Association Between Healthy Lifestyle and Cognitive Function in Middle-Aged and Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants and Recruitment
2.3. Sampling
2.4. Data Collection
2.4.1. Sociodemographic and Medical Data
2.4.2. Anthropometric Parameters
2.4.3. Cognitive Function
2.4.4. Lifestyle Factor Assessment
- Dietary intake
- Physical activity
- Smoking status
2.5. Variables
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Participants
3.2. Association of Healthy Lifestyle with the MoCA Cognitive Domains
3.3. Association of Diet Quality, Physical Activity, and Smoking with Cognitive Performance
3.4. Diet Quality and Nutrient Intakes Differences in Group with Normal and Poor Cognitive Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MoCA | Montreal Cognitive Assessment |
DQI-I | Diet Quality Index-International |
IPAQ | International Physical Activity Questionnaire |
DASH | Dietary Approaches to Stop Hypertension |
MMSE | Mini-Mental State Examination |
AMT-4 | Abbreviated Mental Test |
BMI | Body mass index |
ASA-24 | Automated Self-Administered Dietary Assessment tool |
MET | The metabolic equivalent of task |
DHA | Docosahexaenoic acid |
References
- Gu, D.; Andreev, K.; Dupre, M.E. Major Trends in Population Growth around the World. China CDC Wkly. 2021, 3, 604–613. [Google Scholar] [CrossRef] [PubMed]
- Al-Khraif, R.; Abdul Salam, A.; Abdul Rashid, M.F. Family Demographic Transition in Saudi Arabia: Emerging Issues and Concerns. SAGE Open 2020, 10, 2158244020914556. [Google Scholar] [CrossRef]
- World Health Organization (WHO). World Report on Ageing and Health. Available online: https://www.who.int/publications/i/item/9789241565042 (accessed on 13 October 2024).
- Zhang, Q.; Wu, Y.; Han, T.; Environmental, E.L.-I. Changes in Cognitive Function and Risk Factors for Cognitive Impairment of the Elderly in China: 2005–2014. Int. J. Environ. Res. Public Health 2019, 16, 2847. [Google Scholar] [CrossRef]
- da Silva, H.S.; Gutierrez, B.A.O. Care Complexity in Hospitalized Elderly According to Cognitive Performance. Rev. Bras. Enferm. 2019, 72, 134–139. [Google Scholar] [CrossRef]
- Sharif, L.; Yaghmour, S.; AlKaf, N.; Fageera, R.; Alotaibi, L.; Attar, M.; Almutairy, A.; Sharif, K.; Mahsoon, A. Caring for People Living with Dementia in Saudi Arabia: The Perspective of Nurses as Primary Caregivers. Inq. J. Healthc. Organ. Provis. Financ. 2024, 61, 469580241248125. [Google Scholar] [CrossRef]
- Wimo, A.; Seeher, K.; Cataldi, R.; Cyhlarova, E.; Dielemann, J.L.; Frisell, O.; Guerchet, M.; Jönsson, L.; Malaha, A.K.; Nichols, E.; et al. The Worldwide Costs of Dementia in 2019. Alzheimer’s Dement. 2023, 19, 2865–2873. [Google Scholar] [CrossRef]
- Cao, Q.; Tan, C.C.; Xu, W.; Hu, H.; Cao, X.P.; Dong, Q.; Tan, L.; Yu, J.T. The Prevalence of Dementia: A Systematic Review and Meta-Analysis. J. Alzheimer’s Dis. 2020, 73, 1157–1166. [Google Scholar] [CrossRef]
- Avan, A.; Hachinski, V. Global, Regional, and National Trends of Dementia Incidence and Risk Factors, 1990–2019: A Global Burden of Disease Study. Alzheimer’s Dement. 2023, 19, 1281–1291. [Google Scholar] [CrossRef]
- Tosti, B.; Corrado, S.; Mancone, S.; Di Libero, T.; Rodio, A.; Andrade, A.; Diotaiuti, P. Integrated Use of Biofeedback and Neurofeedback Techniques in Treating Pathological Conditions and Improving Performance: A Narrative Review. Front. Neurosci. 2024, 18, 1358481. [Google Scholar] [CrossRef]
