Efficacy of Myofascial Techniques and Proprioceptive Neuromuscular Facilitation in the Treatment of Patients with Systemic Lupus Erythematosus—Randomized Crossover Clinical Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Ethical Considerations
2.4. Intervention
- −
- Myofascial induction of hamstrings. This was performed with the crossed-hands technique on the sciatic tuberosity and the lower third of the posterior aspect of the thigh. The duration of the technique was from 5 to 6 min.
- −
- Fascial induction of the triceps surae. Pressure was applied from the junction of the gastrocnemius, medially and laterally, on the internal and external gastrocnemius muscles, respectively. The thumbs acted as “control flags” of symmetry in the application of the technique. The duration of the technique was 5 min.
- −
- Patellar myofascial release. This was applied with the cranial hand above the kneecap (lower third of the anterior rectum), exerting pressure in the cranial direction. The caudal hand was placed in the popliteal fossa, exerting traction in the caudal direction. The technique lasted 5 to 6 min.
- −
- Diagonal 1. This began with a movement towards hip flexion, abduction, and internal rotation with eversion, dorsal flexion, and extension of the toes. The final action was a movement towards hip extension, adduction, and external rotation, with plantar flexion and flexion of the toes.
- −
- Diagonal 2. The initial action was a movement towards hip abduction, extension, and internal rotation, with plantar flexion and flexion of the toes. The final action was a movement towards hip adduction, flexion, and external rotation, with dorsiflexion and extension of the toes.
2.5. Measuring Instruments
2.6. Calculation of the Sample Size and Randomization
2.7. Statistical Analysis
3. Results
3.1. Participants
3.2. Description of Sample
3.3. Analysis of the Study Effects
3.4. Repeated-Measures Analysis
3.5. Minimal Clinically Important Differences
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Intervention | Technique | Patient Position | Physiotherapist Position | Action | Time (min) | |
Myofascial techniques | Myofascial induction of hamstrings | Prone position | Stand on the side to be treated | The physiotherapist’s hands are crossed over the sciatic tuberosity and on the lower third of the posterior aspect of the thigh. | 5–6 | |
Fascial induction of the triceps surae | Prone position with knees flexed at 90º | Stand on the side to be treated | Pressure is applied from the center toward the outside of the calves. Fingers 2–5 of both hands exert force from the junction of the gastrocnemius muscles toward the medial and lateral sides (on the medial and lateral gastrocnemius muscles, respectively). The thumbs act as “control flags” for the symmetry of the technique. | 5 | ||
Patellar myofascial release | Supine position | Stand on the side to be treated | Cranial hand on the patella (lower third of the rectus femoris), applying pressure in a cranial direction. Caudal hand in the popliteal fossa, applying traction in a caudal direction. | 5–6 | ||
Technique | Starting position | Initial action | Final action | |||
Proprioceptive neuromuscular facilitation | Diagonal 1 | Proximal hand of the physical therapist on the distal third of the thigh, above the knee. Distal hand on the back of the foot. | Movement toward flexion, abduction, and internal rotation of the hip with eversion, dorsal flexion, and extension of the fingers. | Movement toward hip extension, adduction, and external rotation with plantar flexion and finger flexion. | ||
