]
Variables | ALL Mean (SD) | Girls Mean (SD) | Boys Mean (SD) | p-Value | d Cohen’s |
---|---|---|---|---|---|
(n = 584) | (n = 349) | (n = 235) | |||
Age (years) | 8.62 (1.77) | 8.43 (1.77) | 8.93 (1.72) | <0.001 | 0.286 |
Anthropometric variables | |||||
BMI (kg/kg/m2) | 18.43 (3.84) | 18.56 (3.87) | 18.36 (3.78) | 0.467 | 0.052 |
Waist circumference (cm) | 62.74 (10.93) | 64.15 (11.37) | 62.01 (10.63) | 0.012 | 0.193 |
Fitness variables | |||||
25m Sprint (s) | 5.64 (0.79) | 5.84 (0.81) | 5.29 (0.63) | <0.001 | 0.740 |
Handgrip strength (kg) | 13.61 (5.36) | 12.93 (4.92) | 14.80 (5.87) | <0.001 | 0.351 |
SLJ (cm) | 114.77 (37.28) | 112.66 (34.94) | 118.45 (40.84) | 0.032 | 0.154 |
20 m SRT (periods) | 2.70 (1.82) | 2.19 (1.50) | 3.62 (1.99) | <0.001 | 0.834 |
VO2 peak (mL· 1·) | 46.25 (4.14) | 45.68 (3.78) | 47.28 (4.54) | <0.001 | 0.390 |
Borg scale (0−10 pts) | 7.48 (2.13) | 7.31 (2.32) | 7.81 (1.69) | <0.002 | 0.239 |
Cognitive measures | |||||
Creativity (TTCT) | |||||
Originality (3−175 pts) | 66.60 (32.62) | 64.51 (33.72) | 70.01 (30.51) | 0.020 | 0.169 |
Elaboration (0−34 pts) | 30.19 (20.04) | 23.41 (15.67) | 34.97 (21.38) | <0.001 | 0.599 |
Fluency (0−40 pts) | 18.17 (8.24) | 16.93 (8.79) | 20.14 (6.85) | <0.001 | 0.397 |
Flexibility (0−29 pts) | 14.35 (6.43) | 13.44 (6.96) | 15.82 (5.13) | <0.001 | 0.378 |
Total creativity score (0−269) | 124.64 (51.22) | 121.82 (54.62) | 129.40 (44.60) | <0.001 | 0.149 |
Intelligence (TEA-1) | |||||
Verbal (0−50 pts) | 29.01 (9.02) | 28.59 (8.98) | 29.61 (9.06) | 0.145 | 0.113 |
Reasoning (0−27 pts) | 15.90 (5.50) | 15.90 (5.43) | 16.02 (5.62) | 0.673 | 0.021 |
Numerical (0−55 pts) | 11.89 (19.85) | 11.06 (19.66) | 13.15 (20.13) | 0.063 | 0.105 |
Intelligence score (0−132 pts) | 56.37 (24.18) | 55.11 (23.77) | 58.26 (24.72) | 0.045 | 0.130 |
IQ score (39−147 pts) | 94.95 (19.91) | 93.51 (20.47) | 97.11 (18.98) | 0.010 | 0.181 |
Variables | PF Variables | ||||
---|---|---|---|---|---|
Creativity Variables (TTCT) | 25m Sprint (r) | Handgrip Strength (r) | SLJ (r) | 20 m SRT (r) | VO2 (r) |
Originality | −0.309 *** | 0.258 *** | 0.163 *** | 0.205 *** | |
Elaboration | −0.130 ** | 0.142 ** | 0.260 *** | 0.234 *** | |
Fluency | −0.371 *** | 0.273 *** | 0.279 *** | 0.111 ** | |
Flexibility | −0.307 *** | 0.241 ** | 0.116 ** | 0.243 *** | |
Total creativity score | −0.236 *** | 0.232 *** | 0.203 *** | 0.129 ** | |
Intelligence variables (TEA−1) | |||||
Verbal aptitude | −0.171 *** | 0.273 *** | 0.182 *** | 0.169 *** | |
Reasoning | −0.129 ** | 0.236 *** | 0.111 ** | 0.262 *** | 0.158 ** |
Numerical | −0.183 *** | 0.146 ** | 0.322 *** | 0.101 * | |
Intelligence score | −0.259 *** | 0.263 *** | 0.380 *** | 0.142 ** | |
IQ score | −0.182 *** | 0.247 *** | 0.118 * |
Variables | R2 (p-Value) | Predictors Variables | ꞵ | p-Value | IC (95%) | |
---|---|---|---|---|---|---|
Total Creativity score | 0.339 (<0.001) | 25 m Sprint | −0.126 | 0.018 | −11.612 | −1.100 |
0.348 (<0.001) | SLJ | 0.168 | 0.011 | 0.139 | 0.397 | |
0.319 (<0.001) | 20 m SRT | 0.123 | 0.031 | 0.326 | 6.975 | |
0.314 (<0.001) | VO2 peak | 0.203 | <0.001 | 3.807 | 1.327 | |
Intelligence score | 0.331 (<0.001) | 25 m Sprint | −0.186 | 0.001 | −10.897 | −3.982 |
0.303 (<0.001) | SLJ | 0.929 | 0.001 | 1.250 | 0.310 | |
0.255 (<0.001) | 20 m SRT | 0.312 | <0.001 | 5.694 | 9.830 | |
0.307 (<0.001) | VO2 peak | 0.484 | <0.001 | 3.382 | 1.762 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade-Lara, K.E.; Latorre Román, P.Á.; Atero Mata, E.; Cabrera-Linares, J.C.; Párraga Montilla, J.A. Can the Components of Physical Fitness Be Linked to Creative Thinking and Fluid Intelligence in Spanish Schoolchildren? Healthcare 2025, 13, 1682. https://doi.org/10.3390/healthcare13141682
Andrade-Lara KE, Latorre Román PÁ, Atero Mata E, Cabrera-Linares JC, Párraga Montilla JA. Can the Components of Physical Fitness Be Linked to Creative Thinking and Fluid Intelligence in Spanish Schoolchildren? Healthcare. 2025; 13(14):1682. https://doi.org/10.3390/healthcare13141682
Chicago/Turabian StyleAndrade-Lara, Karina Elizabeth, Pedro Ángel Latorre Román, Eva Atero Mata, José Carlos Cabrera-Linares, and Juan Antonio Párraga Montilla. 2025. "Can the Components of Physical Fitness Be Linked to Creative Thinking and Fluid Intelligence in Spanish Schoolchildren?" Healthcare 13, no. 14: 1682. https://doi.org/10.3390/healthcare13141682
APA StyleAndrade-Lara, K. E., Latorre Román, P. Á., Atero Mata, E., Cabrera-Linares, J. C., & Párraga Montilla, J. A. (2025). Can the Components of Physical Fitness Be Linked to Creative Thinking and Fluid Intelligence in Spanish Schoolchildren? Healthcare, 13(14), 1682. https://doi.org/10.3390/healthcare13141682