Assistive Technologies for Individuals with a Disability from a Neurological Condition: A Narrative Review on the Multimodal Integration
Abstract
1. Introduction
2. Materials and Methods
3. Applications and Integration of Assistive Technologies in Neurological Disorders
3.1. Mobility Aids
3.2. Communication Aids
3.3. Cognitive Support Tools
3.4. Sensory Aids
3.5. Brain–Computer Interfaces (BCIs)
3.6. Home and Work Aids
4. Discussion
4.1. Multidimensionality of ATs
4.2. Potential Benefits of Using ATs
4.3. Challenges and Potential Solutions of Implementation of ATs in Patients with Neurological Disorders
4.4. Future Directions of ATs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kouzani, A.Z.; Sillitoe, R.V. Medical Devices in Neurology. In Encyclopedia of Biomedical Engineering; Narayan, R., Ed.; Elsevier: Oxford, UK, 2019; pp. 409–413. ISBN 978-0-12-805144-3. [Google Scholar]
- Lancioni, G.E.; Olivetti Belardinelli, M.; Singh, N.N.; O’Reilly, M.F.; Sigafoos, J.; Alberti, G. Recent Technology-Aided Programs to Support Adaptive Responses, Functional Activities, and Leisure and Communication in People with Significant Disabilities. Front. Neurol. 2019, 10, 643. [Google Scholar] [CrossRef] [PubMed]
- Borsook, D. Neurological Diseases and Pain. Brain 2012, 135, 320–344. [Google Scholar] [CrossRef] [PubMed]
- Karşıdağ, S.; Fırat, Y.E.; Eren, F.; Kabay, S.C.; Terzi, M. Assesment of Quality of Life in Neurological Diseases. Turk. J. Neurol. 2024, 30, 001–009. [Google Scholar] [CrossRef]
- Baby, M.P.; Chacko, S.T.; Seetharaman, B.; Patil, A.K. Burden and Quality of Life among Caregivers of Patients with Parkinson’s Disease. Indian J. Contin. Nurs. Educ. 2021, 22, 47. [Google Scholar] [CrossRef]
- Gao, Z.; Pang, Z.; Chen, Y.; Lei, G.; Zhu, S.; Li, G.; Shen, Y.; Xu, W. Restoring After Central Nervous System Injuries: Neural Mechanisms and Translational Applications of Motor Recovery. Neurosci. Bull. 2022, 38, 1569–1587. [Google Scholar] [CrossRef]
- Rekatsina, M.; Paladini, A.; Piroli, A.; Zis, P.; Pergolizzi, J.V.; Varrassi, G. Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv. Ther. 2020, 37, 113–139. [Google Scholar] [CrossRef]
- LaMarca, A.; Tse, I.; Keysor, J. Rehabilitation Technologies for Chronic Conditions: Will We Sink or Swim? Healthcare 2023, 11, 2751. [Google Scholar] [CrossRef] [PubMed]
- Tomšič, M.; Domajnko, B.; Zajc, M. The Use of Assistive Technologies after Stroke Is Debunking the Myths about the Elderly. Top. Stroke Rehabil. 2018, 25, 28–36. [Google Scholar] [CrossRef]
- Carver, J.; Ganus, A.; Ivey, J.M.; Plummer, T.; Eubank, A. The Impact of Mobility Assistive Technology Devices on Participation for Individuals with Disabilities. Disabil. Rehabil. Assist. Technol. 2016, 11, 468–477. [Google Scholar] [CrossRef]
- Stasolla, F.; Vinci, L.A.; Cusano, M. The Integration of Assistive Technology and Virtual Reality for Assessment and Recovery of Post-Coma Patients with Disorders of Consciousness: A New Hypothesis. Front. Psychol. 2022, 13, 905811. [Google Scholar] [CrossRef]
- Agree, E.M.; Freedman, V.A. A Comparison of Assistive Technology and Personal Care in Alleviating Disability and Unmet Need. Gerontologist 2003, 43, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jiao, L.; Yang, S.; Li, H.; Jiang, X.; Feng, J.; Zou, S.; Xu, Q.; Gu, J.; Wang, X.; et al. Brain–Computer Interfaces: The Innovative Key to Unlocking Neurological Conditions. Int. J. Surg. 2024, 110, 5745–5762. [Google Scholar] [CrossRef]
