Effectiveness of Physical and Therapy Interventions for Non-ICU Hospitalized Pneumonia Patients: A Systematic Review of Randomized Controlled Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Registration
2.2. Search Strategy
2.3. Methodological Quality Assessment
2.4. Meta-Analysis
3. Results
3.1. Characteristics of Studies
3.2. Results Obtained in Metanalysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Pneumonia. Available online: https://www.who.int/news-room/fact-sheets/detail/pneumonia (accessed on 18 March 2025).
- Torres, A.; Cilloniz, C.; Niederman, M.S.; Menéndez, R.; Chalmers, J.D.; Wunderink, R.G.; van der Poll, T. Pneumonia. Nat. Rev. Dis. Primers 2021, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Cilloniz, C.; Martin-Loeches, I.; Garcia-Vidal, C.; San Jose, A.; Torres, A. Microbial etiology of pneumonia: Epidemiology, diagnosis and resistance patterns. Int. J. Mol. Sci. 2016, 17, 2120. [Google Scholar] [CrossRef] [PubMed]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and treatment of adults with community-acquired pneumonia. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef]
- Davydow, D.S.; Hough, C.L.; Levine, D.A.; Langa, K.M.; Iwashyna, T.J. Functional disability, cognitive impairment, and depression after hospitalization for pneumonia. Am. J. Med. 2023, 126, 615–624. [Google Scholar] [CrossRef]
- Denke, C.; Balzer, F.; Menk, M.; Szur, S.; Brosinsky, G.; Tafelski, S.; Wernecke, K.D.; Deja, M. Long-term sequelae of acute respiratory distress syndrome caused by severe community-acquired pneumonia: Delirium-associated cognitive impairment and post-traumatic stress disorder. J. Int. Med. Res. 2018, 46, 2265–2283. [Google Scholar] [CrossRef]
- File, T.M.; Marrie, T.J. Burden of community-acquired pneumonia in North American adults. Postgrad. Med. 2010, 122, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Corrales-Medina, V.F.; Musher, D.M.; Shachkina, S.; Chirinos, J.A. Acute pneumonia and the cardiovascular system. Lancet 2013, 381, 496–505. [Google Scholar] [CrossRef]
- Yende, S.; D’Angelo, G.; Mayr, F.; Kellum, J.A.; Weissfeld, L.; Kaynar, A.M.; Young, T.; Irani, K.; Angus, D.C.; GenIMS Investigators. Elevated hemostasis markers after pneumonia increases one-year risk of all-cause and cardiovascular deaths. PLoS ONE 2011, 6, e22847. [Google Scholar] [CrossRef]
- Yang, M.; Yan, Y.; Yin, X.; Wang, B.Y.; Wu, T.; Liu, G.J.; Dong, B.R. Chest physiotherapy for pneumonia in adults. Cochrane Database Syst. Rev. 2013, 28, CD006338. [Google Scholar] [CrossRef]
- Varela, G.; Ballesteros, E.; Jiménez, M.F.; Novoa, N.; Aranda, J.L. Cost-effectiveness analysis of prophylactic respiratory physiotherapy in pulmonary lobectomy. Eur. J. Cardiothorac. Surg. 2006, 29, 216–220. [Google Scholar] [CrossRef]
- Holland, A.E.; Hill, C.J.; Jones, A.Y.; McDonald, C.F. Breathing exercises for chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2012, 17, CD008250. [Google Scholar] [CrossRef] [PubMed]
- Gosselink, R.; Bott, J.; Johnson, M.; Dean, E.; Nava, S.; Norrenberg, M.; Schönhofer, B.; Stiller, K.; Van de Leur, H.; Vincent, J.L. Physiotherapy for adult patients with critical illness: Recommendations of the European Respiratory Society and European Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med. 2008, 34, 1188–1199. [Google Scholar] [CrossRef] [PubMed]