- Dessy, E.; Van Puyvelde, M.; Mairesse, O.; Neyt, X.; Pattyn, N. Cognitive Performance Enhancement: Do Biofeedback and Neurofeedback Work? J. Cogn. Enhanc. 2017, 2, 12–42. [Google Scholar] [CrossRef]
- Huang, Z.; Guo, Y.; Ruan, Y.; Sun, S.; Lin, T.; Ye, J.; Li, J.; He, L.; Wang, S.; Shi, Y.; et al. Associations of Lifestyle Factors with Cognition in Community-Dwelling Adults Aged 50 and Older: A Longitudinal Cohort Study. Front. Aging Neurosci. 2020, 12, 601487. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S. Lifestyles and Cognition. Integr. J. Med. Sci. 2021, 8, 399. [Google Scholar] [CrossRef]
- Noach, S.; Witteman, B.; Boss, H.M.; Janse, A. Effects of Multidomain Lifestyle Interventions on Cognitive Decline and Alzheimer’s Disease Prevention: A Literature Review and Future Recommendations. Cereb. Circ.—Cogn. Behav. 2023, 4, 100166. [Google Scholar] [CrossRef]
- Alshammari, S.A.; Alhamdan, A.A.; Bindawas, S.M.; Al-Amoud, M.M.; Al-Orf, S.M.; Al-Muammar, M.N.; Calder, P.C. Assessing the Cognitive Status of Older Adults Attending Primary Healthcare Centers in Saudi Arabia Using the Mini-Mental State Examination. Saudi Med. J. 2020, 41, 1315–1323. [Google Scholar] [CrossRef]
- Alsebayel, F.M.; Alangari, A.M.; Almubarak, F.H.; Alhamwy, R. Prevalence of Dementia and Its Associated Risk Factors among Geriatric Patients Visiting Primary Healthcare Centers in Riyadh, Saudi Arabia: A Cross-Sectional Study. Cureus 2022, 14, e24394. [Google Scholar] [CrossRef]
- Wong, M.Y.C.; Karmakar, P.; Almarzooqi, M.A.; Rhodes, R.E.; Zhang, C.-Q.; Ou, K.-L.; Yanping, D.; Chung, P.K.; Alghamdi, N.A. The Effects of Walking on Frailty, Cognitive Function and Quality of Life among Inactive Older Adults in Saudi Arabia: A Study Protocol of Randomized Control Trial by Comparing Supervised Group-Based Intervention and Non-Supervised Individual-Based Interv. BMC Geriatr. 2023, 23, 602. [Google Scholar] [CrossRef]
- Karmakar, P.; Wong, M.Y.; AlMarzooqi, M.A.; Alghamdi, N.; Ou, K.; Duan, Y.; Rhodes, R.E.; Zhang, C.Q. Enhancing Physical and Psychosocial Health of Older Adults in Saudi Arabia through Walking: Comparison between Supervised Group-Based and Non-Supervised Individual-Based Walking. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 2342–2357. [Google Scholar] [CrossRef]
- Naaman, R.K. Nutrition Behavior and Physical Activity of Middle-Aged and Older Adults in Saudi Arabia. Nutrients 2022, 14, 3994. [Google Scholar] [CrossRef]
- Khoja, A.T.; Aljawadi, M.H.; Al-Shammari, S.A.; Mohamed, A.G.; Al-Manaa, H.A.; Morlock, L.; Ahmed, S.; Khoja, T.A.M. The Health of Saudi Older Adults; Results from the Saudi National Survey for Elderly Health (SNSEH) 2006–2015. Saudi Pharm. J. 2018, 26, 292–300. [Google Scholar] [CrossRef]
- Hodkinson, H.M. Evaluation of a Mental Test Score for Assessment of Mental Impairment in the Elderly. Age Ageing 1972, 1, 233–238. [Google Scholar] [CrossRef]
- Swain, D.G.; Nightingale, P.G. Evaluation of a Shortened Version of the Abbreviated Mental Test in a Series of Elderly Patients. Clin. Rehabil. 2016, 11, 243–248. [Google Scholar] [CrossRef] [PubMed]
- General Authority for Statistics Kingdom of Saudi Arabia. Population in Kingdom by Gender, Age Group, and Nationality (Saudi/Non-Saudi). Available online: https://www.stats.gov.sa/en/w/population-by-gender-age-groups-and-nationality-saudi/non-saudi- (accessed on 1 November 2020).