- Schneider, C.; Nißen, M.; Kowatsch, T.; Vinay, R. Impact of Digital Assistive Technologies on the Quality of Life for People with Dementia: A Scoping Review. BMJ Open 2024, 14, e080545. [Google Scholar] [CrossRef] [PubMed]
- Moon, N.W.; Baker, P.M.; Goughnour, K. Designing Wearable Technologies for Users with Disabilities: Accessibility, Usability, and Connectivity Factors. J. Rehabil. Assist. Technol. Eng. 2019, 6, 2055668319862137. [Google Scholar] [CrossRef]
- Copolillo, A.; Ivanoff, S.D. Assistive Technology and Home Modification for People with Neurovisual Deficits. NeuroRehabilitation 2011, 28, 211–220. [Google Scholar] [CrossRef]
- Alam, F.; Urme, N.A.; Mamin, F.A. Commonly Used Assistive Devices in Neurological Conditions. Int. J. Neurosurg. 2019, 3, 21–25. [Google Scholar] [CrossRef]
- Green, B.N.; Johnson, C.D.; Adams, A. Writing Narrative Literature Reviews for Peer-Reviewed Journals: Secrets of the Trade. J. Chiropr. Med. 2006, 5, 101–117. [Google Scholar] [CrossRef]
- Hirmas-Adauy, M.; Olea, A.; Matute, I.; Delgado, I.; Aguilera, X.; Poffald, L.; González, C.; Nájera, M.; Gómez, M.I.; Gallardo, L.; et al. Assistive Devices for Older Adults: A Longitudinal Study of Policy Effectiveness, Santiago, Chile, 2014–2016. MEDICC Rev. 2019, 21, 46–53. [Google Scholar] [CrossRef]
- Bertrand, K.; Raymond, M.-H.; Miller, W.C.; Martin Ginis, K.A.; Demers, L. Walking Aids for Enabling Activity and Participation: A Systematic Review. Am. J. Phys. Med. Rehabil. 2017, 96, 894–903. [Google Scholar] [CrossRef]
- Evans, N.; Hartigan, C.; Kandilakis, C.; Pharo, E.; Clesson, I. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury. Top. Spinal Cord. Inj. Rehabil. 2015, 21, 122–132. [Google Scholar] [CrossRef]
- Morris, L.; Diteesawat, R.S.; Rahman, N.; Turton, A.; Cramp, M.; Rossiter, J. The-State-of-the-Art of Soft Robotics to Assist Mobility: A Review of Physiotherapist and Patient Identified Limitations of Current Lower-Limb Exoskeletons and the Potential Soft-Robotic Solutions. J. Neuroeng. Rehabil. 2023, 20, 18. [Google Scholar] [CrossRef]
- Siviy, C.; Baker, L.M.; Quinlivan, B.T.; Porciuncula, F.; Swaminathan, K.; Awad, L.N.; Walsh, C.J. Opportunities and Challenges in the Development of Exoskeletons for Locomotor Assistance. Nat. Biomed. Eng. 2023, 7, 456–472. [Google Scholar] [CrossRef] [PubMed]
- Miller, L.E.; Zimmermann, A.K.; Herbert, W.G. Clinical Effectiveness and Safety of Powered Exoskeleton-Assisted Walking in Patients with Spinal Cord Injury: Systematic Review with Meta-Analysis. Med. Devices Evid. Res. 2016, 9, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.K.; Porter, R.E.; DeBaun-Sprague, E.; Van Puymbroeck, M.; Schmid, A.A. Exercise after Stroke: Patient Adherence and Beliefs after Discharge from Rehabilitation. Top. Stroke Rehabil. 2017, 24, 142–148. [Google Scholar] [CrossRef]
- Adiputra, D.; Nazmi, N.; Bahiuddin, I.; Ubaidillah, U.; Imaduddin, F.; Abdul Rahman, M.A.; Mazlan, S.A.; Zamzuri, H. A Review on the Control of the Mechanical Properties of Ankle Foot Orthosis for Gait Assistance. Actuators 2019, 8, 10. [Google Scholar] [CrossRef]
- Veale, A.J.; Xie, S.Q. Towards Compliant and Wearable Robotic Orthoses: A Review of Current and Emerging Actuator Technologies. Med. Eng. Phys. 2016, 38, 317–325. [Google Scholar] [CrossRef]
- Homepage. Available online: https://www.nice.org.uk/ (accessed on 1 April 2025).