- Rochester, C.L.; Vogiatzis, I.; Holland, A.E.; Lareau, S.C.; Marciniuk, D.D.; Puhan, M.A.; Spruit, M.A.; Masefield, S.; Casaburi, R.; Clini, M.E.; et al. An official American Thoracic Society/European Respiratory Society policy statement: Enhancing implementation, use, and delivery of pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2015, 192, 1373–1386. [Google Scholar] [CrossRef]
- Spruit, M.A.; Singh, S.J.; Garvey, C.; ZuWallack, R.; Nici, L.; Rochester, C.; Hill, K.; Holland, A.E.; Lareau, S.C.; Man, W.D.C.; et al. An official American Thoracic Society/European Respiratory Society statement: Key concepts and advances in pulmonary rehabilitation. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef]
- Schweickert, W.D.; Pohlman, M.C.; Pohlman, A.S.; Nigos, C.; Pawlik, A.J.; Esbrook, C.L.; Spears, L.; Miller, M.; Franczyk, M.; Deprizio, D.; et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial. Lancet 2009, 373, 1874–1882. [Google Scholar] [CrossRef]
- Morris, P.E.; Goad, A.; Thompson, C.; Taylor, K.; Harry, B.; Passmore, L.; Ross, A.; Anderson, L.; Baker, S.; Sanchez, M.; et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit. Care Med. 2008, 36, 2238–2243. [Google Scholar] [CrossRef]
- van der Lee, L.; Hill, A.M.; Jacques, A.; Patman, S. Efficacy of respiratory physiotherapy interventions for intubated and mechanically ventilated adults with pneumonia: A systematic review and meta-analysis. Physiother. Can. 2021, 73, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Israni, P.D.; Lalwani, L.; Aherrao, S. Effects of Chest Physiotherapy on Reducing Dyspnea and Enhancing Functional Independence and Quality of Life in Multilobar Pneumonia: A Case Report. Cureus 2024, 16, e70868. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef]
- Tipping, C.J.; Harrold, M.; Holland, A.; Romero, L.; Nisbet, T.; Hodgson, C.L. The effects of active mobilisation and rehabilitation in ICU on mortality and function: A systematic review. Intensive Care Med. 2017, 43, 171–183. [Google Scholar] [CrossRef]
- American Thoracic Society. Pulmonary rehabilitation: Joint ATS/ERS statement on key concepts and advances. Am. J. Respir. Crit. Care Med. 2013, 188, e13–e64. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Jiang, J.; Wang, R.; Fu, H.; Lu, J.; Yang, M. Chest physiotherapy for pneumonia in adults. Cochrane Database Syst. Rev. 2022, 9, CD006338. [Google Scholar] [PubMed]
- Cumpston, M.; Li, T.; Page, M.J.; Chandler, J.; Welch, V.A.; Higgins, J.P.; Thomas, J. Updated guidance for trusted systematic reviews: A new edition of the Cochrane Handbook for Systematic Reviews of Interventions. Cochrane Database Syst. Rev. 2019, 10, ED000142. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA, group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Rev. Esp. De Nutr. Humana Y Dietética 2014, 18, 172–181. [Google Scholar] [CrossRef]
- Frandsen, T.F.; Nielsen, M.F.B.; Lindhardt, C.L.; Eriksen, M.B. Using the full PICO model as a search tool for systematic reviews resulted in lower recall for some PICO elements. J. Clin. Epidemiol. 2020, 127, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1. 0. The Cochrane Collaboration. 2011. 2016; Available online: www.cochrane-handbook.org (accessed on 18 March 2025).
