Lifestyle Behavior Patterns and Their Association with Active Commuting to School Among Spanish Adolescents: A Cluster Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Measures
2.3.1. Sociodemographic Data and Family Socioeconomic Status
2.3.2. Sedentary Time and PA Levels
2.3.3. Screen Time
2.3.4. Sleep Duration and Breakfast Consumption
2.3.5. Mode of Commuting to and from School
2.3.6. Environment Characteristics
2.4. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Principal Component Analysis
3.3. Clusters
3.4. Regression Models
4. Discussion
4.1. Main Findings
4.2. Behavioral and Practical Significance of Identified Lifestyle Patterns
4.3. Associations Between Lifestyle Patterns and School Commuting Behaviors
4.4. Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PA | Physical activity |
ST | Sedentary time |
MVPA | Moderate-to-vigorous physical activity |
LPA | Light physical activity |
ACS | Active commuting to and from school |
PCA | Principal component analysis |
PCs | Principal components |
References
- Hildreth, J.R.; Vickers, M.H.; Buklijas, T.; Bay, J.L. Understanding the Importance of the Early-Life Period for Adult Health: A Systematic Review. J. Dev. Orig. Health Dis. 2022, 14, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Viner, R.M.; Ozer, E.M.; Denny, S.; Marmot, M.; Resnick, M.; Fatusi, A.; Currie, C. Adolescent Health 2 Adolescence and the Social Determinants of Health. Lancet 2012, 379, 1641–1652. [Google Scholar] [CrossRef]
- Jaworska, N.; MacQueen, G. Adolescence as a Unique Developmental Period. J. Psychiatry Neurosci. 2015, 40, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; Kim, J. Linking Adolescent Future Expectations to Health in Adulthood: Evidence and Mechanisms. Soc. Sci. Med. 2020, 263, 113282. [Google Scholar] [CrossRef]
- Telama, R.; Yang, X.; Leskinen, E.; Kankaanpää, A.; Hirvensalo, M.; Tammelin, T.; Viikari, J.S.A.; Raitakari, O.T. Tracking of Physical Activity from Early Childhood through Youth into Adulthood. Med. Sci. Sports Exerc. 2014, 46, 955–962. [Google Scholar] [CrossRef] [PubMed]
- Saunders, T.J.; Gray, C.E.; Poitras, V.J.; Chaput, J.P.; Janssen, I.; Katzmarzyk, P.T.; Olds, T.; Connor Gorber, S.; Kho, M.E.; Sampson, M.; et al. Combinations of Physical Activity, Sedentary Behaviour and Sleep: Relationships with Health Indicators in School-Aged Children and Youth. Appl. Physiol. Nutr. Metab. 2016, 41, S283–S293. [Google Scholar] [CrossRef]
- de Mello, G.T.; Minatto, G.; Costa, R.M.; Leech, R.M.; Cao, Y.; Lee, R.E.; Silva, K.S. Clusters of 24-Hour Movement Behavior and Diet and Their Relationship with Health Indicators among Youth: A Systematic Review. BMC Public Health 2024, 24, 1080. [Google Scholar] [CrossRef]