- Hays, E.; Slayton, J.; Tejeda-Godinez, G.; Carney, E.; Cruz, K.; Exley, T.; Jafari, A. A Review of Rehabilitative and Assistive Technologies for Upper-Body Exoskeletal Devices. Actuators 2023, 12, 178. [Google Scholar] [CrossRef]
- Hsieh, H.-C.; Chen, D.-F.; Chien, L.; Lan, C.-C. Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation. IEEE/ASME Trans. Mechatron. 2017, 22, 2034–2045. [Google Scholar] [CrossRef]
- Gandolla, M.; Dalla Gasperina, S.; Longatelli, V.; Manti, A.; Aquilante, L.; D’Angelo, M.G.; Biffi, E.; Diella, E.; Molteni, F.; Rossini, M.; et al. An Assistive Upper-Limb Exoskeleton Controlled by Multi-Modal Interfaces for Severely Impaired Patients: Development and Experimental Assessment. Robot. Auton. Syst. 2021, 143, 103822. [Google Scholar] [CrossRef]
- Linse, K.; Aust, E.; Joos, M.; Hermann, A. Communication Matters-Pitfalls and Promise of Hightech Communication Devices in Palliative Care of Severely Physically Disabled Patients with Amyotrophic Lateral Sclerosis. Front. Neurol. 2018, 9, 603. [Google Scholar] [CrossRef]
- Beukelman, D.R.; Fager, S.; Ball, L.; Dietz, A. AAC for Adults with Acquired Neurological Conditions: A Review. Augment. Altern. Commun. 2007, 23, 230–242. [Google Scholar] [CrossRef] [PubMed]
- Caligari, M.; Godi, M.; Guglielmetti, S.; Franchignoni, F.; Nardone, A. Eye Tracking Communication Devices in Amyotrophic Lateral Sclerosis: Impact on Disability and Quality of Life. Amyotroph. Lateral Scler. Frontotemporal Degener. 2013, 14, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Light, J.; Wilkinson, K.M.; Thiessen, A.; Beukelman, D.R.; Fager, S.K. Designing Effective AAC Displays for Individuals with Developmental or Acquired Disabilities: State of the Science and Future Research Directions. Augment. Altern. Commun. 2019, 35, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Sohlberg, M.M. Assistive Technology for Cognition. ASHA Lead. Arch. 2011, 16, 14–17. [Google Scholar] [CrossRef]
- de Jager Loots, C.A.; Price, G.; Barbera, M.; Neely, A.S.; Gavelin, H.M.; Lehtisalo, J.; Ngandu, T.; Solomon, A.; Mangialasche, F.; Kivipelto, M. Development of a Cognitive Training Support Programme for Prevention of Dementia and Cognitive Decline in At-Risk Older Adults. Front. Dement. 2024, 3, 1331741. [Google Scholar] [CrossRef]
- Madara Marasinghe, K. Assistive Technologies in Reducing Caregiver Burden among Informal Caregivers of Older Adults: A Systematic Review. Disabil. Rehabil. Assist. Technol. 2016, 11, 353–360. [Google Scholar] [CrossRef]
- Thordardottir, B.; Malmgren Fänge, A.; Lethin, C.; Rodriguez Gatta, D.; Chiatti, C. Acceptance and Use of Innovative Assistive Technologies among People with Cognitive Impairment and Their Caregivers: A Systematic Review. Biomed. Res. Int. 2019, 2019, 9196729. [Google Scholar] [CrossRef]
- Stavisky, C.; Martinez, A.P.; Tozser, T. How Cognitive Support Tools Can Help: A Guide for Individuals with Cognitive Impairment. Arch. Phys. Med. Rehabil. 2024, 105, 1613–1616. [Google Scholar] [CrossRef]
