Equations for Assessing Body Composition by Ultrasound in Older Adults: A Narrative Review
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Ultrasound as a Method for Body Composition Assessment
3.2. Ultrasound for Muscle Mass Assessment in Older Adults
Author, Year | Ultrasound Type | Reference Method | Sample Size | Population | Ethnicity | Sex | Age (Years) |
---|---|---|---|---|---|---|---|
Abe et al., 2015 [46] | B-mode (Aloka SSD-500) | DXA | Development: 71/Cross-validation: 31 | Healthy adults and older adults | Caucasian | M & F | 50–76 |
Abe et al., 2018 [47] | B-mode (Aloka SSD-500) | DXA | Development: 389/Bootstrap validation: 1000 replications | Healthy older adults | Asian | M & F | 60–79 |
Barbosa-Silva et al., 2021 [19] | B-mode (Xario SSA-660A) | DXA | Development: 190/Bootstrap validation: 10,000 replications | Healthy older adults | Caucasian | M & F | 60–90 |
Takai et al., 2014 [21] | B-mode (Aloka SSD-900) | DXA | Development: 77 | Healthy adults and older adults | Asian | M & F | 52–78 |
Yuguchi et al., 2022 [20] | B-mode (Minato Medical Science Co.) | BIA | Development: 193 | Healthy older adults | Asian | M & F | ≥65 |
Paris et al., 2017 [38] | B-mode (M-Turbo, SonoSite) | DXA | Development: 96/Cross-validation: 96 | Healthy adults and older adults | Caucasian | M & F | 24–72 |
Author, Year | Equation Outcome | No. of Parameters | Equation | SEE (kg) | R2 | Adjusted R2 |
---|---|---|---|---|---|---|
Abe et al., 2015 [46] | ALM | 5 | ALM (kg) = 4.32 × MT-FA (cm) + 2.98 × MT-UA (cm) + 2.85 × MT-LA (cm) + 0.97 × MT-TP (cm) + 0.94 × MT-LP (cm) − 23.12 | 1.5 | 0.9 | 0.94 |
7 | ALM (kg) = 3.67 × MT-FA (cm) + 2.84 × MT-UA + 2.58 × MT-LA + 1.05 × MT-TP + 0.93 × MT-LP + 0.069 × age + 0.79 × MT-TA − 27.63 | 1.4 | 0.9 | 0.95 | ||
Abe et al., 2018 [47] | ALM | 4 | ALM = −2.0940 + (sex × 4.1273) − (age × 0.0094) + (MT-FA × height × 3.5699) − (sex × age × 0.0307) − (sex × MT-FA × height × 0.8349) | — | 0.8 | 0.86 |
7 | ALM = −7.9116 + (sex × 5.1693) + (age × 0.0345) + (MT forearm anterior × height × 2.2752) + (MT-UA × height × 0.0743) + (MT-TA × height × 0.4927) + (MT-LA × height × 1.4892) − (sex × age × 0.0380) − (sex × MT-FA × height × 0.3379) − (sex × MT-UA × height × 0.1263) − (sex × MT-TA × height × 0.1754) − (sex × MT-LA × height × 0.3083) | — | 0.9 | 0.89 | ||
Barbosa-Silva et al., 2021 [19] | AMM | 7 | ALM = 3.27 × sex (0 = F, 1 = M) + 16 × height (m) + 0.2 × arm length (cm) + 0.09 × dominant arm circumference (cm) + 0.04 × dominant thigh circumference (cm) + 1.25 × dominant arm MT (cm) + 0.72 × dominant thigh MT (cm) − 24.9 | 1.23 | - | 0.90 |
5 | ALM = 2.39 × sex + 15.14 × height (m) + 0.29 × arm length (cm) + 1.93 × dominant arm MT + 0.87 × dominant thigh MT − 23.78 | 1.3 | - | 0.89 | ||
Takai et al., 2014 [21] | FFM | 5 | FFM = (sex × 7.217) + (MT-TA × 1.985) + (MT-TP × 2.355) + (MT-LA × 3.633) + (MT-LP × 2.670) − 6.759 | 2.5 | 0.9 | — |
5 | FFM = (sex × 5.233) + (MT × upper arm anterior length × 0.006630) + (MT × thigh anterior length × 0.05153) + (MT × thigh posterior length × 0.05579) + (MT × lower leg posterior length × 0.07097) + 1.774 | 2.0 | 0.9 | — | ||
