Pathways Linking ICT Use to Chronic Disease Self-Management Among Older Adults with Comorbidities in Shanghai, China
Abstract
1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Measures
2.2.1. Health Literacy
2.2.2. Social Support
2.2.3. Self-Efficacy
2.2.4. ICT Use
2.2.5. Chronic Disease Self-Management
2.2.6. Covariables
2.3. Statistical Analyses
3. Results
3.1. Participant Characteristics and Study Variables
3.2. Correlations Among Study Variables
3.3. Parallel Mediation Model
3.4. Serial Mediation Model
4. Discussion
4.1. Implications and Limitations
4.2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ICT | Information and communication technology |
References
- Zaman, S.B.; Hossain, N.; Ahammed, S.; Ahmed, Z. Contexts and Opportunities of e-Health Technology in Medical Care. J. Med. Res. Innov. 2017, 1, AV1–AV4. [Google Scholar] [CrossRef]
- Carvalho, S.A.; Trindade, I.A.; Duarte, J.; Menezes, P.; Patrão, B.; Nogueira, M.R.; Guiomar, R.; Lapa, T.; Pinto-Gouveia, J.; Castilho, P. Efficacy of an ACT and Compassion-Based eHealth Program for Self-Management of Chronic Pain (iACTwithPain): Study Protocol for a Randomized Controlled Trial. Front. Psychol. 2021, 12, 630766. [Google Scholar] [CrossRef] [PubMed]
- Free, C.; Phillips, G.; Galli, L.; Watson, L.; Felix, L.; Edwards, P.; Patel, V.; Haines, A. The Effectiveness of Mobile-Health Technology-Based Health Behaviour Change or Disease Management Interventions for Health Care Consumers: A Systematic Review. PLoS Med. 2013, 10, e1001362. [Google Scholar] [CrossRef]
- Kondylakis, H.; Bucur, A.; Crico, C.; Dong, F.; Graf, N.; Hoffman, S.; Koumakis, L.; Manenti, A.; Marias, K.; Mazzocco, K.; et al. Patient Empowerment for Cancer Patients through a Novel ICT Infrastructure. J. Biomed. Inform. 2020, 101, 103342. [Google Scholar] [CrossRef]
- Shibuta, T.; Waki, K.; Miyake, K.; Igarashi, A.; Yamamoto-Mitani, N.; Sankoda, A.; Takeuchi, Y.; Sumitani, M.; Yamauchi, T.; Nangaku, M.; et al. Preliminary Efficacy, Feasibility, and Perceived Usefulness of a Smartphone-Based Self-Management System with Personalized Goal Setting and Feedback to Increase Step Count among Workers with High Blood Pressure: Before-and-After Study. JMIR Cardio 2023, 7, e43940. [Google Scholar] [CrossRef]
- Bellei, E.A.; Biduski, D.; Cechetti, N.P.; De Marchi, A.C.B. Diabetes Mellitus m-Health Applications: A Systematic Review of Features and Fundamentals. Telemed. J. E Health 2018, 24, 839–852. [Google Scholar] [CrossRef] [PubMed]
- McMillan, K.A.; Kirk, A.; Hewitt, A.; MacRury, S. A Systematic and Integrated Review of Mobile-Based Technology to Promote Active Lifestyles in People with Type 2 Diabetes. J. Diabetes Sci. Technol. 2017, 11, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Kang, E.; Park, S.M.; Lee, K.; Lee, E.B.; Yim, J.J.; Lee, J.; Kim, S.; Rhee, Y.E.; Yun, Y.H. Efficacy of Health Coaching and an Electronic Health Management Program: Randomized Controlled Trial. J. Gen. Intern. Med. 2021, 36, 2692–2699. [Google Scholar] [CrossRef]
- Wong, A.K.C.; Wong, F.K.Y.; Wong, M.C.S.; Chow, K.K.S.; Kwan, D.K.S.; Lau, D.Y.S. A Community-Based Health-Social Partnership Program for Community-Dwelling Older Adults: A Hybrid Effectiveness-Implementation Pilot Study. BMC Geriatr. 2022, 22, 789. [Google Scholar] [CrossRef]