- Frank Lopresti, E.; Mihailidis, A.; Kirsch, N. Assistive Technology for Cognitive Rehabilitation: State of the Art. Neuropsychol. Rehabil. 2004, 14, 5–39. [Google Scholar] [CrossRef]
- Ishigami, Y.; Jutai, J.; Kirkland, S. Assistive Device Use among Community-Dwelling Older Adults: A Profile of Canadians Using Hearing, Vision, and Mobility Devices in the Canadian Longitudinal Study on Aging. Can. J. Aging 2021, 40, 23–38. [Google Scholar] [CrossRef]
- Sankar, S.; Cheng, W.-Y.; Zhang, J.; Slepyan, A.; Iskarous, M.M.; Greene, R.J.; DeBrabander, R.; Chen, J.; Gupta, A.; Thakor, N.V. A Natural Biomimetic Prosthetic Hand with Neuromorphic Tactile Sensing for Precise and Compliant Grasping. Sci. Adv. 2025, 11, eadr9300. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-N.; Li, Y.-C.; Ge, S.; Xu, J.-J.; Li, L.-L.; Xu, S.-Y. Three-Dimensional Encoding Approach for Wearable Tactile Communication Devices. Sensors 2022, 22, 9568. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Millán, J.D.R.; Ramsey, N.F. Brain-Computer Interfaces: Definitions and Principles. Handb. Clin. Neurol. 2020, 168, 15–23. [Google Scholar] [CrossRef]
- Millán, J.d.R.; Rupp, R.; Müller-Putz, G.R.; Murray-Smith, R.; Giugliemma, C.; Tangermann, M.; Vidaurre, C.; Cincotti, F.; Kübler, A.; Leeb, R.; et al. Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges. Front. Neurosci. 2010, 4, 161. [Google Scholar] [CrossRef] [PubMed]
- Donoghue, J.P. Connecting Cortex to Machines: Recent Advances in Brain Interfaces. Nat. Neurosci. 2002, 5, 1085–1088. [Google Scholar] [CrossRef]
- Zander, T.O.; Kothe, C. Towards Passive Brain–Computer Interfaces: Applying Brain–Computer Interface Technology to Human–Machine Systems in General. J. Neural Eng. 2011, 8, 025005. [Google Scholar] [CrossRef]
- Abdulkader, S.N.; Atia, A.; Mostafa, M.-S.M. Brain Computer Interfacing: Applications and Challenges. Egypt. Inform. J. 2015, 16, 213–230. [Google Scholar] [CrossRef]
- Pasqualotto, E.; Matuz, T.; Federici, S.; Ruf, C.A.; Bartl, M.; Olivetti Belardinelli, M.; Birbaumer, N.; Halder, S. Usability and Workload of Access Technology for People with Severe Motor Impairment: A Comparison of Brain-Computer Interfacing and Eye Tracking. Neurorehabil. Neural Repair. 2015, 29, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Shishkin, S.L. Active Brain-Computer Interfacing for Healthy Users. Front. Neurosci. 2022, 16, 859887. [Google Scholar] [CrossRef]
- Fairclough, S.H.; Zander, T.O. (Eds.) Current Research in Neuroadaptive Technology; Academic Press: Cambridge, MA, USA, 2021; ISBN 978-0-12-821413-8. [Google Scholar]
- Abiri, R.; Borhani, S.; Sellers, E.W.; Jiang, Y.; Zhao, X. A Comprehensive Review of EEG-Based Brain-Computer Interface Paradigms. J. Neural Eng. 2019, 16, 011001. [Google Scholar] [CrossRef]
- Congedo, M. EEG Source Analysis. Ph.D. Thesis, Université de Grenoble, Grenoble, France, 2013. [Google Scholar]