Diagonal 2 | Proximal hand on the back of the foot. Distal hand on the distal third of the thigh, above the knee. | Movement toward abduction, extension, and internal rotation with plantar flexion and flexion of the fingers. | Movement toward adduction, flexion, and external rotation with dorsiflexion and finger extension. |
References
- Chen, J.; Liao, S.; Zhou, H.; Yang, L.; Guo, F.; Chen, S.; Li, A.; Pan, Q.; Yang, C.; Liu, H.-F.; et al. Humanized Mouse Models of Systemic Lupus Erythematosus: Opportunities and Challenges. Front. Immunol. 2021, 12, 816956. [Google Scholar] [CrossRef] [PubMed]
- Cortés Verdú, R.; Pego-Reigosa, J.M.; Seoane-Mato, D.; Morcillo Valle, M.; Palma Sánchez, D.; Moreno Martínez, M.J.; González, M.M.; de Buruaga, J.A.S.; Onaindia, I.U.; Cáceres, B.A.B.; et al. Prevalence of systemic lupus erythematosus in Spain: Higher than previously reported in other countries? Rheumatology 2020, 59, 2556–2562. [Google Scholar] [CrossRef] [PubMed]
- Yen, E.Y.; Singh, R.R. Brief Report: Lupus-An Unrecognized Leading Cause of Death in Young Females: A Population-Based Study Using Nationwide Death Certificates, 2000–2015. Arthritis Rheumatol. 2018, 70, 1251–1255. [Google Scholar] [CrossRef]
- Kiriakidou, M.; Ching, C.L. Systemic Lupus Erythematosus. Ann. Intern. Med. 2020, 172, ITC81–ITC96. [Google Scholar] [CrossRef] [PubMed]
- Zayat, A.S.; Mahmoud, K.; Md Yusof, M.Y.; Mukherjee, S.; D’Agostino, M.A.; Hensor, E.M.A.; Wakefield, R.J.; Conaghan, P.G.; Edwards, C.J.; Emery, P.; et al. Defining inflammatory musculoskeletal manifestations in systemic lupus erythematosus. Rheumatology 2019, 58, 304–312. [Google Scholar] [CrossRef]
- Kuhn, A.; Bonsmann, G.; Anders, H.J.; Herzer, P.; Tenbrock, K.; Schneider, M. The Diagnosis and Treatment of Systemic Lupus Erythematosus. Dtsch. Arztebl. Int. 2015, 112, 423–432. [Google Scholar] [CrossRef]
- Chock, Y.P.; Moulinet, T.; Dufrost, V.; Erkan, D.; Wahl, D.; Zuily, S. Antiphospholipid antibodies and the risk of thrombocytopenia in patients with systemic lupus erythematosus: A systematic review and meta-analysis. Autoimmun. Rev. 2019, 18, 102395. [Google Scholar] [CrossRef]
- Alexandre de Assis, I.S.; Luvizutto, G.J.; Bruno, A.C.M.; Sande de Souza, L.A.P. The Proprioceptive Neuromuscular Facilitation Concept in Parkinson Disease: A Systematic Review and Meta-Analysis. J. Chiropr. Med. 2020, 19, 181–187. [Google Scholar] [CrossRef]
- Tedla, J.S.; Sangadala, D.R. Proprioceptive neuromuscular facilitation techniques in adhesive capsulitis: A systematic review and meta-analysis. J. Musculoskelet. Neuronal Interact. 2019, 19, 482–491. [Google Scholar]
- González-Ravé, J.M.; Sánchez-Gómez, A.; Santos-García, D.J. Efficacy of two different stretch training programs (passive vs. proprioceptive neuromuscular facilitation) on shoulder and hip range of motion in older people. J. Strength. Cond. Res. 2012, 26, 1045–1051. [Google Scholar] [CrossRef]
- Gao, B.; Li, L.; Shen, P.; Zhou, Z.; Xu, P.; Sun, W.; Zhang, C.; Song, Q.; Blasco, J.M. Effects of proprioceptive neuromuscular facilitation stretching in relieving pain and balancing knee loading during stepping over obstacles among older adults with knee osteoarthritis: A randomized controlled trial. PLoS ONE 2023, 18, e0280941. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, B.; Sugumar, K.; Varacallo, M. Myofascial Pain. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Ajimsha, M.S.; Al-Mudahka, N.R.; Al-Madzhar, J.A. Effectiveness of myofascial release: Systematic review of randomized controlled trials. J. Bodyw. Mov. Ther. 2015, 19, 102–112. [Google Scholar] [CrossRef]