Yuguchi et al., 2022 [20] | SMMI | 3 | SMI = 1.27 × sex + 0.18 × BMI + 0.09 × MT gastrocnemius (mm) + 1.3 | — | 0.8 | 0.80 |
Paris et al., 2017 [38] | AMM | 7 | ALM = 2.929 + 1.555 × (five-site MT × height) − 1.985 × sex (male = 0; female = 1) + 0.0247 × age | 1.6 | — | 0.91 |
3.3. Ultrasound for Body Fat Assessment in Older Adults
Author (Year) | Ultrasound Type | Reference Method | Sample Size | Population | Ethnicity | Sex | Age (Years) |
---|---|---|---|---|---|---|---|
Gomez-Perez et al., 2021 [23] | B-mode (L12-4, Philips Ultrasound) | DXA | Development: 104 | Healthy adults and older adults | Caucasian | M & F | M: 61.46 ± 6.05/F: 59.71 ± 6.33 |
Thiebaud et al., 2019 [51] | B-mode (Aloka SSD-500) | DXA | Development: 276/Cross-validation: 138 | Healthy adults and older adults | Asian | M & F | 50–79 |
Author (Year) | Equation Outcome | No. of Parameters | Equation | SEE (%) | R2 | Adjusted R2 |
---|---|---|---|---|---|---|
Gomez-Perez et al., 2021 [23] | %BF | 2 | For men: 6.19 + (0.59 × BMI) + (3.26 × ASFT) | 2.0 | 0.8 | 0.79 |
2 | For women: 19.16 + (0.74 × BMI) + (0.50 × ASFT) | 1.9 | 0.7 | 0.71 | ||
Thiebaud et al., 2019 [51] | %BF | 7 | %BF = 15.709 + (1.753 × anterior trunk SFT) + (5.626 × sex [1 = M; 2 = F]) + (3.635 × posterior upper arm SFT) − (4.428 × anterior lower leg SFT) − (0.170 × height) + (0.264 × WC) + (2.241 × anterior thigh SFT) | 3.3 | 0.8 | 0.80 |
Study (Year) | Advantages | Disadvantages |
---|---|---|
Abe et al. (2015) [46] | High correlation with DXA; non-invasive. | Limited ethnic diversity. |
Abe et al. (2018) [47] | High correlation with DXA; non-invasive. | Limited ethnic diversity. |
Barbosa-Silva et al. (2021) [19] | Simple, practical equation. | US measurements were collected and evaluated by a single evaluator. |
Takai et al. (2014) [21] | Easy to apply. | Individuals with a BMI below 30 kg/m2 participated. Studies on people with obesity are needed. |
Paris et al. (2017) [38] | Clinically viable. | Applicability is limited for people with low lean mass; two fixed raters to carry out the analyses. |
Yuguchi et al. (2022) [20] | Quick estimate of skeletal muscle index. | Population-specific; lacks DXA comparison. |
Thiebaud et al. (2019) [51] | Direct fat measurement; non-invasive. | Plos limits of agreement between the equations and DXA may not be accurate in a clinical setting. |
Gomez-Perez et al. (2021) [23] | Good agreement; suitable for bedside use. | %BF: Women had a high degree of bias. |
4. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gába, A.; Přidalová, M. Age-Related Changes in Body Composition in a Sample of Czech Women Aged 18-89 Years: A Cross-Sectional Study. Eur. J. Nutr. 2014, 53, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Seino, S.; Shinkai, S.; Iijima, K.; Obuchi, S.; Fujiwara, Y.; Yoshida, H.; Kawai, H.; Nishi, M.; Murayama, H.; Taniguchi, Y.; et al. Reference Values and Age Differences in Body Composition of Community-Dwelling Older Japanese Men and Women: A Pooled Analysis of Four Cohort Studies. PLoS ONE 2015, 10, e0131975. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.M.; Siervo, M.; Mire, E.; Heymsfield, S.B.; Stephan, B.C.M.; Broyles, S.; Smith, S.R.; Wells, J.C.K.; Katzmarzyk, P.T. A Population-Based Approach to Define Body-Composition Phenotypes. Am. J. Clin. Nutr. 2014, 99, 1369–1377. [Google Scholar] [CrossRef]
- Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M. Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; a Quantitative Review. Front. Physiol. 2012, 3, 260. [Google Scholar] [CrossRef]
- Fernandes, L.V.; Paiva, A.E.G.; Silva, A.C.B.; de Castro, I.C.; Santiago, A.F.; de Oliveira, E.P.; Porto, L.C.J. Prevalence of Sarcopenia According to EWGSOP1 and EWGSOP2 in Older Adults and Their Associations with Unfavorable Health Outcomes: A Systematic Review. Aging Clin. Exp. Res. 2021, 34, 505–514. [Google Scholar] [CrossRef]
- Tieland, M.; Trouwborst, I.; Clark, B.C. Skeletal Muscle Performance and Ageing. J. Cachexia Sarcopenia Muscle 2018, 9, 3–19. [Google Scholar] [CrossRef]
- Tagliafico, A.S.; Bignotti, B.; Torri, L.; Rossi, F. Sarcopenia: How to Measure, When and Why. Radiol. Medica 2022, 127, 228–237. [Google Scholar] [CrossRef]
- Spahillari, A.; Mukamal, K.J.; DeFilippi, C.; Kizer, J.R.; Gottdiener, J.S.; Djoussé, L.; Lyles, M.F.; Bartz, T.M.; Murthy, V.L.; Shah, R.V. The Association of Lean and Fat Mass with All-Cause Mortality in Older Adults: The Cardiovascular Health Study. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 1039–1047. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, D.; Liu, J.; Song, Y.; Jiang, B.; Jiang, H. Low Skeletal Muscle Mass Index and All-Cause Mortality Risk in Adults: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. PLoS ONE 2023, 18, e0286745. [Google Scholar] [CrossRef]
- Varghese, M.; Song, J.; Singer, K. Age and Sex: Impact on Adipose Tissue Metabolism and Inflammation. Mech. Ageing Dev. 2021, 199, 111563. [Google Scholar] [CrossRef]
- Kim, S.; Won, C.W. Sex-Different Changes of Body Composition in Aging: A Systemic Review. Arch. Gerontol. Geriatr. 2022, 102, 104711. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.; Cummings, D.E.; Eckel, R.H.; Cohen, R.V.; Wilding, J.P.H.; Brown, W.A.; Stanford, F.C.; Batterham, R.L.; Farooqi, I.S.; Farpour-Lambert, N.J.; et al. Definition and Diagnostic Criteria of Clinical Obesity. Lancet Diabetes Endocrinol. 2025, 13, 221–262. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.B.; Visser, M.; Kritchevsky, S.B.; Simonsick, E.; Cawthon, P.M.; Harris, T.B. The Health, Aging, and Body Composition (Health ABC) Study-Ground-Breaking Science for 25 Years and Counting. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2023, 78, 2024–2034. [Google Scholar] [CrossRef] [PubMed]
- Prado, C.M.; Ford, K.L.; Gonzalez, M.C.; Murnane, L.C.; Gillis, C.; Wischmeyer, P.E.; Morrison, C.A.; Lobo, D.N. Nascent to Novel Methods to Evaluate Malnutrition and Frailty in the Surgical Patient. J. Parenter. Enter. Nutr. 2023, 47, S54–S68. [Google Scholar] [CrossRef]