- Volosyak, I.; Rezeika, A.; Benda, M.; Gembler, F.; Stawicki, P. Towards Solving of the Illiteracy Phenomenon for VEP-Based Brain-Computer Interfaces. Biomed. Phys. Eng. Express 2020, 6, 035034. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, X.; Liang, Z.; Yang, Z.; Hu, X. Analysis and Classification of Hybrid BCI Based on Motor Imagery and Speech Imagery. Measurement 2019, 147, 106842. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Lopes da Silva, F.H. Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles. Clin. Neurophysiol. 1999, 110, 1842–1857. [Google Scholar] [CrossRef] [PubMed]
- Siuly; Wang, H.; Zhang, Y. Detection of Motor Imagery EEG Signals Employing Naïve Bayes Based Learning Process. Measurement 2016, 86, 148–158. [Google Scholar] [CrossRef]
- Taran, S.; Bajaj, V.; Sharma, D.; Siuly, S.; Sengur, A. Features Based on Analytic IMF for Classifying Motor Imagery EEG Signals in BCI Applications. Measurement 2018, 116, 68–76. [Google Scholar] [CrossRef]
- Chevallier, S.; Carrara, I.; Aristimunha, B.; Guetschel, P.; Sedlar, S.; Lopes, B.; Velut, S.; Khazem, S.; Moreau, T. The Largest EEG-Based BCI Reproducibility Study for Open Science: The MOABB Benchmark 2024. arXiv 2024, arXiv:2404.15319. [Google Scholar]
- Aggarwal, S.; Chugh, N. Review of machine learning techniques for EEG based brain computer interface. Arch. Comput. Methods Eng. 2022, 29, 3001–3020. [Google Scholar] [CrossRef]
- Cattan, G.; Andreev, A.; Mendoza, C.; Congedo, M. A Comparison of Mobile VR Display Running on an Ordinary Smartphone with Standard PC Display for P300-BCI Stimulus Presentation. IEEE Trans. Games 2021, 13, 68–77. [Google Scholar] [CrossRef]
- Hochberg, L.R.; Serruya, M.D.; Friehs, G.M.; Mukand, J.A.; Saleh, M.; Caplan, A.H.; Branner, A.; Chen, D.; Penn, R.D.; Donoghue, J.P. Neuronal Ensemble Control of Prosthetic Devices by a Human with Tetraplegia. Nature 2006, 442, 164–171. [Google Scholar] [CrossRef]
- Collinger, J.L.; Wodlinger, B.; Downey, J.E.; Wang, W.; Tyler-Kabara, E.C.; Weber, D.J.; McMorland, A.J.; Velliste, M.; Boninger, M.L.; Schwartz, A.B. High-Performance Neuroprosthetic Control by an Individual with Tetraplegia. Lancet 2013, 381, 557–564. [Google Scholar] [CrossRef]
- Meng, J.; Zhang, S.; Bekyo, A.; Olsoe, J.; Baxter, B.; He, B. Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks. Sci. Rep. 2016, 6, 38565. [Google Scholar] [CrossRef]
- Fukuma, R.; Yanagisawa, T.; Saitoh, Y.; Hosomi, K.; Kishima, H.; Shimizu, T.; Sugata, H.; Yokoi, H.; Hirata, M.; Kamitani, Y.; et al. Real-Time Control of a Neuroprosthetic Hand by Magnetoencephalographic Signals from Paralysed Patients. Sci. Rep. 2016, 6, 21781. [Google Scholar] [CrossRef] [PubMed]
- Peksa, J.; Mamchur, D. State-of-the-Art on Brain-Computer Interface Technology. Sensors 2023, 23, 6001. [Google Scholar] [CrossRef] [PubMed]
- Cavus, N.; Oke, O.A.; Yahaya, J.M. Brain-Computer Interfaces: High-Tech Race to Merge Minds and Machines. In Cutting Edge Applications of Computational Intelligence Tools and Techniques; Daimi, K., Alsadoon, A., Coelho, L., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 3–19. ISBN 978-3-031-44127-1. [Google Scholar]