- Ball, T.M. Structural integration-based fascial release efficacy in systemic lupus erythematosus (SLE): Two case studies. J. Bodyw. Mov. Ther. 2011, 15, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Hopewell, S.; Chan, A.W.; Collins, G.S.; Hróbjartsson, A.; Moher, D.; Schulz, K.F.; Tunn, R.; Aggarwal, R.; Berkwits, M.; Berlin, J.A.; et al. CONSORT 2025 statement: Updated guideline for reporting randomized trials. Nat. Med. 2025, 31, 1776–1783. [Google Scholar] [CrossRef]
- Pilat, A. Inducción MiofascialTM. Un Abordaje Anatómico al Tratamiento de la Disfunción Fascial. Parte superior del cuerpo. Ediciones J. 2023, 1, 487. [Google Scholar]
- Meroño-Gallut, J.; Cuesta-Barriuso, R. Design of a Myofascial Therapy Protocol for the Treatment of Hemophilic Arthropathy of the Knee and Ankle. Altern. Complement. Ther. 2016, 22, 148–152. [Google Scholar] [CrossRef]
- Surburg, P.R.; Schrader, J.W. Proprioceptive neuromuscular facilitation techniques in sports medicine: A reassessment. J. Athl. Train. 1997, 32, 34–39. [Google Scholar]
- Areeudomwong, P.; Buttagat, V. Proprioceptive neuromuscular facilitation training improves pain-related and balance outcomes in working-age patients with chronic low back pain: A randomized controlled trial. Braz. J. Phys. Ther. 2019, 23, 428–436. [Google Scholar] [CrossRef]
- Davis, C.M. (Ed.) Complementary Therapies in Rehabilitation: Evidence for Efficacy in Therapy, Prevention, and Wellness, 3rd ed.; SLACK: Thorofare, NJ, USA, 2009. [Google Scholar]
- Hardy, L. Improving Active Range of Hip Flexion. Res. Q. Exerc. Sport. 1985, 56, 111–114. [Google Scholar] [CrossRef]
- Dworkin, R.H.; Turk, D.C.; Wyrwich, K.W.; Beaton, D.; Cleeland, C.S.; Farrar, J.T.; Haythornthwaite, J.A.; Jensen, M.P.; Kerns, R.D.; Ader, D.N.; et al. Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. J. Pain 2008, 9, 105–121. [Google Scholar] [CrossRef]
- Yuksel, E.; Kalkan, S.; Cekmece, S.; Unver, B.; Karatosun, V. Assessing Minimal Detectable Changes and Test-Retest Reliability of the Timed Up and Go Test and the 2-Minute Walk Test in Patients With Total Knee Arthroplasty. J. Arthroplast. 2017, 32, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, X.; Huang, S.; Wang, Y.; Lin, W.; Zhou, R.; Zou, H.; Srinivasan, M. Two-minute walk test: Reference equations for healthy adults in China. PLoS ONE 2018, 13, e0201988. [Google Scholar] [CrossRef] [PubMed]
- Karle, V.; Hartung, V.; Ivanovska, K.; Mäurer, M.; Flachenecker, P.; Pfeifer, K.; Tallner, A. The Two-Minute Walk Test in Persons with Multiple Sclerosis: Correlations of Cadence with Free-Living Walking Do Not Support Ecological Validity. Int. J. Environ. Res. Public Health 2020, 17, 9044. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.; Dobson, F.; Hinman, R. Measures of physical performance assessments: Self-Paced Walk Test (SPWT), Stair Climb Test (SCT), Six-Minute Walk Test (6MWT), Chair Stand Test (CST), Timed Up & Go (TUG), Sock Test, Lift and Carry Test (LCT), and Car Task. Arthritis Care Res. 2011, 63, S350–S370. [Google Scholar]
- Browne, W.; Nair, B.K.R. The Timed Up and Go test. Med. J. Aust. 2019, 210, 13–14.e1. [Google Scholar] [CrossRef]
- Hofheinz, M.; Schusterschitz, C. Dual task interference in estimating the risk of falls and measuring change: A comparative, psychometric study of four measurements. Clin. Rehabil. 2010, 24, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Piva, S.R.; Fitzgerald, G.K.; Irrgang, J.J.; Bouzubar, F.; Starz, T.W. Get up and go test in patients with knee osteoarthritis. Arch. Phys. Med. Rehabil. 2004, 85, 284–289. [Google Scholar] [CrossRef]