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Subar, A.F.; Kirkpatrick, S.I.; Mitti, B.; Zimmerman, T.P.; Thompson, F.E.; Bingley, C.; Willis, G.; Islam, N.G.; Baranowski, T.; McNutt, S.; et al. The Automated Self-Administered 24-Hour Dietary Recall (ASA24): A Resource for Researchers, Clinicians, and Educators from the National Cancer Institute. J. Acad. Nutr. Diet. 2012, 112, 1134–1137. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Haines, P.S.; Siega-Riz, A.M.; Popkin, B.M. The Diet Quality Index-International (DQI-I) Provides an Effective Tool for Cross-National Comparison of Diet Quality as Illustrated by China and the United States. J. Nutr. 2003, 133, 3476–3484. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. Dietary Guidelines for Americans 2020–2025. Available online: https://www.dietaryguidelines.gov/sites/default/files/2020-12/Dietary_Guidelines_for_Americans_2020-2025.pdf (accessed on 11 June 2024).
- IPAQ. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)—Short and Long Forms. Available online: https://sites.google.com/view/ipaq/score?authuser=0 (accessed on 11 October 2023).
- World Health Organization (WHO). Physical Activity. Available online: https://www.who.int/news-room/fact-sheets/detail/physical-activity (accessed on 12 September 2024).
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; U.S. Department of Health and Human Services: Washington, DC, USA, 2018. Available online: https://health.gov/sites/default/files/2019-09/Physical_Activity_Guidelines_2nd_edition.pdf (accessed on 15 June 2024).
- Zhu, N.; Jacobs, D.R.; Meyer, K.A.; He, K.; Launer, L.; Reis, J.P.; Yaffe, K.; Sidney, S.; Whitmer, R.A.; Steffen, L.M. Cognitive Function in a Middle Aged Cohort Is Related to Higher Quality Dietary Pattern 5 and 25 Years Earlier: The Cardia Study. J. Nutr. Health Aging 2015, 19, 33–38. [Google Scholar] [CrossRef]
- Qi, C.; Wang, X.; Li, D.; Ding, H.; Shen, J.; Jiao, Y.; Lu, W.; Xi, Y. The Role of Physical Function and Physical Activity on Cognitive Function in the Elderly. Glob. Transit. 2024, 6, 85–92. [Google Scholar] [CrossRef]
- Innocenti, A.; Cammisuli, D.M.; Sgromo, D.; Franzoni, F.; Fusi, J.; Galetta, F.; Pruneti, C. Lifestyle, Physical Activity and Cognitive Functions: The Impact on the Scores of Montreal Cognitive Assessment (MoCA). Arch. Ital. Biol. 2017, 155, 25–32. [Google Scholar] [CrossRef]
- Lewis, C.R.; Talboom, J.S.; De Both, M.D.; Schmidt, A.M.; Naymik, M.A.; Håberg, A.K.; Rundek, T.; Levin, B.E.; Hoscheidt, S.; Bolla, Y.; et al. Smoking Is Associated with Impaired Verbal Learning and Memory Performance in Women More than Men. Sci. Rep. 2021, 11, 10248. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, Z.; Fu, X.; Han, P.; Xu, W.; Cao, L.; Guo, Q. Adherence to a Healthy Lifestyle and Its Association with Cognitive Impairment in Community-Dwelling Older Adults in Shanghai. Front. Public Health 2023, 11, 1291458. [Google Scholar] [CrossRef]