- Nicholson, K.; Almirall, J.; Fortin, M. The Measurement of Multi-Morbidity. Health Psychol. 2019, 38, 783–790. [Google Scholar] [CrossRef]
- Tugwell, P.; Knottnerus, J.A. Multimorbidity and Comorbidity are Now Separate MESH Headings. J. Clin. Epidemiol. 2019, 105, vi–viii. [Google Scholar] [CrossRef] [PubMed]
- Beran, D.; Perel, P.; Miranda, J.J. Forty Years since Alma-Ata: Do We Need a New Model for Noncommunicable Diseases? J. Glob. Health 2019, 9, 010316. [Google Scholar] [CrossRef]
- Barnett, K.; Mercer, S.W.; Norbury, M.; Watt, G.; Wyke, S.; Guthrie, B. Epidemiology of Multimorbidity and Implications for Health Care, Research, and Medical Education: A Cross-Sectional Study. Lancet 2012, 380, 37–43. [Google Scholar] [CrossRef]
- Wagner, C.; Carmeli, C.; Chiolero, A.; Cullati, S. Life Course Socio-Economic Conditions and Multimorbidity in Old Age—A Scoping Review. Age Res. Rev. 2022, 78, 101630. [Google Scholar] [CrossRef]
- Skou, S.T.; Mair, F.S.; Fortin, M.; Guthrie, B.; Nunes, B.P.; Miranda, J.J.; Boyd, C.M.; Pati, S.; Mtenga, S.; Smith, S.M. Multimorbidity. Nat. Rev. Dis. Primers 2022, 8, 48. [Google Scholar] [CrossRef]
- Chen, X.; Giles, J.; Yao, Y.; Yip, W.; Meng, Q.; Berkman, L.; Chen, H.; Chen, X.; Feng, J.; Feng, Z.; et al. The Path to Healthy Ageing in China: A Peking University-Lancet Commission. Lancet 2022, 400, 1967–2006. [Google Scholar] [CrossRef] [PubMed]
- Yang Zhi, G.J.; Dingxi, B.; Ruirui, L. Qualitative Research on the Treatment Burden Experience of Elderly Patients with Chronic diseases. Chin. Gen. Pract. 2022, 25, 2336–2341. [Google Scholar]
- Kawai, Y.; Waki, K.; Yamaguchi, S.; Shibuta, T.; Miyake, K.; Kimura, S.; Toyooka, T.; Nakajima, R.; Uneda, K.; Wakui, H.; et al. The Use of Information and Communication Technology-Based Self-management System DialBeticsLite in Treating Abdominal Obesity in Japanese Office Workers: Prospective Single-Arm Pilot Intervention Study. JMIR Diabetes 2022, 7, e40366. [Google Scholar] [CrossRef]
- Waki, K.; Fujita, H.; Uchimura, Y.; Omae, K.; Aramaki, E.; Kato, S.; Lee, H.; Kobayashi, H.; Kadowaki, T.; Ohe, K. DialBetics: A Novel Smartphone-based Self-management Support System for Type 2 Diabetes Patients. J. Diabetes Sci. Technol. 2014, 8, 209–215. [Google Scholar] [CrossRef]
- Dinh, T.T.H.; Bonner, A. Exploring the Relationships between Health Literacy, Social Support, Self-Efficacy and Self-Management in Adults with Multiple Chronic Diseases. BMC Health Serv. Res. 2023, 23, 923. [Google Scholar] [CrossRef]
- Guo, X.M.; Zhai, X.; Hou, B.R. Adequacy of Health Literacy and its Effect on Diabetes Self-Management: A Meta-Analysis. Aust. J. Prim. Health 2020, 26, 458–465. [Google Scholar] [CrossRef]
- Stømer, U.E.; Wahl, A.K.; Gøransson, L.G.; Urstad, K.H. Health Literacy in Kidney Disease: Associations with Quality of Life and Adherence. J. Ren. Care 2020, 46, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Paasche-Orlow, M.K.; Wolf, M.S. The Causal Pathways Linking Health Literacy to Health Outcomes. Am. J. Health Behav. 2007, 31, S19–S26. [Google Scholar] [CrossRef] [PubMed]
- Nutbeam, D. Health Promotion Glossary. Geneva: World Health Organization. 1998. WHO/HPR/HEP/98.1. Available online: http://who.int/publications/i/item/WHO-HPR-HEP-98.1. (accessed on 12 March 2024).