- Tonin, L.; Carlson, T.; Leeb, R.; del R Millán, J. Brain-Controlled Telepresence Robot by Motor-Disabled People. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011, 2011, 4227–4230. [Google Scholar] [CrossRef] [PubMed]
- Sanjuan De Caro, J.D.; Haque Sunny, M.S.; Davila Albor, G.; Ahmed, T.; Rahman, M.M.; Zarif, M.I.I.; Swapnil, A.A.Z.; Wang, I.; Schultz, K.; Ahamed, S.I.; et al. Optimal Design of a Wheelchair-Mounted Robotic Arm for Activities of Daily Living. Disabil. Rehabil. Assist. Technol. 2025, 20, 1539–1556. [Google Scholar] [CrossRef]
- Katevas, N.I.; Sgouros, N.M.; Tzafestas, S.G.; Papakonstantinou, G.; Beattie, P.; Bishop, J.M.; Tsanakas, P.; Koutsouris, D. The Autonomous Mobile Robot SENARIO: A Sensor Aided Intelligent Navigation System for Powered Wheelchairs. IEEE Robot. Autom. Mag. 1997, 4, 60–70. [Google Scholar] [CrossRef]
- Borgolte, U.; Hoyer, H.; Bühler, C.; Heck, H.; Hoelper, R. Architectural Concepts of a Semi-Autonomous Wheelchair. J. Intell. Robot. Syst. 1998, 22, 233–253. [Google Scholar] [CrossRef]
- Prassler, E.; Scholz, J.; Fiorini, P. A Robotics Wheelchair for Crowded Public Environment. IEEE Robot. Autom. Mag. 2001, 8, 38–45. [Google Scholar] [CrossRef]
- Yanco, H.A. Wheelesley: A Robotic Wheelchair System: Indoor Navigation and User Interface. In Assistive Technology and Artificial Intelligence: Applications in Robotics, User Interfaces and Natural Language Processing; Mittal, V.O., Yanco, H.A., Aronis, J., Simpson, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1998; pp. 256–268. ISBN 978-3-540-68678-1. [Google Scholar]
- Bourhis, G.; Agostini, Y. The Vahm Robotized Wheelchair: System Architecture and Human-Machine Interaction. J. Intell. Robot. Syst. 1998, 22, 39–50. [Google Scholar] [CrossRef]
- Parikh, S.P.; Grassi, V.; Kumar, V.; Okamoto, J. Incorporating User Inputs in Motion Planning for a Smart Wheelchair. In Proceedings of the IEEE International Conference on Robotics and Automation, 2004, Proceedings. ICRA ’04. 2004, New Orleans, LA, USA, 26 April–1 May 2004; Volume 2, pp. 2043–2048. [Google Scholar]
- Galán, F.; Nuttin, M.; Lew, E.; Ferrez, P.W.; Vanacker, G.; Philips, J.; Millán, J. del R. A Brain-Actuated Wheelchair: Asynchronous and Non-Invasive Brain–Computer Interfaces for Continuous Control of Robots. Clin. Neurophysiol. 2008, 119, 2159–2169. [Google Scholar] [CrossRef]
- Lopes, A.C.; Pires, G.; Vaz, L.; Nunes, U. Wheelchair Navigation Assisted by Human-Machine Shared-Control and a P300-Based Brain Computer Interface. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 2438–2444. [Google Scholar]
- Padfield, N.; Zabalza, J.; Zhao, H.; Masero, V.; Ren, J. EEG-Based Brain-Computer Interfaces Using Motor-Imagery: Techniques and Challenges. Sensors 2019, 19, 1423. [Google Scholar] [CrossRef]
- Saibene, A.; Caglioni, M.; Corchs, S.; Gasparini, F. EEG-Based BCIs on Motor Imagery Paradigm Using Wearable Technologies: A Systematic Review. Sensors 2023, 23, 2798. [Google Scholar] [CrossRef]
- Congedo, M.; Afsari, B.; Barachant, A.; Moakher, M. Approximate Joint Diagonalization and Geometric Mean of Symmetric Positive Definite Matrices. PLoS ONE 2014, 10, e0121423. [Google Scholar] [CrossRef]