- Elwood, P.; Galante, J.; Pickering, J.; Palmer, S.; Bayer, A.; Ben-Shlomo, Y.; Longley, M.; Gallacher, J. Healthy Lifestyles Reduce the Incidence of Chronic Diseases and Dementia: Evidence from the Caerphilly Cohort Study. PLoS ONE 2013, 8, e81877. [Google Scholar] [CrossRef]
- Ngandu, T.; Lehtisalo, J.; Korkki, S.; Solomon, A.; Coley, N.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Lindström, J.; Laatikainen, T.; et al. The Effect of Adherence on Cognition in a Multidomain Lifestyle Intervention (FINGER). Alzheimer’s Dement. 2021, 18, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Küster, O.C.; Fissler, P.; Laptinskaya, D.; Thurm, F.; Scharpf, A.; Woll, A.; Kolassa, S.; Kramer, A.F.; Elbert, T.; von Arnim, C.A.F.; et al. Cognitive Change Is More Positively Associated with an Active Lifestyle than with Training Interventions in Older Adults at Risk of Dementia: A Controlled Interventional Clinical Trial. BMC Psychiatry 2016, 16, 315. [Google Scholar] [CrossRef] [PubMed]
- Aridi, Y.S.; Walker, J.L.; Wright, O.R.L. The Association between the Mediterranean Dietary Pattern and Cognitive Health: A Systematic Review. Nutrients 2017, 9, 674. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, C.T.; Guyer, H.; Langa, K.M.; Yaffe, K. Neuroprotective Diets Are Associated with Better Cognitive Function: The Health and Retirement Study. J. Am. Geriatr. Soc. 2017, 65, 1857–1862. [Google Scholar] [CrossRef]
- National Institute of Health. Nutrient Recommendations and Databases. Available online: https://ods.od.nih.gov/HealthInformation/nutrientrecommendations.aspx (accessed on 2 May 2025).
- Gong, Y.; Chen, H.; Gu, Y.; Shen, J.; Shen, T.; Ding, Y.; Lu, M.; Huang, L.; Yan, M.; Song, P.; et al. Healthy Dietary Patterns in Relation to Cognitive Performance and Alzheimer’s Disease Mortality. J. Prev. Alzheimer’s Dis. 2025, 12, 100100. [Google Scholar] [CrossRef]
- Pikor, D.; Hurła, M.; Słowikowski, B.; Szymanowicz, O.; Poszwa, J.; Banaszek, N.; Drelichowska, A.; Jagodziński, P.P.; Kozubski, W.; Dorszewska, J. Calcium Ions in the Physiology and Pathology of the Central Nervous System. Int. J. Mol. Sci. 2024, 25, 13133. [Google Scholar] [CrossRef]
- Maier, J.A.M.; Locatelli, L.; Fedele, G.; Cazzaniga, A.; Mazur, A. Magnesium and the Brain: A Focus on Neuroinflammation and Neurodegeneration. Int. J. Mol. Sci. 2022, 24, 223. [Google Scholar] [CrossRef]
- Chui, D.; Chen, Z.; Yu, J.; Zhang, H.; Wang, W.; Son, Y.; Yang, H.; Liu, Y. Magnesium in Alzheimer’s Disease. In Magnesium in the Central Nervous System; University of Adelaide Press: Adelaide, Australia, 2011; pp. 239–250. [Google Scholar] [CrossRef]
- van Soest, A.P.M.; van de Rest, O.; Witkamp, R.F.; Cederholm, T.; de Groot, L.C.P.G.M. DHA Status Influences Effects of B-Vitamin Supplementation on Cognitive Ageing: A Post-Hoc Analysis of the B-Proof Trial. Eur. J. Nutr. 2022, 61, 3731–3739. [Google Scholar] [CrossRef]
- Velho, S.; Marques-Vidal, P.; Baptista, F.; Camilo, M.E. Dietary Intake Adequacy and Cognitive Function in Free-Living Active Elderly: A Cross-Sectional and Short-Term Prospective Study. Clin. Nutr. 2008, 27, 77–86. [Google Scholar] [CrossRef]