- Michielsen, H.J.; De Vries, J.; Van Heck, G.L. Psychometric qualities of a brief self-rated fatigue measure: The Fatigue Assessment Scale. J. Psychosom. Res. 2003, 54, 345–352. [Google Scholar] [CrossRef]
- Cano-Climent, A.; Oliver-Roig, A.; Cabrero-García, J.; de Vries, J.; Richart-Martínez, M. The Spanish version of the Fatigue Assessment Scale: Reliability and validity assessment in postpartum women. PeerJ 2017, 5, e3832. [Google Scholar] [CrossRef]
- Jones, B.; Kenward, M.G. Design and Analysis of Cross-Over Trials, 3rd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014. [Google Scholar]
- Farrar, J.T.; Young, J.P., Jr.; LaMoreaux, L.; Werth, J.L.; Poole, M.R. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 2001, 94, 149–158. [Google Scholar] [CrossRef]
- de Kleijn, W.P.; De Vries, J.; Wijnen, P.A.; Drent, M. Minimal (clinically) important differences for the Fatigue Assessment Scale in sarcoidosis. Respir. Med. 2011, 105, 1388–1395. [Google Scholar] [CrossRef]
- Di Franco, M.; Guzzo, M.P.; Spinelli, F.R.; Atzeni, F.; Sarzi-Puttini, P.; Conti, F.; Iannuccelli, C. Pain and systemic lupus erythematosus. Reumatismo 2014, 66, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.T.; Medsger, T.A.; Betts, S.J. Commentary on myofascial release therapy in systemic lupus erythematosus and scleroderma. J. Bodyw. Mov. Ther. 2012, 16, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Klingler, W.; Velders, M.; Hoppe, K.; Pedro, M.; Schleip, R. Clinical relevance of fascial tissue and dysfunctions. Curr. Pain Headache Rep. 2014, 18, 439. [Google Scholar] [CrossRef]
- Khan, Z.K.; Ahmed, S.I.; Baig, A.A.M.; Farooqui, W.A. Effect of post-isometric relaxation versus myofascial release therapy on pain, functional disability, rom and qol in the management of non-specific neck pain: A randomized controlled trial. BMC Musculoskelet. Disord. 2022, 23, 567. [Google Scholar] [CrossRef]
- Ayán, C.; Martín, V. Systemic lupus erythematosus and exercise. Lupus 2007, 16, 5–9. [Google Scholar] [CrossRef]
- Schroeder, A.N.; Best, T.M. Is self-myofascial release an effective preexercise and recovery strategy? A literature review. Curr. Sports Med. Rep. 2015, 14, 200–208. [Google Scholar] [CrossRef]
- Pinto, B.; Dhooria, A.; Grover, S.; Jolly, M.; Raj, J.M.; Sharma, A. Fatigue and its correlates in Indian patients with systemic lupus erythematosus. Clin. Rheumatol. 2021, 40, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Tarazi, M.; Gaffney, R.G.; Pearson, D.; Kushner, C.J.; Werth, V.P. Fatigue in systemic lupus erythematosus and other autoimmune skin diseases. Br. J. Dermatol. 2019, 180, 1468–1472. [Google Scholar] [CrossRef]
- Kruse, A.; Habersack, A.; Jaspers, R.T.; Schrapf, N.; Weide, G.; Svehlik, M.; Tilp, M. Acute Effects of Static and Proprioceptive Neuromuscular Facilitation Stretching of the Plantar Flexors on Ankle Range of Motion and Muscle-Tendon Behavior in Children with Spastic Cerebral Palsy-A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 11599. [Google Scholar] [CrossRef]
- Ramsey-Goldman, R.; Schilling, E.M.; Dunlop, D.; Langman, C.; Greenland, P.; Thomas, R.J.; Chang, R.W. A pilot study on the effects of exercise in patients with systemic lupus erythematosus. Arthritis Care Res. 2000, 13, 262–269. [Google Scholar] [CrossRef] [PubMed]