- Giles, J.; Ang, K.K.; Phua, K.S.; Arvaneh, M. A Transfer Learning Algorithm to Reduce Brain-Computer Interface Calibration Time for Long-Term Users. Front. Neuroergonom. 2022, 3, 837307. [Google Scholar] [CrossRef] [PubMed]
- Azab, A.; Arvaneh, M.; Toth, J.; Mihaylova, L. A Review on Transfer Learning Approaches in Brain–Computer Interface. In Signal Processing and Machine Learning for Brain-Machine Interfaces; The Institution of Engineering and Technology: Stevenage, UK, 2018; ISBN 978-1-78561-399-9. [Google Scholar]
- Iturrate, I.; Grizou, J.; Omedes, J.; Oudeyer, P.-Y.; Lopes, M.; Montesano, L. Exploiting Task Constraints for Self-Calibrated Brain-Machine Interface Control Using Error-Related Potentials. PLoS ONE 2015, 10, e0131491. [Google Scholar] [CrossRef] [PubMed]
- Simonet, C.; Noyce, A.J. Domotics, Smart Homes, and Parkinson’s Disease. J. Parkinsons Dis. 2021, 11, S55–S63. [Google Scholar] [CrossRef]
- Lektip, C.; Chaovalit, S.; Wattanapisit, A.; Lapmanee, S.; Nawarat, J.; Yaemrattanakul, W. Home Hazard Modification Programs for Reducing Falls in Older Adults: A Systematic Review and Meta-Analysis. PeerJ 2023, 11, e15699. [Google Scholar] [CrossRef] [PubMed]
- Campbell, A.J.; Robertson, M.C.; La Grow, S.J.; Kerse, N.M.; Sanderson, G.F.; Jacobs, R.J.; Sharp, D.M.; Hale, L.A. Randomised Controlled Trial of Prevention of Falls in People Aged > or =75 with Severe Visual Impairment: The VIP Trial. BMJ 2005, 331, 817. [Google Scholar] [CrossRef]
- Basla, C.; Hungerbühler, I.; Meyer, J.T.; Wolf, P.; Riener, R.; Xiloyannis, M. Usability of an Exosuit in Domestic and Community Environments. J. Neuroeng. Rehabil. 2022, 19, 131. [Google Scholar] [CrossRef]
- Fischer, B.; Peine, A.; Östlund, B. The Importance of User Involvement: A Systematic Review of Involving Older Users in Technology Design. Gerontologist 2020, 60, e513–e523. [Google Scholar] [CrossRef]
- Shore, L.; de Eyto, A.; O’Sullivan, L. Technology Acceptance and Perceptions of Robotic Assistive Devices by Older Adults—Implications for Exoskeleton Design. Disabil. Rehabil. Assist. Technol. 2022, 17, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Campagnini, S.; Arienti, C.; Patrini, M.; Liuzzi, P.; Mannini, A.; Carrozza, M.C. Machine Learning Methods for Functional Recovery Prediction and Prognosis in Post-Stroke Rehabilitation: A Systematic Review. J. Neuroeng. Rehabil. 2022, 19, 54. [Google Scholar] [CrossRef]
- Goyal, S.; Laddi, A. Chapter 6—Machine Learning for Developing Neurorehabilitation-Aided Assistive Devices. In Computational Intelligence and Deep Learning Methods for Neuro-Rehabilitation Applications; Hemanth, D.J., Ed.; Academic Press: Cambridge, MA, USA, 2024; pp. 121–148. ISBN 978-0-443-13772-3. [Google Scholar]
- Mulfari, D.; La Placa, D.; Rovito, C.; Celesti, A.; Villari, M. Deep Learning Applications in Telerehabilitation Speech Therapy Scenarios. Comput. Biol. Med. 2022, 148, 105864. [Google Scholar] [CrossRef] [PubMed]