- Alosaimi, N.; Sherar, L.B.; Griffiths, P.; Hamer, M.; Pearson, N. Clusters of Diet, Physical Activity, Screen-Time and Sleep among Adolescents and Associations with 3-Year Change in Indicators of Adiposity. PLoS ONE 2024, 19, e0316186. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global Trends in Insufficient Physical Activity among Adolescents: A Pooled Analysis of 298 Population-Based Surveys with 1·6 Million Participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- Tapia-Serrano, M.A.; Vaquero-Solis, M.; Lopez-Gajardo, M.A.; Sanchez-Miguel, P.A. Adherence to the Mediterranean Diet, and Importance in the Physical Activity and Screen Time in High School Adolescents from Extremadura (Spain). Nutr. Hosp. 2021, 38, 236–244. [Google Scholar] [CrossRef]
- Fournier, E.; Łuszczki, E.; Isacco, L.; Chanséaume-Bussiere, E.; Gryson, C.; Chambrier, C.; Drapeau, V.; Chaput, J.-P.; Thivel, D. Toward an Integrated Consideration of 24 h Movement Guidelines and Nutritional Recommendations. Nutrients 2023, 15, 2109. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Serrano, M.Á.; Sevil-Serrano, J.; Sánchez-Oliva, D.; Vaquero-Solís, M.; Sánchez-Miguel, P.A. Effects of a School-Based Intervention on Physical Activity, Sleep Duration, Screen Time, and Diet in Children. Rev. Psicodidact. 2022, 27, 56–65. [Google Scholar] [CrossRef]
- Geller, K.; Lippke, S.; Nigg, C.R. Future Directions of Multiple Behavior Change Research. J. Behav. Med. 2017, 40, 194–202. [Google Scholar] [CrossRef]
- Leech, R.M.; Chappel, S.E.; Ridgers, N.D.; Eicher-Miller, H.A.; Maddison, R.; McNaughton, S.A. Analytic Methods for Understanding the Temporal Patterning of Dietary and 24-H Movement Behaviors: A Scoping Review. Adv. Nutr. 2024, 15, 100275. [Google Scholar] [CrossRef]
- Pérez-Rodrigo, C.; Gil, Á.; González-Gross, M.; Ortega, R.; Serra-Majem, L.; Varela-Moreiras, G.; Aranceta-Bartrina, J. Clustering of Dietary Patterns, Lifestyles, and Overweight among Spanish Children and Adolescents in the ANIBES Study. Nutrients 2015, 8, 11. [Google Scholar] [CrossRef]
- Sanz-Martín, D.; Zurita-Ortega, F.; Ruiz-Tendero, G.; Ubago-Jiménez, J.L. Moderate–Vigorous Physical Activity, Screen Time and Sleep Time Profiles: A Cluster Analysis in Spanish Adolescents. Int. J. Environ. Res. Public Health 2023, 20, 2004. [Google Scholar] [CrossRef]
- Monzani, A.; Ricotti, R.; Caputo, M.; Solito, A.; Archero, F.; Bellone, S.; Prodam, F. A Systematic Review of the Association of Skipping Breakfast with Weight and Cardiometabolic Risk Factors in Children and Adolescents. What Should We Better Investigate in the Future? Nutrients 2019, 11, 387. [Google Scholar] [CrossRef]
- Smith, K.J.; Gall, S.L.; McNaughton, S.A.; Blizzard, L.; Dwyer, T.; Venn, A.J. Skipping Breakfast: Longitudinal Associations with Cardiometabolic Risk Factors in the Childhood Determinants of Adult Health Study. Am. J. Clin. Nutr. 2010, 92, 1316–1325. [Google Scholar] [CrossRef]
- Larouche, R.; Saunders, T.J.; John Faulkner, G.E.; Colley, R.; Tremblay, M. Associations Between Active School Transport and Physical Activity, Body Composition, and Cardiovascular Fitness: A Systematic Review of 68 Studies. J. Phys. Act. Health 2014, 11, 206–227. [Google Scholar] [CrossRef]
- Campos-Garzon, P.; Sevil-Serrano, J.; Garcia-Hermoso, A.; Chillon, P.; Barranco-Ruiz, Y. Contribution of Active Commuting to and from School to Device-Measured Physical Activity Levels in Young People: A Systematic Review and Meta-Analysis. Scand. J. Med. Sci. Sports 2023, 33, 2110–2124. [Google Scholar] [CrossRef]