- Garnett, A.; Ploeg, J.; Markle-Reid, M.; Strachan, P.H. Self-Management of Multiple Chronic Conditions by Community-Dwelling Older Adults: A Concept Analysis. SAGE Open Nurs. 2018, 4, 2377960817752471. [Google Scholar] [CrossRef] [PubMed]
- Harandi, T.F.; Taghinasab, M.M.; Nayeri, T.D. The Correlation of Social Support with Mental Health: A Meta-Analysis. Electron. Physician 2017, 9, 5212–5222. [Google Scholar] [CrossRef] [PubMed]
- Sousa, H.; Ribeiro, O.; Paúl, C.; Costa, E.; Miranda, V.; Ribeiro, F.; Figueiredo, D. Social Support and Treatment Adherence in Patients with End-Stage Renal Disease: A Systematic Review. Semin. Dial. 2019, 32, 562–574. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chang, L.-C.; Liu, C.-Y.; Ho, Y.-F.; Weng, S.-C.; Tsai, T.-I. The Roles of Social Support and Health Literacy in Self-Management among Patients with Chronic Kidney Disease. J. Nurs. Scholarsh. 2018, 50, 265–275. [Google Scholar] [CrossRef]
- Bandura, A. Self-Efficacy: Toward a Unifying Theory of Behavioral Change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef]
- Bandura, A. Health Promotion by Social Cognitive Means. Health Educ. Behav. 2004, 31, 143–164. [Google Scholar] [CrossRef]
- Tan, F.C.J.H.; Oka, P.; Dambha-Miller, H.; Tan, N.C. The Association between Self-Efficacy and Self-Care in Essential Hypertension: A Systematic Review. BMC Fam. Pract. 2021, 22, 44. [Google Scholar] [CrossRef]
- Yao, J.; Wang, H.; Yin, X.; Yin, J.; Guo, X.; Sun, Q. The Association between Self-Efficacy and Self-Management Behaviors among Chinese Patients with Type 2 Diabetes. PLoS ONE 2019, 14, e0224869. [Google Scholar] [CrossRef]
- Kong, L.N.; Zhu, W.F.; Li, L.; Lei, Q.S.; Wang, T.; Li, Y.L. Self-Management Behaviors in Adults with Chronic Hepatitis B: A Structural Equation Model. Int. J. Nurs. Stud. 2021, 116, 103382. [Google Scholar] [CrossRef] [PubMed]
- Milazi, M.; Douglas, C.; Bonner, A. A Bundled Phosphate Control Intervention (4Ds) for Adults with End-Stage Kidney Disease Receiving Haemodialysis: A Cluster Randomized Controlled Trial. J. Adv. Nurs. 2021, 77, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Bandura, A. Social Learning Theory; Prentice Hall: Hoboken, NJ, USA, 1977. [Google Scholar]
- Dillman, D.A.; Smyth, J.D.; Christian, L.M. Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Duong, T.V.; Sørensen, K.; Pelikan, J.M.; Van den Broucke, S.; Lin, I.F.; Lin, Y.C.; Huang, H.L.; Chang, P.W. Health-Related Behaviors Moderate the Association between Age and Self-Reported Health Literacy among Taiwanese Women. Women Health 2018, 58, 632–646. [Google Scholar] [CrossRef] [PubMed]
- Emiral, G.; Aygar, H.; Atalay, B.; Balci, S.; Dağtekin, G.; Arslantas, D.; Ünsal, A. Health Literacy Scale-European Union-Q16: A Validity and Reliability Study in Turkey. Int. Res. J. Med. Sci. 2018, 6, 1–7. [Google Scholar]