- O’Dwyer, T.; Durcan, L.; Wilson, F. Exercise and physical activity in systemic lupus erythematosus: A systematic review with meta-analyses. Semin. Arthritis Rheum. 2017, 47, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Sieczkowska, S.M.; Coimbra, D.R.; Vilarino, G.T.; Andrade, A. Effects of resistance training on the health-related quality of life of patients with rheumatic diseases: Systematic review with meta-analysis and meta-regression. Semin. Arthritis Rheum. 2020, 50, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Druce, K.L.; McBeth, J. Central sensitization predicts greater fatigue independently of musculoskeletal pain. Rheumatology 2019, 58, 1923–1927. [Google Scholar] [CrossRef]
- Neill, J.; Belan, I.; Ried, K. Effectiveness of non-pharmacological interventions for fatigue in adults with multiple sclerosis, rheumatoid arthritis, or systemic lupus erythematosus: A systematic review. J. Adv. Nurs. 2006, 56, 617–635. [Google Scholar] [CrossRef]
Variables | Total (n = 17) | A-B Sequence (n = 9) | B-A Sequence (n = 8) |
---|---|---|---|
Age (years) | 50.76 (13.18) | 45.56 (11.85) | 56.63 (12.76) |
Weight (kg) | 78.26 (19.31) | 79.33 (25.14) | 77.06 (11.24) |
Height (m) | 1.65 (0.07) | 1.64 (0.08) | 1.66 (0.05) |
Body mass index (kg/m2) | 28.38 (5.85) | 29.05 (7.74) | 27.63 (2.90) |
Outbreaks in the previous 6 months (number) | 0.41 (0.71) | 0.22 (0.44) | 0.62 (0.91) |
n (%) | |||
Gender Female | 14 (82.4) | 8 (88.9) | 6 (75.0) |
Male | 3 (17.6) | 1 (11.1) | 2 (25.0) |
History of illness Yes | 3 (17.6) | 2 (22.2) | 1 (12.5) |
No | 14 (82.4) | 7 (77.8) | 7 (87.5) |
Variable | Condition (Sequence) | T0 | T1 | T2 |
---|---|---|---|---|
Ankle pain (0–10) | Intervention phase (sequence A-B) | 4.80 [5.75] | 1.80 [2.25] | 1.40 [3.10] |
Intervention phase (sequence B-A) | 5.00 [3.30] | 1.55 [1.92] | 2.05 [4.10] | |
Control phase (sequence A-B) | 3.00 [4.65] | 4.20 [5.80] | 2.00 [5.85] | |
Control phase (sequence B-A) | 5.95 [5.30] | 5.85 [3.37] | 6.65 [3.32] | |
Knee pain (0–10) | Intervention phase (sequence A-B) | 4.30 [3.65] | 1.80 [2.55] | 1.40 [3.80] |
Intervention phase (sequence B-A) | 7.20 [2.42] | 1.60 [3.42] | 1.90 [3.32] | |
Control phase (sequence A-B) | 3.70 [3.55] | 2.90 [3.45] | 3.70 [5.15] | |
Control phase (sequence B-A) | 8.15 [5.37] | 7.05 [2.92] | 6.35 [3.72] | |
Functional capacity of lower limbs (m) | Intervention phase (sequence A-B) | 151.70 [32.18] | 156.63 [27.98] | 164.30 [32.15] |
Intervention phase (sequence B-A) | 149.28 [46.57] | 154.35 [47.88] | 156.96 [43.97] | |
Control phase (sequence A-B) | 159.40 [38.51] | 147.15 [44.58] | 159.64 [44.95] | |
Control phase (sequence B-A) | 145.62 [50.89] | 148.49 [43.76] | 147.00 [52.25] | |
Physical function (seg) | Intervention phase (sequence A-B) | 7.02 [2.15] | 6.15 [1.28] | 5.81 [1.97] |
Intervention phase (sequence B-A) | 7.24 [2.43] | 6.62 [1.89] | 6.51 [1.67] | |
Control phase (sequence A-B) | 6.11 [1.92] | 6.53 [1.39] | 6.07 [2.02] | |
Control phase (sequence B-A) | 6.93 [2.32] | 7.26 [2.61] | 7.40 [2.70] | |
Fatigue (10–50) | Intervention phase (sequence A-B) | 33.00 [6.50] | 26.00 [10.50] | 24.00 [10.00] |
Intervention phase (sequence B-A) | 31.00 [4.75] | 24.50 [6.50] | 24.00 [7.00] | |
Control phase (sequence A-B) | 26.00 [11.50] | 28.00 [7.00] | 33.00 [14.00] | |
Control phase (sequence B-A) | 32.00 [5.00] | 32.50 [3.25] | 33.00 [4.25] | |
Fatigue-mental component (10–50) | Intervention phase (sequence A-B) | 15.00 [4.00] | 11.00 [4.00] | 12.00 [4.50] |
Intervention phase (sequence B-A) | 13.50 [1.75] | 11.00 [3.50] | 11.00 [2.75] | |
Control phase (sequence A-B) | 13.00 [4.00] | 12.00 [4.50] | 14.00 [6.50] | |
Control phase (sequence B-A) | 14.50 [2.75] | 14.50 [2.00] | 15.50 [2.75] | |