- Khan, A.; Mandic, S.; Uddin, R. Association of Active School Commuting with Physical Activity and Sedentary Behaviour among Adolescents: A Global Perspective from 80 Countries. J. Sci. Med. Sport. 2021, 24, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Campos-Garzón, P.; Stewart, T.; Palma-Leal, X.; Molina-García, J.; Herrador-Colmenero, M.; Schipperijn, J.; Chillón, P.; Barranco-Ruiz, Y.; Campos-Garzon, P.; Stewart, T.; et al. Are Spanish Adolescents Who Actively Commute to and from School More Active in Other Domains? A Spatiotemporal Investigation. Health Place 2024, 86, 103211. [Google Scholar] [CrossRef]
- Stewart, T.; Duncan, S.; Schipperijn, J. Adolescents Who Engage in Active School Transport Are Also More Active in Other Contexts: A Space-Time Investigation. Health Place 2017, 43, 25–32. [Google Scholar] [CrossRef]
- Martín-Moraleda, E.; Pinilla-Quintana, I.; Romero-Blanco, C.; Hernández-Martínez, A.; Jiménez-Zazo, F.; Dorado-Suárez, A.; García-Coll, V.; Cabanillas-Cruz, E.; Martínez-Romero, M.T.; Herrador-Colmenero, M.; et al. Lifestyle Behaviours Profile of Spanish Adolescents Who Actively Commute to School. Children 2023, 10, 95. [Google Scholar] [CrossRef]
- Villa-González, E.; Huertas-Delgado, F.J.; Chillón, P.; Ramírez-Vélez, R.; Barranco-Ruiz, Y.; Villa-Gonzalez, E.; Huertas-Delgado, F.J.; Chillon, P.; Ramirez-Velez, R.; Barranco-Ruiz, Y. Associations between Active Commuting to School, Sleep Duration, and Breakfast Consumption in Ecuadorian Young People. BMC Public Health 2019, 19, 85. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Gómez, D.; Veiga, O.L.; Gomez-Martinez, S.; Zapatera, B.; Calle, M.E.; Marcos, A.; Martinez-Gomez, D.; Veiga, O.L.; Gomez-Martinez, S.; Zapatera, B.; et al. Behavioural Correlates of Active Commuting to School in Spanish Adolescents: The AFINOS (Physical Activity as a Preventive Measure Against Overweight, Obesity, Infections, Allergies, and Cardiovascular Disease Risk Factors in Adolescents) Study. Public Health Nutr. 2011, 14, 1779–1786. [Google Scholar] [CrossRef]
- Martín-Moraleda, E.; Pinilla-Quintana, I.; Romero-Blanco, C.; Hernández-Martínez, A.; Jiménez-Zazo, F.; Dorado-Suárez, A.; García-Coll, V.; Cabanillas-Cruz, E.; Martínez-Romero, M.T.; Herrador-Colmenero, M.; et al. Meeting 24-Hour Movement Guidelines and the Relationship with Active Commuting to School in Spanish Urban Areas. Front. Sports Act. Living 2025, 7, 1588118. [Google Scholar] [CrossRef]
- Campos-Garzón, P.; Amholt, T.T.T.; Molina-Soberanes, D.; Palma-Leal, X.; Queralt, A.; Lara-Sánchez, A.J.; Stewart, T.; Schipperijn, J.; Barranco-Ruiz, Y.; Chillón, P.; et al. Do Physical Activity and Trip Characteristics Differ When Commuting to and from School?: The PACO Study. Travel Behav. Soc. 2023, 33, 100618. [Google Scholar] [CrossRef]
- Sampasa-Kanyinga, H.; Colman, I.; Goldfield, G.S.; Janssen, I.; Wang, J.; Podinic, I.; Tremblay, M.S.; Saunders, T.J.; Sampson, M.; Chaput, J.-P. Combinations of Physical Activity, Sedentary Time, and Sleep Duration and Their Associations with Depressive Symptoms and Other Mental Health Problems in Children and Adolescents: A Systematic Review. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 72. [Google Scholar] [CrossRef]