- Price, K.L.; Earthman, C.P. Update on Body Composition Tools in Clinical Settings: Computed Tomography, Ultrasound, and Bioimpedance Applications for Assessment and Monitoring. Eur. J. Clin. Nutr. 2019, 73, 187–193. [Google Scholar] [CrossRef]
- Prado, C.M.; Landi, F.; Chew, S.T.H.; Atherton, P.J.; Molinger, J.; Ruck, T.; Gonzalez, M.C. Advances in Muscle Health and Nutrition: A Toolkit for Healthcare Professionals. Clin. Nutr. 2022, 41, 2244–2263. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.G.; Bauer, J.J.; Boirie, Y.; Bruyere, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, M.; Yoon, J.; Lee, S.; Youm, S. Machine Learning-Based Obesity Classification Considering 3D Body Scanner Measurements. Sci. Rep. 2023, 13, 3299. [Google Scholar] [CrossRef]
- Barbosa-Silva, T.G.; Gonzalez, M.C.; Bielemann, R.M.; Santos, L.P.; dos Costa, C.S.; Menezes, A.M.B. 2 + 2 (+ 2) = 4: A New Approach for Appendicular Muscle Mass Assessment by Ultrasound. Nutrition 2021, 83, 111056. [Google Scholar] [CrossRef]
- Yuguchi, S.; Asahi, R.; Kamo, T.; Azami, M.; Ogihara, H. Prediction Model Including Gastrocnemius Thickness for the Skeletal Muscle Mass Index in Japanese Older Adults. Int. J. Environ. Res. Public Health 2022, 19, 4042. [Google Scholar] [CrossRef]
- Takai, Y.; Ohta, M.; Akagi, R.; Kato, E.; Wakahara, T.; Kawakami, Y.; Fukunaga, T.; Kanehisa, H. Applicability of Ultrasound Muscle Thickness Measurements for Predicting Fat-Free Mass in Elderly Population. J. Nutr. Heal. Aging 2014, 18, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Yeung, S.S.Y.; Reijnierse, E.M.; Pham, V.K.; Trappenburg, M.C.; Lim, W.K.; Meskers, C.G.M.; Maier, A.B. Sarcopenia and Its Association with Falls and Fractures in Older Adults: A Systematic Review and Meta-Analysis. J. Cachexia Sarcopenia Muscle 2019, 10, 485–500. [Google Scholar] [CrossRef]
- Gomez-Perez, S.L.; Zhang, Y.; Mourtzakis, M.; Tussing-Humphreys, L.; Ridlon, J.; Gaskins, H.R.; Mutlu, E. Comparison between Handheld Ultrasound and Regional and Whole-Body Dual Energy x-Ray Absorptiometry (DXA) for Body Fat Assessment. Clin. Nutr. ESPEN 2021, 46, 386–393. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, J.; Buzzatti, L.; Jager-Wittenaar, H.; Perkisas, S.; Scafoglieri, A. The Validity of Ultrasound-Derived Equation Models to Predict Whole-Body Muscle Mass: A Systematic Review. Clin. Nutr. ESPEN 2021, 46, 133–141. [Google Scholar] [CrossRef]
- Kokura, Y.; Nishioka, S.; Maeda, K.; Wakabayashi, H. Ultrasound Utilized by Registered Dietitians for Body Composition Measurement, Nutritional Assessment, and Nutritional Management. Clin. Nutr. ESPEN 2023, 57, 173–180. [Google Scholar] [CrossRef]
- Akazawa, N.; Kishi, M.; Hino, T.; Tsuji, R.; Tamura, K.; Moriyama, H. Using GLIM Criteria, Cutoff Value for Low BMI in Asian Populations Discriminates High or Low Muscle Mass: A Cross-Sectional Study. Nutrition 2021, 81, 110928. [Google Scholar] [CrossRef]