- Glasgow, R.E.; Strycker, L.A.; Toobert, D.J.; Eakin, E. A Social–Ecologic Approach to Assessing Support for Disease Self-Management: The Chronic Illness Resources Survey. J. Behav. Med. 2000, 23, 559–583. [Google Scholar] [CrossRef]
- Lorig, K.; Stewart, A.; Ritter, P.; Gonzalez, V.; Laurent, D.; Lynch, J. Outcome Measures for Health Education and Other Health Care Interventions; Sage: Newbury Park, CA, USA, 1996. [Google Scholar]
- Hu, H.; Li, G.; Arao, T. Validation of a Chinese Version of the Self-Efficacy for Managing Chronic Disease 6-Item Scale in Patients with Hypertension in Primary Care. Int. Sch. Res. Notices 2013, 2013, 298986. [Google Scholar] [CrossRef]
- Francisco, L.; Ioannis, M.; Fabienne, A. Strategic Intelligence Monitor on Personal Health Systems, Phase 2—Citizens and ICT for Health in 14 European Countries: Results from an Online Panel. Publications Office of the European Union. Available online: https://coilink.org/20.500.12592/f2kmg7 (accessed on 12 March 2023).
- Battersby, M.W.; Ask, A.; Reece, M.M.; Markwick, M.J.; Collins, J.; Lawn, S. The Partners in Health Scale: The Development and Psychometric Properties of a Generic Assessment Scale for Chronic Condition Self-Management. Aust. J. Prim. Health 2003, 9, 41–52. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. J. Educ. Meas. 2013, 51, 335–337. [Google Scholar]
- Kline, R.B. Principles and Practices of Structural Equation Modeling, 2nd ed.; The Guilford Press: New York, NY, USA, 2005. [Google Scholar]
- Doll, W.J.; Xia, W.; Torkzadeh, G. A Confirmatory Factor Analysis of the End-User Computing Satisfaction Instrument. MIS Q. 1994, 18, 453–461. [Google Scholar] [CrossRef]
- MacCallum, R.C.; Hong, S. Power Analysis in Covariance Structure Modeling Using GFI and AGFI. Multivar. Behav. Res. 1997, 33, 193–210. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives. Struct. Equ. Model. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Lee, E.H.; Lee, Y.W.; Chae, D.; Lee, K.W.; Hong, S.; Kim, S.H.; Kim, H.S. Pathways Linking Health Literacy to Self-Management in People with Type 2 Diabetes. Healthcare 2021, 9, 1748. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, H.; Tu, N.; Liu, D. The Relationship Between Health Literacy, Social Support, Depression, and Frailty Among Community-Dwelling Older Patients with Hypertension and Diabetes in China. Front. Public Health 2020, 8, 280. [Google Scholar] [CrossRef]
- Nakamura, J.; Csikszentmihalyi, M. The Concept of Flow. In Handbook of Positive Psychology; Snyder, C.R., Lopez, S.J., Eds.; Oxford University Press: New York, NY, USA, 2002; pp. 89–105. [Google Scholar]