- Elsahar, Y.; Hu, S.; Bouazza-Marouf, K.; Kerr, D.; Mansor, A. Augmentative and Alternative Communication (AAC) Advances: A Review of Configurations for Individuals with a Speech Disability. Sensors 2019, 19, 1911. [Google Scholar] [CrossRef]
- Maity, S.; Saikia, M.J. Large Language Models in Healthcare and Medical Applications: A Review. Bioengineering 2025, 12, 631. [Google Scholar] [CrossRef]
- Fu, B.; Hadid, A.; Damer, N. Generative AI in the Context of Assistive Technologies: Trends, Limitations and Future Directions. Image Vis. Comput. 2025, 154, 105347. [Google Scholar] [CrossRef]
- Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers); Burstein, J., Doran, C., Solorio, T., Eds.; Association for Computational Linguistics: Minneapolis, MN, USA, 2019; pp. 4171–4186. [Google Scholar]
- Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux, M.-A.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar, F.; et al. LLaMA: Open and Efficient Foundation Language Models. arXiv 2023, arXiv:2302.13971. [Google Scholar]
- Waisberg, E.; Ong, J.; Masalkhi, M.; Zaman, N.; Sarker, P.; Lee, A.G.; Tavakkoli, A. Meta Smart Glasses—Large Language Models and the Future for Assistive Glasses for Individuals with Vision Impairments. Eye 2024, 38, 1036–1038. [Google Scholar] [CrossRef]
- Ienca, M.; Ignatiadis, K. Artificial Intelligence in Clinical Neuroscience: Methodological and Ethical Challenges. AJOB Neurosci. 2020, 11, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Ienca, M. On Neurorights. Front. Hum. Neurosci. 2021, 15, 701258. [Google Scholar] [CrossRef]
- Alshami, A.; Nashwan, A.; AlDardour, A.; Qusini, A. Artificial Intelligence in Rehabilitation: A Narrative Review on Advancing Patient Care. Rehabilitación 2025, 59, 100911. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonanno, M.; Saracino, B.; Ciancarelli, I.; Panza, G.; Manuli, A.; Morone, G.; Calabrò, R.S. Assistive Technologies for Individuals with a Disability from a Neurological Condition: A Narrative Review on the Multimodal Integration. Healthcare 2025, 13, 1580. https://doi.org/10.3390/healthcare13131580
Bonanno M, Saracino B, Ciancarelli I, Panza G, Manuli A, Morone G, Calabrò RS. Assistive Technologies for Individuals with a Disability from a Neurological Condition: A Narrative Review on the Multimodal Integration. Healthcare. 2025; 13(13):1580. https://doi.org/10.3390/healthcare13131580
Chicago/Turabian StyleBonanno, Mirjam, Beatrice Saracino, Irene Ciancarelli, Giuseppe Panza, Alfredo Manuli, Giovanni Morone, and Rocco Salvatore Calabrò. 2025. "Assistive Technologies for Individuals with a Disability from a Neurological Condition: A Narrative Review on the Multimodal Integration" Healthcare 13, no. 13: 1580. https://doi.org/10.3390/healthcare13131580
APA StyleBonanno, M., Saracino, B., Ciancarelli, I., Panza, G., Manuli, A., Morone, G., & Calabrò, R. S. (2025). Assistive Technologies for Individuals with a Disability from a Neurological Condition: A Narrative Review on the Multimodal Integration. Healthcare, 13(13), 1580. https://doi.org/10.3390/healthcare13131580