- Tao, M.H.; Liu, J.; Cervantes, D. Association between Magnesium Intake and Cognition in US Older Adults: National Health and Nutrition Examination Survey (NHANES) 2011 to 2014. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2022, 8, e12250. [Google Scholar] [CrossRef]
- Zhang, K.; Li, B.; Gu, Z.; Hou, Z.; Liu, T.; Zhao, J.; Ruan, M.; Zhang, T.; Yu, Q.; Yu, X.; et al. Association between Dietary Folate Intake and Cognitive Impairment in Older US Adults: National Health and Nutrition Examination Survey. Arch. Gerontol. Geriatr. 2023, 109, 104946. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Min, J.-Y.; Kim, B.; Ha, S.-W.; Han, J.H.; Min, K.-B. Serum Sodium in Relation to Various Domains of Cognitive Function in the Elderly US Population. BMC Geriatr. 2021, 21, 328. [Google Scholar] [CrossRef] [PubMed]
- Rush, T.M.; Kritz-Silverstein, D.; Laughlin, G.A.; Fung, T.T.; Barrett-Connor, E.; McEvoy, L.K. Association between Dietary Sodium Intake and Cognitive Function in Older Adults. J. Nutr. Health Aging 2017, 21, 276–283. [Google Scholar] [CrossRef]
- Mohan, D.; Yap, K.H.; Reidpath, D.; Soh, Y.C.; McGrattan, A.; Stephan, B.C.M.; Robinson, L.; Chaiyakunapruk, N.; Siervo, M.; Pase, M. Link between Dietary Sodium Intake, Cognitive Function, and Dementia Risk in Middle-Aged and Older Adults: A Systematic Review. J. Alzheimer’s Dis. 2020, 76, 1347–1373. [Google Scholar] [CrossRef]
- Fernandes, R.M.; Correa, M.G.; dos Santos, M.A.R.; Almeida, A.P.C.P.S.C.; Fagundes, N.C.F.; Maia, L.C.; Lima, R.R. The Effects of Moderate Physical Exercise on Adult Cognition: A Systematic Review. Front. Physiol. 2018, 9, 337850. [Google Scholar] [CrossRef]
- Gajewski, P.D.; Golka, K.; Hengstler, J.G.; Kadhum, T.; Digutsch, J.; Genç, E.; Wascher, E.; Getzmann, S. Does Physical Fitness Affect Cognitive Functions Differently across Adulthood? An Advantage of Being Older. Front. Psychol. 2023, 14, 1134770. [Google Scholar] [CrossRef]
- Blondell, S.J.; Hammersley-Mather, R.; Veerman, J.L. Does Physical Activity Prevent Cognitive Decline and Dementia?: A Systematic Review and Meta-Analysis of Longitudinal Studies. BMC Public Health 2014, 14, 510. [Google Scholar] [CrossRef]
- Cheema, H. Cognitive Training and Aerobic Exercise as Intervention Techniques for Mild Cognitive Impairment: A Research Protocol. Undergrad. Res. Nat. Clin. Sci. Technol. J. 2022, 6, 1–8. [Google Scholar] [CrossRef]
- Northey, J.M.; Cherbuin, N.; Pumpa, K.L.; Smee, D.J.; Rattray, B.; Northey, J. Exercise Interventions for Cognitive Function in Adults Older than 50: A Systematic Review with Meta-Analysis. Br. J. Sports Med. 2018, 52, 154–160. [Google Scholar] [CrossRef]
- Rabin, J.S.; Klein, H.; Kirn, D.R.; Schultz, A.P.; Yang, H.S.; Hampton, O.; Jiang, S.; Buckley, R.F.; Viswanathan, A.; Hedden, T.; et al. Associations of Physical Activity and β-Amyloid with Longitudinal Cognition and Neurodegeneration in Clinically Normal Older Adults. JAMA Neurol. 2019, 76, 1203–1210. [Google Scholar] [CrossRef]
- Ministry of Health. Ministry of Health Protocol for the Prevention of Cognitive Impairment; Ministry of Health: Riyadh, Saudi Arabia, 2023.