- Rodrigues, C.N.; Ribeiro Henrique, J.; Ferreira, Á.R.S.; Correia, M.I.T.D. Ultrasonography and Other Nutrition Assessment Methods to Monitor the Nutrition Status of Critically Ill Patients. J. Parenter. Enter. Nutr. 2021, 45, 982–990. [Google Scholar] [CrossRef]
- Van Ruijven, I.M.; Stapel, S.N.; Molinger, J.; Weijs, P.J.M. Monitoring Muscle Mass Using Ultrasound: A Key Role in Critical Care. Curr. Opin. Crit. Care 2021, 27, 354–360. [Google Scholar] [CrossRef]
- Jahreis, T.; Kretschmann, J.; Weidner, N.; Volk, T.; Meiser, A.; Groesdonk, H.V. Sonographic Evaluation of Gastric Residual Volume during Enteral Nutrition in Critically Ill Patients Using a Miniaturized Ultrasound Device. J. Clin. Med. 2021, 10, 4859. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM Criteria for the Diagnosis of Malnutrition—A Consensus Report from the Global Clinical Nutrition Community. Clin. Nutr. 2019, 38, 207–217. [Google Scholar] [CrossRef]
- De Nutricionistas-CFN, Conselho Federal. Uso de Ultrassonografia Para Avaliação de Composição Corporal Pelo Nutricionista. CFN—Nota Técnica No. 83/2023. 2023. Available online: https://www.cfn.org.br/wp-content/uploads/2023/11/Uso-de-ultrassonografia-para-avalia%C3%A7%C3%A3o-de-composi%C3%A7%C3%A3o-corporal-pelo-nutricionista..pdf (accessed on 19 September 2023).
- Nijholt, W.; Scafoglieri, A.; Jager-Wittenaar, H.; Hobbelen, J.S.M.; van der Schans, C.P. The Reliability and Validity of Ultrasound to Quantify Muscles in Older Adults: A Systematic Review. J. Cachexia Sarcopenia Muscle 2017, 8, 702–712. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.F.; da Silva, E.B.; Bomfim, A.B.C. Validity and Reliability of Portable A-Mode Ultrasound in Measuring Body Fat Percentage: A Systematic Review with Meta-Analysis. PLoS ONE 2024, 19, e0292872. [Google Scholar] [CrossRef]
- Zhao, R.; Li, X.; Jiang, Y.; Su, N.; Li, J.; Kang, L.; Zhang, Y.; Yang, M. Evaluation of Appendicular Muscle Mass in Sarcopenia in Older Adults Using Ultrasonography: A Systematic Review and Meta-Analysis. Gerontology 2022, 68, 1174–1198. [Google Scholar] [CrossRef] [PubMed]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA Una Escala Para La Evaluación de La Calidad de Los Artículos de Revisión Narrativa. [SANRA—A Scale for the Quality Assessment of Narrative Review Articles]. Res. Integr. Peer Rev. 2019, 4, 2–8. [Google Scholar] [CrossRef]
- Holmes, C.J.; Racette, S.B. The Utility of Body Composition Assessment in Nutrition and Clinical Practice: An Overview of Current Methodology. Nutrients 2021, 13, 2493. [Google Scholar] [CrossRef]
- Wagner, D.R.; Teramoto, M.; Judd, T.; Gordon, J.; McPherson, C.; Robison, A. Comparison of A-Mode and B-Mode Ultrasound for Measurement of Subcutaneous Fat. Ultrasound Med. Biol. 2020, 46, 944–951. [Google Scholar] [CrossRef]
- Paris, M.T.; Lafleur, B.; Dubin, J.A.; Mourtzakis, M. Development of a Bedside Viable Ultrasound Protocol to Quantify Appendicular Lean Tissue Mass. J. Cachexia Sarcopenia Muscle 2017, 8, 713–726. [Google Scholar] [CrossRef]