- Flemyng, E.; Moore, T.H.; Boutron, I.; Higgins, J.P.; Hróbjartsson, A.; Nejstgaard, C.H.; Dwan, K. Using Risk of Bias 2 to assess results from randomised controlled trials: Guidance from Cochrane. BMJ Evid. Based Med. 2023, 28, 260–266. [Google Scholar] [CrossRef]
- Downs, S.H.; Black, N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomized and non-randomised studies of health care interventions. J. Epidemiol. Community Health 1998, 52, 377. [Google Scholar] [CrossRef]
- Graham, W.G.; Bradley, D.A. Efficacy of chest physiotherapy and intermittent positive-pressure breathing in the resolution of pneumonia. N. Engl. J. Med. 1978, 299, 624–627. [Google Scholar] [CrossRef]
- Tydeman, D. An investigation into the effectiveness of physiotherapy in the treatment of patients with community-acquired pneumonia. Physiother. Pract. 1989, 5, 75–81. [Google Scholar] [CrossRef]
- Noll, D.R.; Shores, J.; Bryman, P.N.; Masterson, E.V. Adjunctive osteopathic manipulative treatment in the elderly hospitalized with pneumonia: A pilot study. J. Osteopath. Med. 1999, 99, 143. [Google Scholar] [CrossRef]
- Noll, D.R.; Shores, J.H.; Gamber, R.G.; Herron, K.M.; Swift, J. Benefits of osteopathic manipulative treatment for hospitalized elderly patients with pneumonia. J. Osteopath. Med. 2000, 100, 776–782. [Google Scholar]
- Mundy, L.M.; Leet, T.L.; Darst, K.; Schnitzler, M.A.; Dunagan, W.C. Early mobilization of patients hospitalized with community-acquired pneumonia. Chest 2003, 124, 883–889. [Google Scholar] [CrossRef]
- Carratalà, J.; Garcia-Vidal, C.; Ortega, L.; Fernández-Sabé, N.; Clemente, M.; Albero, G.; López, M.; Castellsagué, X.; Dorca, J.; Verdaguer, R.; et al. Effect of a 3-step critical pathway to reduce duration of intravenous antibiotic therapy and length of stay in community-acquired pneumonia: A randomized controlled trial. Arch. Intern. Med. 2012, 172, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Martín-Salvador, A.; Colodro-Amores, G.; Torres-Sánchez, I.; Moreno-Ramírez, M.P.; Cabrera-Martos, I.; Valenza, M.C. Physical therapy intervention during hospitalization in patients with acute exacerbation of chronic obstructive pulmonary disease and pneumonia: A randomized clinical trial. Med. Clínica 2016, 146, 301–304. [Google Scholar] [CrossRef]
- López-López, L.; Torres-Sánchez, I.; Rodríguez-Torres, J.; Cabrera-Martos, I.; Ortiz-Rubio, A.; Valenza, M.C. Does adding an integrated physical therapy and neuromuscular electrical stimulation therapy to standard rehabilitation improve functional outcome in elderly patients with pneumonia? A randomised controlled trial. Clin. Rehabil. 2019, 33, 1757–1766. [Google Scholar] [CrossRef]
- Ryrsø, C.K.; Faurholt-Jepsen, D.; Ritz, C.; Hegelund, M.H.; Dungu, A.M.; Pedersen, B.K.; Krogh-Madsen, R.; Lindegaard, B. Effect of exercise training on prognosis in community-acquired pneumonia: A randomized controlled trial. Clin. Infect. Dis. 2024, 78, 1718–1726. [Google Scholar] [CrossRef] [PubMed]
- Larsen, T.; Lee, A.; Brooks, D.; Michieli, S.; Robson, M.; Veens, J.; Vokes, O.; Lucy, S.D. Effect of early mobility as a physiotherapy treatment for pneumonia: A systematic review and meta-analysis. Physiother. Can. 2019, 71, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Zaki, H.A.; Alkahlout, B.H.; Shaban, E.; Mohamed, E.H.; Basharat, K.; Elsayed, W.A.E.; Azad, A. The battle of the Pneumonia predictors: A Comprehensive Meta-Analysis comparing the Pneumonia Severity Index (PSI) and the CURB-65 score in Predicting Mortality and the need for ICU support. Cureus 2023, 15, e42672. [Google Scholar] [CrossRef]
- Noguchi, S.; Katsurada, M.; Yatera, K.; Nakagawa, N.; Xu, D.; Fukuda, Y.; Shindo, Y.; Senda, K.; Tsukada, H.; Miki, M.; et al. Utility of pneumonia severity assessment tools for mortality prediction in healthcare-associated pneumonia: A systematic review and meta-analysis. Sci. Rep. 2024, 14, 12964. [Google Scholar] [CrossRef]