Variables | Healthy-Lifestyle Groups | p Value | |||
---|---|---|---|---|---|
Total (n = 176) | Unhealthy (n = 81) | Average (n = 70) | Healthy (n = 25) | ||
Age (years) | |||||
Mean ± SD | 53.5 ± 8 | 54 ± 8 | 53 ± 8 | 53 ± 8 | 0.46 |
45–64 | 161 (91) | 75 (93%) | 62 (87%) | 24 (96%) | |
≥65 | 15 (9) | 6 (7%) | 8 (11%) | 1 (4%) | |
Gender | |||||
Male | 56 (32) | 31 (38) | 18 (26) | 7 (28) | 0.23 |
Female | 120 (68) | 50 (62) | 52 (74) | 18 (72) | |
Marital status | |||||
Married | 151 (86) | 61 (75) | 65 (93) | 25 (100) | 0.005 |
Single | 10 (6) | 9 (11) | 1 (1) | 0 (0.0) | |
Widowed | 15 (8) | 11 (14) | 4 (6) | 0 (0.0) | |
Educational level | |||||
School education or less | 44 (25) | 23 (28) | 14 (20) | 7 (28) | 0.46 |
Higher education | 132 (75) | 58 (72) | 56 (80) | 18 (72) | |
Work status | |||||
Employed | 104 (59) | 51 (64) | 42 (60) | 11 (44) | 0.51 |
Unemployed | 34 (19) | 15 (18) | 12 (17) | 7 (28) | |
Retired | 38 (22) | 15 (18) | 16 (23) | 7 (28) | |
Income (SR) 1 | |||||
<4000 | 25 (14) | 10 (12) | 10 (15) | 5 (20) | 0.44 |
4000–7000 | 20 (12) | 6 (8) | 11 (16) | 3 (12) | |
8000–10,000 | 31 (18) | 13 (16) | 12 (18) | 6 (24) | |
>10,000 | 98 (56) | 52 (64) | 35 (51) | 11 (44) | |
Chronic diseases | |||||
No diseases | 94 (53) | 40 (49) | 38 (54) | 16 (64) | 0.43 |
Diabetes | 30 (17) | 12 (15) | 13 (19) | 5 (20) | 0.75 |
Heart diseases | 46 (26) | 23 (28) | 20 (29) | 3 (12) | 0.22 |
Respiratory diseases | 10 (6) | 6 (7) | 4 (6) | 0 (0) | 0.37 |
Thyroid gland disorders | 22 (12) | 10 (12) | 10 (14) | 2 (8) | 0.71 |
Medications | |||||
Yes | 82 (47) | 42 (52) | 30 (43) | 10 (40) | 0.42 |
No | 94 (53) | 39 (48) | 40 (57) | 15 (60) | |
Dietary supplement | |||||
Yes 2 | 94 (53) | 39 (48) | 41 (59) | 14 (56) | 0.48 |
No | 82 (47) | 42 (52) | 29 (41) | 11 (44) | |
BMI category | |||||
Under weight | 2 (1) | 1 (1) | 1 (1) | 0 (0) | 0.86 |
Normal weight | 37 (21) | 17 (21) | 13 (19) | 7 (28) | |
Overweight | 78 (44) | 38 (47) | 30 (43) | 10 (40) | |
Obese | 59 (34) | 25 (31) | 26 (37) | 8 (32) | |
Diet quality | |||||
Poor quality | 120 (68) | 73 (90) | 47 (67) | 0 | <0.001 |
Good quality | 56 (32) | 8 (10) | 23 (33) | 25 (100) | |
Physical activity | |||||
Low intensity (<600 METs) | 86 (49) | 68 (84) | 18 (26) | 0 (0) | <0.001 |
Moderate intensity (at least 600 METs) | 69 (39) | 9 (11) | 42 (60) | 18 (72) | |
High intensity (at least 3000 METs) | 21 (12) | 4 (5) | 10 (14) | 7 (28) | |
Smoking | |||||
Yes | 42 (24) | 37 (46) | 5 (7) | 0 (0) | <0.001 |