- Wilhite, K.; Booker, B.; Huang, B.-H.; Antczak, D.; Corbett, L.; Parker, P.; Noetel, M.; Rissel, C.; Lonsdale, C.; del Pozo Cruz, B.; et al. Combinations of Physical Activity, Sedentary Behavior, and Sleep Duration and Their Associations With Physical, Psychological, and Educational Outcomes in Children and Adolescents: A Systematic Review. Am. J. Epidemiol. 2023, 192, 665–679. [Google Scholar] [CrossRef]
- Chillon, P.; Galvez-Fernandez, P.; Huertas-Delgado, F.J.; Herrador-Colmenero, M.; Barranco-Ruiz, Y.; Villa-Gonzalez, E.; Aranda-Balboa, M.J.; Saucedo-Araujo, R.G.; Campos-Garzon, P.; Molina-Soberanes, D.; et al. A School-Based Randomized Controlled Trial to Promote Cycling to School in Adolescents: The PACO Study. Int. J. Environ. Res. Public Health 2021, 18, 2066. [Google Scholar] [CrossRef] [PubMed]
- Currie, C.; Molcho, M.; Boyce, W.; Holstein, B.; Torsheim, T.; Richter, M. Researching Health Inequalities in Adolescents: The Development of the Health Behaviour in School-Aged Children (HBSC) Family Affluence Scale. Soc. Sci. Med. 2008, 66, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Migueles, J.H.; Rowlands, A.V.; Huber, F.; Sabia, S.; van Hees, V.T. GGIR: A Research Community–Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. J. Meas. Phys. Behav. 2019, 2, 188–196. [Google Scholar] [CrossRef]
- van Hees, V.T.; Renström, F.; Wright, A.; Gradmark, A.; Catt, M.; Chen, K.Y.; Löf, M.; Bluck, L.; Pomeroy, J.; Wareham, N.J.; et al. Estimation of Daily Energy Expenditure in Pregnant and Non-Pregnant Women Using a Wrist-Worn Tri-Axial Accelerometer. PLoS ONE 2011, 6, e22922. [Google Scholar] [CrossRef]
- Neishabouri, A.; Nguyen, J.; Samuelsson, J.; Guthrie, T.; Biggs, M.; Wyatt, J.; Cross, D.; Karas, M.; Migueles, J.H.; Khan, S.; et al. Quantification of Acceleration as Activity Counts in ActiGraph Wearable. Sci. Rep. 2022, 12, 11958. [Google Scholar] [CrossRef]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of Two Objective Measures of Physical Activity for Children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Welk, G.J. Validity and Calibration of the Youth Activity Profile. PLoS ONE 2015, 10, e0143949. [Google Scholar] [CrossRef]
- Segura-Díaz, J.M.; Barranco-Ruiz, Y.; Saucedo-Araujo, R.G.; Aranda-Balboa, M.J.; Cadenas-Sanchez, C.; Migueles, J.H.; Saint-Maurice, P.F.; Ortega, F.B.; Welk, G.J.; Herrador-Colmenero, M.; et al. Feasibility and Reliability of the Spanish Version of the Youth Activity Profile Questionnaire (YAP-Spain) in Children and Adolescents. J. Sports Sci. 2021, 39, 801–807. [Google Scholar] [CrossRef]
- Segura-Díaz, J.M.; Rojas-Jiménez, Á.; Barranco-Ruiz, Y.; Murillo-Pardo, B.; Saucedo-Araujo, R.G.; Aranda-Balboa, M.J.; Herrador-Colmenero, M.; Villa-González, E.; Chillón, P.; Manuel Segura-Diaz, J.; et al. Feasibility and Reliability of a Questionnaire to Assess the Mode, Frequency, Distance and Time of Commuting to and from School: The PACO Study. Int. J. Environ. Res. Public Health 2020, 17, 5039. [Google Scholar] [CrossRef]