Fatigue-physical component (10–50) | Intervention phase (sequence A-B) | 18.00 [4.00] | 14.00 [7.00] | 14.00 [6.00] |
Intervention phase (sequence B-A) | 17.00 [3.50] | 13.00 [2.00] | 12.50 [4.75] | |
Control phase (sequence A-B) | 15.00 [6.00] | 16.00 [5.50] | 18.00 [7.50] | |
Control phase (sequence B-A) | 17.50 [4.25] | 28.00 [2.50] | 17.50 [2.00] |
Variables | Sequence Effect | Period Effect | Carryover Effect | ||
---|---|---|---|---|---|
MD [95%CI] | t | M [95%CI] | t | MD [95%CI] | |
Ankle pain | 3.14 [0.91; 5.37] * | −0.10 | −0.11 [−2.40; 2.18] | 1.79 | 2.33 [−0.44; 5.11] |
Knee pain | 3.59 [1.76; 5.41] * | 0.65 | 0.71 [−1.61; 3.05] | 3.48 | 3.07 [1.11; 5.03] * |
Functional capacity of lower limbs | −8.41 [−13.39; −3.43] * | 1.23 | 3.47 [−2.50; 9.44] | −1.33 | −14.09 [−36.62; 8.43] |
Physical function | 1.66 [1.09; 2.24] ** | 0.06 | 0.02 [−0.76; 0.80] | 2.43 | 1.50 [0.18; 2.81] * |
Fatigue | 6.37 [3.23; 9.51] * | −0.51 | −1.11 [−5.75; 3.52] | 1.50 | 3.31 [−1.46; 8.09] |
Fatigue—mental component | 2.63 [1.02; 4.25] * | −1.10 | −1.0 [−2.92; 0.92] | 0.88 | 0.97 [−1.37; 3.32] |
Fatigue—physical component | 3.73 [1.13; 6.33] * | −0.08 | −0.11 [−3.22; 2.98] | 1.78 | 2.34 [−0.51; 5.21] |
Variables | Time Effect | Sequence Effect | Time*Sequence Interaction | |||
---|---|---|---|---|---|---|
F | ES | F | ES | F | ES | |
Ankle pain | 4.59 * | 0.23 | 7.24 * | 0.32 | 29.12 ** | 0.66 |
Knee pain | 7.04 * | 0.32 | 1.41 | 0.09 | 37.41 ** | 0.71 |
Functional capacity of lower limbs | 6.15 * | 0.29 | 0.96 | 0.06 | 16.26 ** | 0.52 |
Physical function | 9.98 ** | 0.40 | 27.17 ** | 0.64 | 28.84 ** | 0.65 |
Fatigue | 15.86 ** | 0.51 | 1.69 | 0.10 | 57.82 ** | 0.79 |
Fatigue—mental component | 8.22 * | 0.35 | 0.003 | 0.00 | 23.59 ** | 0.61 |
Fatigue—physical component | 13.76 ** | 0.47 | 3.10 | 0.17 | 28.43 ** | 0.65 |
Variables | MD (SE) | 95%CI |
---|---|---|
Ankle pain | −2.70 (0.61) | −3.98; −1.41 |
Knee pain | −3.11 (0.69) | −4.58; −1.63 |
Functional capacity of lower limbs | 5.76 (1.46) | 2.67; 8.86 |
Physical function | −0.69 (0.19) | −1.09; −0.28 |
Fatigue | −5.41 (0.95) | −7.44; −3.37 |
Fatigue—mental component | −2.00 (0.45) | −2.96; −1.03 |
Fatigue—physical component | −3.41 (0.64) | −4.78; −2.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Quiles, J.-M.; Cuesta-Barriuso, R.; Pérez-Llanes, R. Efficacy of Myofascial Techniques and Proprioceptive Neuromuscular Facilitation in the Treatment of Patients with Systemic Lupus Erythematosus—Randomized Crossover Clinical Study. Healthcare 2025, 13, 1625. https://doi.org/10.3390/healthcare13131625
Torres-Quiles J-M, Cuesta-Barriuso R, Pérez-Llanes R. Efficacy of Myofascial Techniques and Proprioceptive Neuromuscular Facilitation in the Treatment of Patients with Systemic Lupus Erythematosus—Randomized Crossover Clinical Study. Healthcare. 2025; 13(13):1625. https://doi.org/10.3390/healthcare13131625
Chicago/Turabian StyleTorres-Quiles, José-María, Rubén Cuesta-Barriuso, and Raúl Pérez-Llanes. 2025. "Efficacy of Myofascial Techniques and Proprioceptive Neuromuscular Facilitation in the Treatment of Patients with Systemic Lupus Erythematosus—Randomized Crossover Clinical Study" Healthcare 13, no. 13: 1625. https://doi.org/10.3390/healthcare13131625
APA StyleTorres-Quiles, J.-M., Cuesta-Barriuso, R., & Pérez-Llanes, R. (2025). Efficacy of Myofascial Techniques and Proprioceptive Neuromuscular Facilitation in the Treatment of Patients with Systemic Lupus Erythematosus—Randomized Crossover Clinical Study. Healthcare, 13(13), 1625. https://doi.org/10.3390/healthcare13131625