No | 134 (76) | 44 (54) | 65 (93) | 25 (100) |
Moca Domains | Unadjusted Healthy-Lifestyle Groups | Adjusted Healthy-Lifestyle Groups | ||||
---|---|---|---|---|---|---|
Average Coefficient | Healthy Coefficient | p-Value | Average Coefficient | Healthy Coefficient | p-Value 1 | |
Overall MoCA score | 0.025 | 0.207 | 0.65 | 0.008 | 0.256 | 0.43 |
Visuospatial/executive | 0.035 | 0.282 | 0.46 | −0.005 | 0.326 | 0.28 |
Naming | 0.475 | 0.321 | 0.01 | 0.484 | 0.347 | 0.01 |
Attention | 0.013 | 0.020 | 0.86 | 0.043 | 0.269 | 0.47 |
Language | 0.252 | 0.308 | 0.20 | 0.207 | 0.294 | 0.27 |
Abstraction | −0.032 | 0.232 | 0.51 | 0.012 | 0.334 | 0.31 |
Delayed recall/memory | −0.053 | −0.143 | 0.82 | −0.126 | −0.204 | 0.55 |
Orientation | −0.429 | −0.008 | 0.02 | −0.472 | −0.067 | 0.01 |
Moca Domains | Diet Quality | Physical Activity | Smoking | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Poor | Good | p Value 1 | Low | Moderate | High | p Value 2 | Yes | No | p Value 1 | |
Overall MoCA score | 0.01 ± 1.07 | 0.02 ± 0.83 | 0.82 | −0.19 ± 1.11 | 0.20 ± 0.85 | 0.10 ± 0.87 | 0.04 | 0.12 ± 0.99 | −0.04 ± 1.00 | 0.38 |
Visuospatial/executive | −0.01 ± 1.06 | 0.03 ± 0.88 | 0.78 | −0.16 ± 1.11 | 0.15 ± 0.83 | 0.23 ± 0.99 | 0.08 | 0.11 ± 0.92 | −0.03 ± 1.03 | 0.41 |
Naming | −0.05 ± 1.18 | 0.20 ± 0.51 | 0.05 | −0.18 ± 1.37 | 0.27 ± 0.00 | 0.08 ± 0.84 | 0.02 | 0.18 ± 0.59 | −0.02 ± 1.12 | 0.14 |
Attention | 0.01 ± 1.03 | 0.01 ± 0.94 | 0.97 | −0.06 ± 1.11 | 0.11 ± 0.89 | −0.01 ± 0.88 | 0.57 | 0.10 ± 0.93 | −0.02 ± 1.02 | 0.49 |
Language | −0.05 ± 0.98 | 0.14 ± 1.06 | 0.26 | −0.17 ± 1.00 | 0.17 ± 0.99 | 0.20 ± 0.98 | 0.07 | −0.13 ±1.06 | 0.05 ± 0.99 | 0.33 |
Abstraction | −0.03 ± 1.07 | 0.11 ± 0.83 | 0.32 | −0.07 ± 1.07 | 0.13 ± 0.81 | −0.05 ± 1.28 | 0.43 | 0.07 ± 1.04 | −0.00 ± 0.99 | 0.69 |
Delayed recall/memory | 0.05 ± 1.01 | −0.10 ± 1.04 | 0.38 | −0.09 ± 1.02 | 0.09 ± 1.04 | 0.06 ± 0.95 | 0.52 | 0.06 ± 0.98 | −0.02 ± 1.03 | 0.63 |
Orientation | −0.00 ± 1.10 | −0.01 ± 0.82 | 0.90 | 0.05 ± 0.83 | −0.00 ± 1.12 | −0.24 ± 1.35 | 0.51 | 0.07 ± 0.90 | −0.03 ± 1.05 | 0.52 |
Diet Quality Aspects | Total (n = 176) | Normal Cognition (n = 103) | Poor Cognition (n = 73) | p-Value 1 |
---|---|---|---|---|
DQI-I total score | 54.92 ± 8.94 | 55.11 ± 9.12 | 54.66 ± 8.74 | 0.74 |
Variety | 14.08 ± 3.05 | 14.19 ± 3.15 | 13.92 ± 2.92 | 0.55 |
Adequacy | 22.55 ± 4.77 | 23.05 ± 4.78 | 21.87 ± 4.70 | 0.10 |
Moderation | 13.88 ± 5.27 | 13.48 ± 5.15 | 14.44 ± 5.42 | 0.23 |