- Carlson, J.A.; Saelens, B.E.; Kerr, J.; Schipperijn, J.; Conway, T.L.; Frank, L.D.; Chapman, J.E.; Glanz, K.; Cain, K.L.; Sallis, J.F. Association between Neighborhood Walkability and GPS-Measured Walking, Bicycling and Vehicle Time in Adolescents. Health Place 2015, 32, 1–7. [Google Scholar] [CrossRef]
- Ding, D.; Sallis, J.F.; Kerr, J.; Lee, S.; Rosenberg, D.E. Neighborhood Environment and Physical Activity among Youth: A Review. Am. J. Prev. Med. 2011, 41, 442–455. [Google Scholar] [CrossRef]
- Molina-García, J.; Queralt, A.; Adams, M.A.; Conway, T.L.; Sallis, J.F. Neighborhood Built Environment and Socio-Economic Status in Relation to Multiple Health Outcomes in Adolescents. Prev. Med. 2017, 105, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.M.; McNaughton, S.A.; Timperio, A. The Clustering of Diet, Physical Activity and Sedentary Behavior in Children and Adolescents: A Review. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 4. [Google Scholar] [CrossRef]
- de Mello, G.T.; Lopes, M.V.V.; Minatto, G.; da Costa, R.M.; Matias, T.S.; Guerra, P.H.; Filho, V.C.B.; Silva, K.S. Clustering of Physical Activity, Diet and Sedentary Behavior among Youth from Low-, Middle-, and High-Income Countries: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 10924. [Google Scholar] [CrossRef] [PubMed]
- Leech, R.M.; McNaughton, S.A.; Timperio, A. Clustering of Children’s Obesity-Related Behaviours: Associations with Sociodemographic Indicators. Eur. J. Clin. Nutr. 2014, 68, 623–628. [Google Scholar] [CrossRef]
- Collese, T.S.; De Moraes, A.C.F.; Fernández-Alvira, J.M.; Michels, N.; De Henauw, S.; Manios, Y.; Androutsos, O.; Kafatos, A.; Widhalm, K.; Galfo, M.; et al. How Do Energy Balance-Related Behaviors Cluster in Adolescents? Int. J. Public Health 2019, 64, 195–208. [Google Scholar] [CrossRef] [PubMed]
- Marttila-Tornio, K.; Ruotsalainen, H.; Miettunen, J.; Männikkö, N.; Kääriäinen, M. Clusters of Health Behaviours and Their Relation to Body Mass Index among Adolescents in Northern Finland. Scand. J. Caring Sci. 2020, 34, 666–674. [Google Scholar] [CrossRef]
- Moreira, N.F.; da Veiga, G.V.; Santaliestra-Pasías, A.M.; Androutsos, O.; Cuenca-García, M.; de Oliveira, A.S.D.; Pereira, R.A.; de Moraes, A.B.d.V.; Van den Bussche, K.; Censi, L.; et al. Clustering of Multiple Energy Balance Related Behaviors Is Associated with Body Fat Composition Indicators in Adolescents: Results from the HELENA and ELANA Studies. Appetite 2018, 120, 505–513. [Google Scholar] [CrossRef]
- Nuutinen, T.; Lehto, E.; Ray, C.; Roos, E.; Villberg, J.; Tynjälä, J. Clustering of Energy Balance-Related Behaviours, Sleep, and Overweight among Finnish Adolescents. Int. J. Public Health 2017, 62, 929–938. [Google Scholar] [CrossRef]
- Marsh, S.; Ni Mhurchu, C.; Maddison, R. The Non-Advertising Effects of Screen-Based Sedentary Activities on Acute Eating Behaviours in Children, Adolescents, and Young Adults. A Systematic Review. Appetite 2013, 71, 259–273. [Google Scholar] [CrossRef]