- Pozuelo-Carrascosa, D.P.; Torres-Costoso, A.; Alvarez-Bueno, C.; Cavero-Redondo, I.; López Muñoz, P.; Martínez-Vizcaíno, V. Multimodality respiratory physiotherapy reduces mortality but may not prevent ventilator-associated pneumonia or reduce length of stay in the intensive care unit: A systematic review. J. Physiother. 2018, 64, 222–228. [Google Scholar] [CrossRef]
- Melgaard, D.; Baandrup, U.; Bøgsted, M.; Bendtsen, M.D.; Kristensen, M.T. Early mobilisation of patients with community-acquired pneumonia reduce length of hospitalisation—A pilot study. J. Phys. Ther. Sci. 2018, 30, 926–932. [Google Scholar] [CrossRef] [PubMed]
- McCarren, B.; Alison, J.A. Physiological effects of vibration in subjects with cystic fibrosis. Eur. Respir. J. 2006, 27, 1204–1209. [Google Scholar] [CrossRef] [PubMed]
- Ntoumenopoulos, G.; Presneill, J.J.; McElholum, M.M.; Cade, J.F. Chest physiotherapy for the prevention of ventilator-associated pneumonia. Intensive Care Med. 2002, 28, 850–856. [Google Scholar] [CrossRef]
- Bott, J.; Blumenthal, S.; Buxton, M.; Ellum, S.; Falconer, C.; Garrod, R.; Harvey, A.; Hughes, T.; Lincoln, M.; Mikelsons, C.; et al. Guidelines for the physiotherapy management of the adult, medical, spontaneously breathing patient. Thorax 2009, 64 (Suppl. S1), i1–i51. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, K.; Cui, W.; Hong, Y.; Zhang, Z. The effect of early mobilization for critical ill patients requiring mechanical ventilation: A systematic review and meta-analysis. J. Emerg. Crit. Care Med. 2018, 2, 9. [Google Scholar] [CrossRef]
Study | Sample Size (% Male) | Sample Age (Mean Years ± SD) | Pneumonia Diagnosis Criteria | Pneumonia Severity | Downs and Black Score |
---|---|---|---|---|---|
Graham et al. 1978 [30]. | IG: 27 (51.85) CG: 27 (48.14) | IG: 63 ± 20.78 CG: 61 ± 15.58 | CXR and the onset of typical symptoms (coughing and fever). | NR | 18 |
Tydeman et al. 1989 [31]. | IG: 12 (NR) CG: 20 (NR) | IG: 42.08 ± 15.59 CG: 36.80 ± 13.91 | CXR | NR | 26 |
Noll et al. 1999 [32]. | IG: 11 (27.27) CG: 10 (30) | IG: 78.7 ± NR CG: 82.5 ± NR | CXR and at least two clinical findings (fever, leukocytosis, cough, or acute mental status changes). | NR | 20 |
Noll et al. 2000 [33]. | IG: 28 (50) CG: 30 (53.3) | IG: 77 ± 17.2 CG: 77.7 ± 17.1 | CXR and at least two clinical findings (fever, leukocytosis, new cough, or acute mental status changes). | SAPS, mean ± SD. IG:9.4 ± 4.0 CG:9.6 ± 3.5 | 22 |
Mundy et al. 2003 [34]. | IG: 227 (44) CG: 231 (44) | NR | CXR and one major criteria (cough, sputum production, or temperature >37.8 °C) or two minor criteria (pleuritic chest pain, dyspnea, altered mental status, pulmonary consolidation on examination, or leukocyte count >12,000/μL). | PSI, n(%). IG: Low: 129(57); Moderate: 71(31); Hight:27(12). CG: Low: 123(53); Moderate: 65(28), High:43(19). | 25 |
Carratala et al. 2012 [35]. | IG: 200 (66) CG: 201 (64.2) | IG: 71.5 ± 14 CG: 69.7 ± 15.1 | CXR and following symptoms: fever or hypothermia, new cough with or without sputum production, pleuritic chest pain, dyspnea, and altered breath sounds on auscultation. | PSI, mean ± SD. IG:100.5 ± 32.5 CG:101.1 ± 31.5 | 17 |
Martín-Salvador et al. 2016 [36]. | IG: 24(83.2) CG: 20(78) | IG: 78.82 ± 6.3 CG: 77.40 ± 5.2 | NR | NR | 23 |
López-López et al. 2019 [37]. | IG: 48(41.67) CG: 47(57.45) | IG: 74.92 ± 11.03 CG: 72.53 ± 9.24 | NR | NR | 25 |
Ryrsø et al. 2024 [38]. | IG1: 61 (49) IG2: 63 (37) CG: 62 (48) | IG1: 70 ± 14 IG2: 69 ± 14 CG: 68 ± 13 | CXR or computed tomography scan with one symptom (cough, chest pain, fever, hypothermia or dyspnea). | CURB-65, n(%). IG1: 0-1: 35(57); 2: 21(34); 3-5: 5(8). IG2: 0-1: 36(57); 2: 22(35); 3-5: 5(8). CG: 0-1: 36(58); 2: 21(34); 3-5: 5(8). | 22 |
Study | Interventions | PT Program Description | Intervention Timing, Duration, and Frequency and Intensity | Outcomes Measures and Results | Conclusion |
---|---|---|---|---|---|