- Li, J.; Zhang, J.; Wang, Y.; Zhang, H.; Ma, Y. Does Social Support Improve Self-Management among Rural Hypertensive Patients? An Empirical Analysis Based on Generalized Propensity Score Matching. Front. Public Health 2025, 12, 1445946. [Google Scholar] [CrossRef]
- Ma, Y.; Li, M.; Li, J. Correlation Analysis of Self-Management and Social Support for Hypertensive Patients in Rural Areas of Shanxi. Chin. Nurs. Res. 2022, 36, 3845–3849. [Google Scholar]
- Baron, R.M.; Kenny, D.A. The Moderator–Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Sobel, M.E. Asymptotic Confidence Intervals for Indirect Effects in Structural Equation Models. In Sociological Methodology; Leinhardt, S., Ed.; Jossey-Bass: San Francisco, CA, USA, 1982; pp. 290–312. [Google Scholar]
- Hayes, A.F.; Montoya, A.K.; Rockwood, N.J. The Analysis of Mechanisms and Their Contingencies: PROCESS versus Structural Equation Modeling. Aust. Market J. 2017, 25, 76–81. [Google Scholar] [CrossRef]
- Alberti, P.M.; Lantz, P.M.; Wilkins, C.H. Equitable Pandemic Preparedness and Rapid Response: Lessons from COVID-19 for Pandemic Health Equity. J. Health Polit. Policy Law. 2020, 45, 921–935. [Google Scholar] [CrossRef]
- Schmaderer, M.; Miller, J.N.; Mollard, E. Experiences of Using a Self-Management Mobile App among Individuals with Heart Failure: Qualitative Study. JMIR Nurs. 2021, 4, e28139. [Google Scholar] [CrossRef]
Variable | n or M | % or SD |
---|---|---|
Age (range: 60–93) | 70.80 | 6.30 |
Gender | ||
Male | 262 | 50.4 |
Female | 258 | 49.6 |
Marital status | ||
Married | 414 | 79.6 |
Never married, divorced, bereaved | 106 | 20.4 |
Income | ||
>2590 | 492 | 94.6 |
≤2590 | 28 | 5.6 |
Education | ||
<High school | 218 | 41.9 |
High school | 198 | 38.1 |
>High school | 104 | 20.0 |
Living status | ||
Alone | 57 | 11.0 |
With others | 463 | 89.0 |
Activities of daily living | 80.77 | 15.32 |
Number of chronic diseases | 3.71 | 1.54 |
Depression symptom | 3.31 | 3.84 |
Self-rated health (range: 1–5) | 3.17 | 0.83 |
ICT use | −0.01 | 1.44 |
Health literacy | 48.63 | 6.95 |
Social support | 23.88 | 7.55 |
Self-efficacy | 39.02 | 12.32 |
Self-management (range: 0–88) | 68.14 | 12.81 |
Variable | ICT Use | Health Literacy | Social Support | Self-Efficacy |
---|---|---|---|---|
Health literacy | 0.385 * | |||
Social support | 0.279 * | 0.413 * | ||
Self-efficacy | 0.223 * | 0.419 * | 0.354 * | |
Self-management | 0.363 * | 0.527 * | 0.418 * | 0.514 * |
Path | b | 95% CI |
---|---|---|
ICT use → health literacy → self-management | 0.8543 * | 0.5399, 1.2097 |
ICT use → social support → self-management | 0.2624 * | 0.0978, 0.4808 |
ICT use → self-efficacy → self-management | 0.4932 * | 0.1926, 0.8135 |
Path 1 | b | SE | 95% CI |
---|---|---|---|