- Tang, X.; Huang, L.; Yue, J.; Qiu, L. Quantitative Estimation of Muscle Mass in Older Adults at Risk of Sarcopenia Using Ultrasound: A Cross-Sectional Study. Quant. Imaging Med. Surg. 2022, 12, 2498–2508. [Google Scholar] [CrossRef]
- Ido, A.; Nakayama, Y.; Ishii, K.; Iemitsu, M.; Sato, K.; Fujimoto, M.; Kurihara, T.; Hamaoka, T.; Satoh-Asahara, N.; Sanada, K. Ultrasound-Derived Abdominal Muscle Thickness Better Detects Metabolic Syndrome Risk in Obese Patients than Skeletal Muscle Index Measured by Dual-Energy X-Ray Absorptiometry. PLoS ONE 2015, 10, e0143858. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Ikezoe, T.; Taniguchi, M.; Yamada, Y.; Sawano, S.; Minani, S.; Asai, T.; Kimura, M.; Ichihashi, N. Cut-off Values for Lower Limb Muscle Thickness to Detect Low Muscle Mass for Sarcopenia in Older Adults. Clin. Interv. Aging 2021, 16, 1215–1222. [Google Scholar] [CrossRef]
- Abe, T.; Loenneke, J.P.; Thiebaud, R.S. The Use of Ultrasound for the Estimation of Muscle Mass: One Site Fits Most? J. Cachexia Sarcopenia Muscle 2018, 9, 213–214. [Google Scholar] [CrossRef]
- Lunet, N.; Severo, M.; Barros, H. Desvio Padrão Ou Erro Padrão. Arq. Med. 2006, 20, 55–56. [Google Scholar]
- Lohman, T.G. Advances in Body Composition Assessment; Human Kinetics: Champaign, IL, USA, 1992. [Google Scholar]
- Dodge, Y. Coefficient of Determination. In The Concise Encyclopedia of Statistics; Springer: New York, NY, USA, 2008; pp. 88–91. [Google Scholar]
- Abe, T.; Thiebaud, R.S.; Loenneke, J.P.; Young, K.C. Prediction and Validation of DXA-Derived Appendicular Lean Soft Tissue Mass by Ultrasound in Older Adults. Age 2015, 37, 114. [Google Scholar] [CrossRef]
- Abe, T.; Thiebaud, R.S.; Loenneke, J.P.; Fujita, E.; Akamine, T. DXA-Rectified Appendicular Lean Mass: Development of Ultrasound Prediction Models in Older Adults. J. Nutr. Heal. Aging 2018, 22, 1080–1085. [Google Scholar] [CrossRef]
- Chandler, A.J.; Dona, S.T.; Cintineo, H.P.; Mcfadden, B.A.; Sanders, D.J.; Monaco, R.; Arent, S.M. Intra- and Inter-Rater Reliability of Assessing Body Composition Using B-Mode Ultrasound in Conjunction with Artificial Intelligence Software. J. Exerc. Nutr. 2020, 3, 1–8. [Google Scholar]
- Buxadé, C.P.C.; Solà-Perez, T.; Castizo-Olier, J.; Carrasco-Marginet, M.; Roy, A.; Marfell-Jones, M.; Irurtia, A. Assessing Subcutaneous Adipose Tissue by Simple and Portable Field Instruments: Skinfolds versus A-Mode Ultrasound Measurements. PLoS ONE 2018, 13, e0205226. [Google Scholar] [CrossRef]
- De Oliveira, G.B.; Fernandes, L.V.; Chen, X.S.; Andrade, F.C.D.; Costa, L.S.; Vasques, A.C.J.; Corona, L.P. Intra- and Inter-Rater Reliability of Muscle and Fat Thickness Measurements Obtained Using Portable Ultrasonography in Older Adults. Clin. Nutr. ESPEN 2024, 60, 65–72. [Google Scholar] [CrossRef]
- Thiebaud, R.S.; Abe, T.; Loenneke, J.P.; Fujita, E.; Akamine, T. Body Fat Percentage Assessment by Ultrasound Subcutaneous Fat Thickness Measurements in Middle-Aged and Older Adults. Clin. Nutr. 2019, 38, 2659–2667. [Google Scholar] [CrossRef]