Graham et al. 1978 [30]. | PT program: RPT + MPT + UC CG: UC | Chest physiotherapy + positive pressure breathing + UC. | 20 min, until discharge (average 5 days), every day, and 15 cm of water end-inspiratory pressure. | Duration of fever, IG > CG, p = 0.64; LOS, IG > CG, p = 0.52; Discharge chest x-ray, p = 0.79. | Pneumonia does not resolve faster with chest physiotherapy, and intermittent positive pressure breathing. NOT EFFECTIVE |
Tydeman et al. 1989 [31]. | PT program: RPT CG: UC | Breathing control, localized expansion, postural drainage, thoracic expansion with vibrations, and percussion. | 15–20 min twice a day, until discharge, every day and NR. | LOS, IG < CG, p > 0.05; total time antibiotics, p > 0.05; predicted FVC, IG > CG, p > 0.05, dyspnea IG > CG, p > 0.05, general well-being, p > 0.05; Presence of air bronchogram and pleural effusion; duration of sputum production and weight, p > 0.05. | Physical therapy remains unproven for the treatment of previously fit patients with uncomplicated pneumonia. NOT EFFECTIVE |
Noll et al. 1999 [32]. | PT program: RPT + MPT CG: Light touch treatment + UC | OMT: paraspinal muscle inhibition, rib raising, diaphragmatic release, condylar decompression, cervical soft tissue, myofascial release to thoracic inlet, and thoracic lymphatic pump. | 10–15 min, twice a day, until discharge, every day, and NR. | Duration of fever, IG > CG, p > 0.05; duration of leukocytosis, IG < CG, p > 0.05; LOS, IG < CG, p > 0.05; length of IV and oral antibiotic therapy, IG < CG, p > 0.05; length of IV antibiotic therapy, IG < CG, p > 0.05; length of oral antibiotic therapy, IG > CG, p = 0.04. | Although the mean duration of leukocytosis, intravenous antibiotic treatment, and length of stay were shorter in the adjunctive osteopathic manipulative treatment group, these measures did not reach statistical significance. However, the mean duration of oral antibiotic use reached statistical significance at 3.1 days in the treatment group and 0.8 days in the control group. NOT EFFECTIVE |
Noll et al. 2000 [33]. | PT program: RPT + MPT CG: Light touch treatment + UC | OMT: paraspinal muscle inhibition, rib raising, diaphragmatic release, condylar decompression, cervical soft tissue, myofascial release to thoracic inlet, and thoracic lymphatic pump. | 10–15 min, twice a day, until discharge, every day, and NR. | LOS, IG < CG, p = 0.014; length of IV and oral antibiotic therapy, IG < CG, p = 0.003; length of IV antibiotic therapy, IG < CG, p = 0.002; length of oral antibiotic therapy, p = 0.952; febrile shifts, p = 0.738; tachypnea shifts, p = 0.673; tachycardia shifts, p = 0.927. | The osteopathic manipulative treatment group had a significantly shorter duration of intravenous antibiotic treatment, and a shorter hospital stay. EFFECTIVE |
Mundy et al. 2003 [34]. | PT program: MPT CG: UC | EM | 20 min, every day, NR and NR. | LOS, IG < CG; Mortality rate, IG < CG; hospital charges, IG < CG, p = 0.05; hospital readmissions, p > 0.05; emergency department, p > 0.05; chest radiographs, p > 0.05. | EM of hospitalized adults reduces hospital length of stay. EM was defined as sitting or walking out of bed for at least 20 min during the first 24 h of hospitalization. Progressive mobilization occurred each subsequent day during hospitalization EM was effective. EFFECTIVE |
Carratala et al. 2012 [35]. | PT program: MPT CG: UC | EM, objective criteria for oral antibiotics, predefined discharge criteria. | 20 min, every day, until discharge, and NR. | LOS, IG < CG, p < 0.001; length of IV antibiotic therapy, IG < CG, p < 0.001; adverse drug reactions, IG < CG, p < 0.001; medical complications, IG < CG, p = 0.340; Mortality rate, IG > CG, p = 0.450; hospital readmissions, IG > CG, p = 0.590. | Three-step critical pathway including early mobilization and use of objective criteria for switching to oral antibiotic therapy and for deciding on hospital discharge or usual care was safe and effective in reducing the duration of intravenous antibiotic therapy and LOS for CAP and did not adversely affect patient outcomes. EFFECTIVE |