- Lazzeri, G.; Panatto, D.; Domnich, A.; Arata, L.; Pammolli, A.; Simi, R.; Giacchi, M.V.; Amicizia, D.; Gasparini, R. Clustering of Health-Related Behaviors among Early and Mid-Adolescents in Tuscany: Results from a Representative Cross-Sectional Study. J. Public Health 2018, 40, e25–e33. [Google Scholar] [CrossRef] [PubMed]
- Zembura, P.; Gołdys, A. Co-Existence of Physical Activity (PA) and Other Energy-Balance Related Behaviours among Adolescents Participating in PA Intervention in Poland. Cent. Eur. J. Sport Sci. Med. 2016, 16, 43–54. [Google Scholar] [CrossRef]
- Dumuid, D.; Olds, T.; Martín-Fernández, J.-A.; Lewis, L.K.; Cassidy, L.; Maher, C. Academic Performance and Lifestyle Behaviors in Australian School Children: A Cluster Analysis. Health Educ. Behav. 2017, 44, 918–927. [Google Scholar] [CrossRef]
- Xiang, X.; Jiang, H. Associations of Physical Activity, Screen Time, Sleep Duration with Optimal Eating Habits among Adolescents. Complement. Ther. Clin. Pract. 2025, 58, 101933. [Google Scholar] [CrossRef] [PubMed]
- Iannotti, R.J.; Wang, J. Patterns of Physical Activity, Sedentary Behavior, and Diet in U.S. Adolescents. J. Adolesc. Health 2013, 53, 280–286. [Google Scholar] [CrossRef]
- Blyth, F.; Haycraft, E.; Peral-Suarez, A.; Pearson, N. Tracking and Changes in the Clustering of Physical Activity, Sedentary Behavior, Diet, and Sleep across Childhood and Adolescence: A Systematic Review. Obes. Rev. 2025, 26. [Google Scholar] [CrossRef] [PubMed]
- Booth, F.W.; Roberts, C.K.; Thyfault, J.P.; Ruegsegger, G.N.; Toedebusch, R.G. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol. Rev. 2017, 97, 1351–1402. [Google Scholar] [CrossRef]
- Matias, T.S.; Silva, K.S.; da Silva, J.A.; de Mello, G.T.; Salmon, J. Clustering of Diet, Physical Activity and Sedentary Behavior among Brazilian Adolescents in the National School—Based Health Survey (PeNSE 2015). BMC Public Health 2018, 18, 1283. [Google Scholar] [CrossRef]
- Busch, V.; De Leeuw, R.J.J.; Schrijvers, A.J.P. Results of a Multibehavioral Health-Promoting School Pilot Intervention in a Dutch Secondary School. J. Adolesc. Health 2013, 52, 400–406. [Google Scholar] [CrossRef]
- Pizarro, A.N.; Schipperijn, J.; Andersen, H.B.; Ribeiro, J.C.; Mota, J.; Santos, M.P. Active Commuting to School in Portuguese Adolescents: Using PALMS to Detect Trips. J. Transp. Health 2016, 3, 297–304. [Google Scholar] [CrossRef]
- Kek, C.C.; García Bengoechea, E.; Spence, J.C.; Mandic, S.; Bengoechea, E.G.; Spence, J.C.; Mandic, S. The Relationship between Transport-to-School Habits and Physical Activity in a Sample of New Zealand Adolescents. J. Sport Health Sci. 2019, 8, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Tassitano, R.M.; Weaver, R.G.; Tenório, M.C.M.; Brazendale, K.; Beets, M.W. Clusters of Non-Dietary Obesogenic Behaviors among Adolescents in Brazil: A Latent Profile Analysis. Int. J. Public Health 2020, 65, 881–891. [Google Scholar] [CrossRef]
- Loureiro, N.; Marques, A.; Loureiro, V.; de Matos, M.G. Active Transportation to School. Utopia or a Strategy for a Healthy Life in Adolescence. Int. J. Environ. Res. Public Health 2021, 18, 4503. [Google Scholar] [CrossRef]