Overall balance | 4.40 ± 2.92 | 4.38 ± 2.84 | 4.44 ± 3.04 | 0.89 |
Nutrients | Total (n = 176) | Normal Cognition (n = 103) | Poor Cognition (n = 73) | p Value 1 |
---|---|---|---|---|
Energy (kcal) | 1595 ± 632.7 | 1663 ± 619.3 | 1498 ± 643 | 0.09 |
Carbohydrate (g) | 182.8 ± 77.8 | 193.5 ± 80.2 | 167.6 ± 72.1 | 0.02 |
Protein (g) | 71 ± 33.9 | 72.8 ± 33.9 | 68.6 ± 33.9 | 0.42 |
Total fat (g) | 65.9 ± 30.5 | 67.9 ± 28.1 | 63.1 ± 33.6 | 0.32 |
Saturated fat (g) | 20.8 ± 10.6 | 21.2 ± 10.1 | 20.1 ± 11.4 | 0.50 |
Fiber (g) | 13.4 ± 7.2 | 14.0 ± 6.5 | 12.4 ± 7.9 | 0.15 |
Calcium (mg) | 671.3 ± 413.8 | 719.5 ± 461.2 | 603.4 ± 326.8 | 0.05 |
Iron (mg) | 10.6 ± 5.4 | 11.1 ± 5.6 | 9.9 ± 4.9 | 0.13 |
Zinc (mg) | 8.4 ± 5 | 8.5 ± 4.8 | 8.3 ± 5.3 | 0.82 |
Magnesium (mg) | 227.4 ± 97.3 | 239.7 ± 90.7 | 210 ± 104.1 | 0.05 |
Selenium (mcg) | 114 ± 65.5 | 120.1 ± 70.5 | 105.5 ± 57.2 | 0.13 |
Sodium (mg) | 2623.3 ± 1257.7 | 2787 ± 1275 | 2392 ± 1203 | 0.03 |
Potassium (mg) | 1961.8 ± 789.6 | 2033 ±764.8 | 1861.4 ± 818 | 0.16 |
Vitamin B12 (mcg) | 5.7 ± 10.7 | 5.2 ± 8.4 | 6.5 ± 13.3 | 0.48 |
Folic acid (mcg) | 330.8 ±153.6 | 350 ± 156.6 | 303.7 ± 146 | 0.04 |
Vitamin D (IU) | 241.2 ± 325.1 | 238.5 ± 288.6 | 245.1 ± 372.7 | 0.89 |
Vitamin C (mg) | 53.8 ± 57.4 | 57.6 ± 54 | 48.4 ± 61.8 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naaman, R.K.; Alashmali, S.; Bakhsh, M.A.; Alneami, S.A.; Algamdi, E.S.; Al-Ghamdi, G.A.; Alqarni, S.M. Association Between Healthy Lifestyle and Cognitive Function in Middle-Aged and Older Adults. Healthcare 2025, 13, 1140. https://doi.org/10.3390/healthcare13101140
Naaman RK, Alashmali S, Bakhsh MA, Alneami SA, Algamdi ES, Al-Ghamdi GA, Alqarni SM. Association Between Healthy Lifestyle and Cognitive Function in Middle-Aged and Older Adults. Healthcare. 2025; 13(10):1140. https://doi.org/10.3390/healthcare13101140
Chicago/Turabian StyleNaaman, Rouba Khalil, Shoug Alashmali, Manar Abduljalil Bakhsh, Shomookh Ahmed Alneami, Elaf Saeed Algamdi, Ghaday Abdulwahab Al-Ghamdi, and Shouq Mohammed Alqarni. 2025. "Association Between Healthy Lifestyle and Cognitive Function in Middle-Aged and Older Adults" Healthcare 13, no. 10: 1140. https://doi.org/10.3390/healthcare13101140
APA StyleNaaman, R. K., Alashmali, S., Bakhsh, M. A., Alneami, S. A., Algamdi, E. S., Al-Ghamdi, G. A., & Alqarni, S. M. (2025). Association Between Healthy Lifestyle and Cognitive Function in Middle-Aged and Older Adults. Healthcare, 13(10), 1140. https://doi.org/10.3390/healthcare13101140