Total effect | 2.9413 | 0.3851 | 2.1848, 3.6978 |
Direct effect | 1.3314 | 0.3404 | 0.6629, 2.0002 |
Indirect effects | 1.6099 | 0.2598 | 1.1188, 2.1314 |
Ind1: ICT → HL → SM | 0.8543 | 0.1681 | 0.5422, 1.2022 |
Ind2: ICT → SS → SM | 0.1499 | 0.0734 | 0.0312, 0.3142 |
Ind3: ICT → SE → SM | 0.1824 | 0.1420 | −0.1002, 0.4636 |
Ind4: ICT → HL → SS → SM | 0.1126 | 0.0380 | 0.0465, 0.1955 |
Ind5: ICT → HL → SE → SM | 0.1918 | 0.0599 | 0.0879, 0.3252 |
Ind6: ICT → SS → SE → SM | 0.0680 | 0.0314 | 0.0155, 0.1378 |
Ind7: ICT → HL → SS → SE → SM | 0.0510 | 0.0170 | 0.0236, 0.0904 |
Pairwise Comparisons of Indirect Effects | b | SE | 95% CI |
---|---|---|---|
Ind1–Ind2 | 0.7044 | 0.1918 | 0.3348, 1.0861 |
Ind1–Ind3 | 0.6719 | 0.2202 | 0.2474, 1.1061 |
Ind1–Ind4 | 0.7418 | 0.1689 | 0.4246, 1.0874 |
Ind1–Ind5 | 0.6625 | 0.1593 | 0.3687, 0.9923 |
Ind1–Ind6 | 0.7863 | 0.1716 | 0.4678, 1.1413 |
Ind1–Ind7 | 0.8033 | 0.1643 | 0.4987, 1.1470 |
Ind2–Ind3 | −0.0325 | 0.1640 | −0.3587, 0.2989 |
Ind2–Ind4 | 0.0373 | 0.0686 | −0.0930, 0.1796 |
Ind2–Ind5 | −0.0419 | 0.0975 | −0.2243, 0.1538 |
Ind2–Ind6 | 0.0819 | 0.0628 | −0.0156, 0.2259 |
Ind2–Ind7 | 0.0988 | 0.0793 | −0.0354, 0.2721 |
Ind3–Ind4 | 0.0698 | 0.1475 | −0.2215, 0.3630 |
Ind3–Ind5 | −0.0094 | 0.1588 | −0.3400, 0.3001 |
Ind3–Ind6 | 0.1144 | 0.1457 | −0.1765, 0.4007 |
Ind3–Ind7 | 0.1313 | 0.1416 | −0.1497, 0.4100 |
Ind4–Ind5 | −0.0792 | 0.0698 | −0.2245, 0.0485 |
Ind4–Ind6 | 0.0446 | 0.0540 | −0.0612, 0.1496 |
Ind4–Ind7 | 0.0615 | 0.0398 | −0.0129, 0.1450 |
Ind5–Ind6 | 0.1238 | 0.0659 | 0.0060, 0.2641 |
Ind5–Ind7 | 0.1408 | 0.0589 | 0.0364, 0.2685 |
Ind6–Ind7 | 0.0169 | 0.0302 | −0.0415, 0.0788 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Gong, K.; Bao, Z.; Yin, Y.; Zhao, L.; Chen, Y.-Y. Pathways Linking ICT Use to Chronic Disease Self-Management Among Older Adults with Comorbidities in Shanghai, China. Healthcare 2025, 13, 1626. https://doi.org/10.3390/healthcare13131626
Chen Q, Gong K, Bao Z, Yin Y, Zhao L, Chen Y-Y. Pathways Linking ICT Use to Chronic Disease Self-Management Among Older Adults with Comorbidities in Shanghai, China. Healthcare. 2025; 13(13):1626. https://doi.org/10.3390/healthcare13131626
Chicago/Turabian StyleChen, Qingru, Ke Gong, Zhijun Bao, Yuanfang Yin, Lirong Zhao, and Yan-Yan Chen. 2025. "Pathways Linking ICT Use to Chronic Disease Self-Management Among Older Adults with Comorbidities in Shanghai, China" Healthcare 13, no. 13: 1626. https://doi.org/10.3390/healthcare13131626
APA StyleChen, Q., Gong, K., Bao, Z., Yin, Y., Zhao, L., & Chen, Y.-Y. (2025). Pathways Linking ICT Use to Chronic Disease Self-Management Among Older Adults with Comorbidities in Shanghai, China. Healthcare, 13(13), 1626. https://doi.org/10.3390/healthcare13131626