- Aranda-Balboa, M.J.; Huertas-Delgado, F.J.; Herrador-Colmenero, M.; Cardon, G.; Chillón, P. Parental Barriers to Active Transport to School: A Systematic Review. Int. J. Public Health 2020, 65, 87–98. [Google Scholar] [CrossRef]
- Esmaeli, S.; Aghabayk, K.; Shiwakoti, N. Measuring the Effect of Built Environment on Students’ School Trip Method Using Neighborhood Environment Walkability Scale. Sustainability 2024, 16, 1937. [Google Scholar] [CrossRef]
- Olsen, J.R.; Leung, K.Y.K.; Nicholls, N.; Loo, B.P.Y. Do Neighbourhood Characteristics Matter in Understanding School Children’s Active Lifestyles? A Cross-Region Multi-City Comparison of Glasgow, Edinburgh and Hong Kong. Child Geogr. 2021, 19, 488–504. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Sharma, S.; Sahay, A. Determinants of Active Travel to School in Cities: A Systematic Review on Sustainable Travel. Sustain. Communities 2025, 2, 2449263. [Google Scholar] [CrossRef]
- Sukmayasa, I.M.; Soza-Parra, J.; Ettema, D. The Role of Parental Involvement and Gender on Travel Mode Decisions to School in Bali, Indonesia. J. Transp. Geogr. 2025, 126, 104250. [Google Scholar] [CrossRef]
- Brautsch, L.A.S.; Lund, L.; Andersen, M.M.; Jennum, P.J.; Folker, A.P.; Andersen, S. Digital Media Use and Sleep in Late Adolescence and Young Adulthood: A Systematic Review. Sleep Med. Rev. 2023, 68, 101742. [Google Scholar] [CrossRef]
- Beck, F.; Swelam, B.A.; Dettweiler, U.; Krieger, C.; Reimers, A.K. Compensatory Behavior of Physical Activity in Adolescents—A Qualitative Analysis of the Underlying Mechanisms and Influencing Factors. BMC Public Health 2024, 24, 158. [Google Scholar] [CrossRef]
Total Sample (n = 151) | Girls (n = 81) | Boys (n = 70) | p | |
---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | ||
Age (year) | 14.32 (0.59) | 14.25 (0.51) | 14.41 (0.66) | 0.155 |
FAS | 3.3 (0.84) | 3.30 (0.83) | 3.28 (0.85) | 0.892 |
ST (min) | 593.15 (88.14) | 606.83 (83.95) | 577.31 (90.78) | 0.041 |
LPA (min) | 156.99 (40.56) | 153.47 (36.25) | 161.08 (44.96) | 0.259 |
MVPA (min) | 38.75 (19.44) | 38.66 (17.55) | 38.86 (21.55) | 0.951 |
TV time (min) | 0.91 (0.85) | 0.91 (0.85) | 0.91 (0.86) | 0.996 |
Videogame time (min) | 0.68 (0.62) | 0.26 (0.21) | 1.17 (1.32) | <0.001 |
Computer time (min) | 0.83 (0.74) | 0.68 (0.49) | 1.01 (0.94) | 0.098 |
Smartphone time (min) | 2.43 (1.33) | 2.64 (1.27) | 2.20 (1.37) | 0.043 |
Total screen time (min) | 4.87 (2.53) | 4.50 (2.35) | 5.30 (2.69) | 0.047 |
Sleep time (hours) | 7.81 (1.08) | 7.71 (1.11) | 7.91 (1.05) | 0.227 |
Daily breakfast consumption (day) | 3.86 (1.87) | 3.90 (1.81) | 3.82 (1.95) | 0.814 |
Active commuters to school (n, %) | 97 (64.23%) | 45 (55.55%) | 42 (60%) | 0.050 |
Active commuters from school (n, %) | 100 (66.20%) | 60 (74.07%) | 40 (57.14%) | 0.046 |
Distance from home to school (m) | 3649.20 (8376.23) | 2692.89 (3128.50) | 4463.82 (10,995.24) | 0.169 |
Home walkability index | 1.90 (1.42) | 1.66 (1.28) | 2.17 (1.53) | 0.003 |
24 h Movement Behaviors Guidelines | ||||