- Jeong, S.M.; Lee, D.H.; Rezende, L.F.M.; Giovannucci, E.L. Different Correlation of Body Mass Index with Body Fatness and Obesity-Related Biomarker According to Age, Sex and Race-Ethnicity. Sci. Rep. 2023, 13, 3472. [Google Scholar] [CrossRef]
- Heymsfield, S.B.; Peterson, C.M.; Thomas, D.M.; Heo, M.; Schuna, J.M. Why Are There Race/Ethnic Differences in Adult Body Mass Index–Adiposity Relationships? A Quantitative Critical Review. Obes. Rev. 2016, 17, 262–275. [Google Scholar] [CrossRef]
- Callegari-Jacques, S.M.; Grattapaglia, D.; Salzano, F.M.; Salamoni, S.P.; Crossetti, S.G.; Ferreira, M.E.; Hutz, M.H. Historical Genetics: Spatiotemporal Analysis of the Formation of the Brazilian Population. Am. J. Hum. Biol. 2003, 15, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Miclos-Balica, M.; Muntean, P.; Schick, F.; Haragus, H.G.; Glisici, B.; Pupazan, V.; Neagu, A.; Neagu, M. Reliability of Body Composition Assessment Using A-Mode Ultrasound in a Heterogeneous Sample. Eur. J. Clin. Nutr. 2020, 75, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Müller, W.; Lohman, T.G.; Stewart, A.D.; Maughan, R.J.; Meyer, N.L.; Sardinha, L.B.; Kirihennedige, N.; Reguant-Closa, A.; Risoul-Salas, V.; Sundgot-Borgen, J.; et al. Subcutaneous Fat Patterning in Athletes: Selection of Appropriate Sites and Standardisation of a Novel Ultrasound Measurement Technique: Ad Hoc Working Group on Body Composition, Health and Performance, under the Auspices of the IOC Medical Commission. Br. J. Sports Med. 2016, 50, 45–54. [Google Scholar] [CrossRef]
- Wagner, D.R. Ultrasound as a Tool to Assess Body Fat. J. Obes. 2013, 2013, 280713. [Google Scholar] [CrossRef]
- Nagae, M.; Umegaki, H.; Yoshiko, A.; Fujita, K. Muscle Ultrasound and Its Application to Point-of-Care Ultrasonography: A Narrative Review. Ann. Med. 2023, 55, 190–197. [Google Scholar] [CrossRef]
- Ticinesi, A.; Meschi, T.; Narici, M.V.; Lauretani, F.; Maggio, M. Muscle Ultrasound and Sarcopenia in Older Individuals: A Clinical Perspective. J. Am. Med. Dir. Assoc. 2017, 18, 290–300. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, L.V.; de Oliveira, G.B.; Vasques, A.C.J.; Corona, L.P. Equations for Assessing Body Composition by Ultrasound in Older Adults: A Narrative Review. Healthcare 2025, 13, 1295. https://doi.org/10.3390/healthcare13111295
Fernandes LV, de Oliveira GB, Vasques ACJ, Corona LP. Equations for Assessing Body Composition by Ultrasound in Older Adults: A Narrative Review. Healthcare. 2025; 13(11):1295. https://doi.org/10.3390/healthcare13111295
Chicago/Turabian StyleFernandes, Lara Vilar, Gabriela Benatti de Oliveira, Ana Carolina Junqueira Vasques, and Ligiana Pires Corona. 2025. "Equations for Assessing Body Composition by Ultrasound in Older Adults: A Narrative Review" Healthcare 13, no. 11: 1295. https://doi.org/10.3390/healthcare13111295
APA StyleFernandes, L. V., de Oliveira, G. B., Vasques, A. C. J., & Corona, L. P. (2025). Equations for Assessing Body Composition by Ultrasound in Older Adults: A Narrative Review. Healthcare, 13(11), 1295. https://doi.org/10.3390/healthcare13111295