Martín-Salvador et al. 2016 [36]. | PT program: RPT + MPT + UC CG: UC | Ventilatory re-education, neuromuscular electrical stimulation with exercises, and resistance elastic band exercises + UC. | 60 min, every day, until discharge and NR. | LOS, IG < CG, p = 0.437; dyspnea, IG < CG, p = 0.041; muscle strength, IG < CG, p < 0.05; functional capacity related respiratory symptoms, IG > CG, p = 0.277. | Between-group analysis showed that after the physical therapy intervention (experimental vs. control) significant differences were found in perceived dyspnea (p = 0.041), and right and left quadriceps muscle strength (p = 0.008 and p = 0.010, respectively). In addition, the subscale of “domestic activities” of the functional ability related to respiratory symptoms questionnaire showed significant differences (p = 0.036). EFFECTIVE |
López-López et al. 2019 [37]. | PT program: MPT + UC CG: UC | Warm-up, neuromuscular electrical stimulation with exercises, and resistance elastic band exercises, cool-down + UC. | 45 min, every day, until discharge and NR. | LOS, IG < CG, p = 0.897; dyspnea, IG < CG, p = 0.101; SPPB, IG > CG, p = 0.027; Fatigue, IG < CG, p = 0.030; LCQ, IG > CG, p = 0.041. | Fatigue (32.04 (18.58) vs. 46.22 (8.90)) and cough (18.84 (2.47) vs. 17.40 (3.67)) showed higher improvement in the intervention group, and significant differences were observed between the groups. An integrated program of physical and electrical stimulation during hospitalization improves physical and functional performance in patients with pneumonia. EFFECTIVE |
Ryrsø et al. 2024 [38]. | PT program1: MPT + UC PT program2: MPT + UC CG: UC | PT program1: early mobilization with in-bed cycling intervention and booklet exercise + UC.PT program2: The booklet intervention included bodyweight resistance and walking exercises + UC. | PT program1:30 min, every day, until discharge and Based on SpO2, HR, and Borg, gradually increased. PT program2: 30 min, every day, until discharge and the exercise instructor gradually increased. | LOS, IG1 < (CG ≈ IG2); mortality rate, IG2 < (CG ≈ IG1); Hospital readmission, IG1 < IG2 < CG. | Supervised in-bed cycling and booklet exercise had no effect on LOS. Similarly, exercise training had no statistically significant effect on 90-day readmission risk. NOT EFFECTIVE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, T.; Yanagita, Y.; Morishita, T.; Nagata, F.; Granados Santiago, M.; López-López, L.; Valenza, M.C. Effectiveness of Physical and Therapy Interventions for Non-ICU Hospitalized Pneumonia Patients: A Systematic Review of Randomized Controlled Trials. Healthcare 2025, 13, 1444. https://doi.org/10.3390/healthcare13121444
Tanaka T, Yanagita Y, Morishita T, Nagata F, Granados Santiago M, López-López L, Valenza MC. Effectiveness of Physical and Therapy Interventions for Non-ICU Hospitalized Pneumonia Patients: A Systematic Review of Randomized Controlled Trials. Healthcare. 2025; 13(12):1444. https://doi.org/10.3390/healthcare13121444
Chicago/Turabian StyleTanaka, Takako, Yorihide Yanagita, Tatsuya Morishita, Fumiya Nagata, María Granados Santiago, Laura López-López, and Marie Carmen Valenza. 2025. "Effectiveness of Physical and Therapy Interventions for Non-ICU Hospitalized Pneumonia Patients: A Systematic Review of Randomized Controlled Trials" Healthcare 13, no. 12: 1444. https://doi.org/10.3390/healthcare13121444
APA StyleTanaka, T., Yanagita, Y., Morishita, T., Nagata, F., Granados Santiago, M., López-López, L., & Valenza, M. C. (2025). Effectiveness of Physical and Therapy Interventions for Non-ICU Hospitalized Pneumonia Patients: A Systematic Review of Randomized Controlled Trials. Healthcare, 13(12), 1444. https://doi.org/10.3390/healthcare13121444