MVPA guidelines (n, %) | 24 (16%) | 13 (16%) | 11 (15.7%) | 0.955 |
Screen time guidelines (n, %) | 21 (14%) | 14 (17.3%) | 7 (10%) | 0.197 |
Sleep time guidelines (n, %) | 56 (37%) | 24 (29.6%) | 32 (45.7%) | 0.041 |
24 h guidelines (n, %) | 6 (4%) | 3 (3.7%) | 3 (4.3%) | 0.855 |
Inactive Lifestyle (n = 51) | Active Lifestyle (n = 58) | Unhealthy Lifestyle (n = 42) | F | p | ηp2 | |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | ||||
Age (years) | 14.31 (0.64) | 14.24 (0.47) | 14.45 (0.66) | 1.53 | 0.213 | 0.01 |
ST (min) | 615.41 (78.61) a | 558.81 (77.73) a,c | 613.54 (98.87) c | 8.46 | <0.001 | 0.06 |
LPA (min) | 130.28 (25.18) a,b | 186.87 (32.51) a,c | 148.17 (39.32) b,c | 52.19 | <0.001 | 0.28 |
MVPA (min) | 30.21 (13.31) a | 52.14 (18.81) a,c | 30.63 (16.21) c | 28.23 | <0.001 | 0.17 |
TV time (hours) | 0.54 (0.43) b | 0.94 (0.85) | 1.32 (1.18) b | 9.84 | <0.001 | 0.07 |
Videogame time (hours) | 0.44 (0.32) b | 0.38 (0.26) c | 1.40 (1.16) b,c | 7.62 | <0.001 | 0.06 |
Computer time (hours) | 0.51 (0.36) b | 0.34 (0.22) c | 1.92 (1.54) b,c | 20.02 | <0.001 | 0.14 |
Smartphone time (hours) | 1.77 (1.23) a,b | 2.34 (1.22) a,c | 3.36 (1.06) b,c | 23.02 | <0.001 | 0.15 |
Total screen time (hours) | 3.26 (1.52) a,b | 4.01 (1.43) a,c | 8.02 (1.85) b,c | 94.79 | <0.001 | 0.40 |
Sleep time (hours) | 8.25 (1.16) a,b | 7.73 (0.85) a | 7.38 (1.08) b | 7.11 | 0.002 | 0.05 |
Daily breakfast consumption (day) | 4.49 (1.27) b | 3.95 (1.91) c | 3.25 (2.12) b,c | 7.81 | <0.001 | 0.06 |
Unhealthy Lifestyle | Active Lifestyle | Inactive Lifestyle | |
Ref. | OR (CI 95%) | OR (CI 95%) | |
Mode of commuting to school | Ref. | 1.20 (0.50, 2.89) | 1.23 (0.52, 2.94) |
Mode of commuting from school | Ref. | 1.39 (0.56, 3.46) | 1.23 (0.50, 3.07) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos-Garzón, P.; Saucedo-Araujo, R.G.; Rodrigo-Sanjoaquín, J.; Palma-Leal, X.; Huertas-Delgado, F.J.; Chillón, P. Lifestyle Behavior Patterns and Their Association with Active Commuting to School Among Spanish Adolescents: A Cluster Analysis. Healthcare 2025, 13, 1662. https://doi.org/10.3390/healthcare13141662
Campos-Garzón P, Saucedo-Araujo RG, Rodrigo-Sanjoaquín J, Palma-Leal X, Huertas-Delgado FJ, Chillón P. Lifestyle Behavior Patterns and Their Association with Active Commuting to School Among Spanish Adolescents: A Cluster Analysis. Healthcare. 2025; 13(14):1662. https://doi.org/10.3390/healthcare13141662
Chicago/Turabian StyleCampos-Garzón, Pablo, Romina Gisele Saucedo-Araujo, Javier Rodrigo-Sanjoaquín, Ximena Palma-Leal, Francisco Javier Huertas-Delgado, and Palma Chillón. 2025. "Lifestyle Behavior Patterns and Their Association with Active Commuting to School Among Spanish Adolescents: A Cluster Analysis" Healthcare 13, no. 14: 1662. https://doi.org/10.3390/healthcare13141662
APA StyleCampos-Garzón, P., Saucedo-Araujo, R. G., Rodrigo-Sanjoaquín, J., Palma-Leal, X., Huertas-Delgado, F. J., & Chillón, P. (2025). Lifestyle Behavior Patterns and Their Association with Active Commuting to School Among Spanish Adolescents: A Cluster Analysis. Healthcare, 13(14), 1662. https://doi.org/10.3390/healthcare13141662