Influence of Sugar-Sweetened Beverages Intake on Sarcopenic Obesity, Visceral Obesity, and Sarcopenia in Lebanese Patients with MASLD: A Case-Control Study
Abstract
1. Introduction
2. Subjects and Methods
2.1. Study Design and Subjects
2.2. Questionnaire
2.3. Anthropometric Data
2.4. MASLD Diagnosis
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
Control Group | MASLD | p-Value | ||||
---|---|---|---|---|---|---|
Age in Years (Mean ± SD) | 49 ± 11 | 49 ± 11 | 0.84 | |||
N | (%) | N | (%) | |||
Age Categories | Young adults | 6 | (10.0) | 6 | (10.0) | 0.98 |
Early Middle-Aged Adults | 24 | (40.0) | 24 | (40.0) | ||
Late Middle Aged | 26 | (43.3) | 27 | (45.0) | ||
Elderly | 4 | (6.7) | 3 | (5.0) | ||
Gender | Female | 43 | (71.7) | 43 | (71.7) | 1.0 |
Male | 17 | (28.3) | 17 | (28.3) | ||
Marital status | Single | 4 | (6.7) | 6 | (10.0) | 0.29 |
Married | 55 | (91.7) | 50 | (83.3) | ||
Divorced | 1 | (1.7) | 4 | (6.7) | ||
Smoking | No | 27 | (45.0) | 28 | (46.7) | 0.85 |
Yes | 33 | (55.0) | 32 | (53.3) | ||
Number of cigarettes (per day) | Less than 5 | 27 | (45.0) | 28 | (46.7) | 0.60 |
5–10 | 0 | (0.0) | 1 | (1.7) | ||
10–20 | 13 | (21.7) | 9 | (15.0) | ||
>20 | 20 | (33.3) | 22 | (36.7) | ||
Smoking duration (years) | 0 | 27 | (45.0) | 28 | (46.7) | 0.44 |
<5 years | 6 | (10.0) | 3 | (5.0) | ||
5–10 years | 4 | (6.7) | 6 | (10.0) | ||
10–20 years | 6 | (10.0) | 11 | (18.3) | ||
>20 years | 17 | (28.3) | 12 | (20.0) |
Control Group | MASLD | p-Value | ||||
---|---|---|---|---|---|---|
N | (%) | N | (%) | |||
Family history | No | 11 | (18.3) | 11 | (18.3) | 1.00 |
Yes | 49 | (81.7) | 49 | (81.7) | ||
Rationale of diagnosis | None | 60 | (100.0) | 13 | (21.7) | 0.000 |
Routine test | 0 | (0.0) | 0 | (0.0) | ||
Liver test abnormal | 0 | (0.0) | 37 | (61.7) | ||
Obesity consultation | 0 | (0.0) | 7 | (11.7) | ||
Family history of MASLD | 0 | (0.0) | 0 | (0.0) | ||
Digestive symptoms | 0 | (0.0) | 3 | (5.0) | ||
Duration of disease | Recently diagnosed | 60 | (100.0) | 1 | (1.7) | 0.000 |
Less than 1 year | 0 | (0.0) | 29 | (48.3) | ||
From 1 to 3 year | 0 | (0.0) | 15 | (25.0) | ||
More than 3 years | 0 | (0.0) | 15 | (25.0) | ||
Current treatment | No | 51 | (85.0) | 22 | (36.7) | <0.001 |
Yes | 9 | (15.0) | 38 | (63.7) | ||
Type of treatments | No treatment | 51 | (85.0) | 22 | (36.7) | <0.001 |
Liver diseases | 0 | (0.0) | 3 | (5.0) | ||
Hypertension | 5 | (8.3) | 5 | (8.3) | ||
Diabetes | 0 | (0.0) | 5 | (8.3) | ||
Hypercholesterolemia | 2 | (3.3) | 16 | (26.7) | ||
Liver diseases and hypertension | 2 | (3.3) | 9 | (15.0) | ||
Past Medical History | No | 53 | (88.3) | 57 | (95.0) | 0.18 |
Yes | 7 | (11.7) | 3 | (5.0) | ||
Hypertension | Absent | 48 | (80.0) | 36 | (60.0) | 0.017 |
Present | 12 | (20.0) | 24 | (40.0) | ||
Diabetes | Absent | 60 | (100.0) | 42 | (70.0) | 0.000 |
Present | 0 | (0.0) | 18 | (30.0) | ||
Other Past Medical History | None | 60 | (100.0) | 58 | (96.7) | 0.15 |
Respiratory and circulatory diseases | 0 | (0.0) | 2 | (3.3) | ||
Digestive diseases | 0 | (0.0) | 0 | (0.0) | ||
Cancer | 0 | (0.0) | 0 | (0.0) |
3.2. Anrthopometric Characteristics
Control Group | MASLD | p-Value | ||||
---|---|---|---|---|---|---|
Weight (kg) (Mean ± SD) | 79.57 ± 11.5 | 89.98 ± 15.8 | 0.000 | |||
Waist circumference (cm) (Mean ± SD) | 100.95 ± 11.37 | 112.83 ± 12.95 | 0.000 | |||
N | (%) | N | (%) | |||
Body Mass Index (BMI) | 30.05 | (5.4) | 35.04 | (6.4) | 0.000 | |
BMI categories | Normal body weight | 8 | (13.3) | 4 | (6.7) | 0.000 |
Overweight | 22 | (36.7) | 4 | (6.7) | ||
Obesity | 30 | (50.0) | 52 | (86.7) | ||
Waist Circumference Categories | Low risk | 9 | (15.0) | 1 | (1.7) | 0.000 |
Elevated risk | 24 | (40.0) | 10 | (16.7) | ||
High Risk | 27 | (45.0) | 49 | (81.7) | ||
Fat Mass Categories | Low | 1 | (1.7) | 0 | (0.0) | 0.070 |
Normal | 4 | (6.7) | 4 | (6.7) | ||
High | 8 | (13.3) | 1 | (1.7) | ||
Very High | 47 | (78.3) | 55 | (91.7) | ||
Muscle Mass Category | Low | 38 | (63.3) | 47 | (78.3) | 0.12 |
Normal | 11 | (18.3) | 5 | (8.3) | ||
High | 5 | (8.3) | 2 | (3.3) | ||
Very high | 6 | (10.0) | 6 | (10.0) | ||
Visceral Fat Categories | Normal | 33 | (55.0) | 15 | (25.0) | 0.008 |
High | 25 | (41.7) | 40 | (66.7) | ||
Very High | 2 | (3.3) | 4 | (8.3) | ||
Visceral obesity | No | 12 | (20.0) | 3 | (5.0) | 0.013 |
Yes | 48 | (80.0) | 57 | (95.0) | ||
Sarcopenia | No | 8 | (13.0) | 6 | (10.0) | 0.57 |
Yes | 52 | (86.7) | 54 | (90.0) | ||
Sarcopenic-obesity | No | 16 | (26.7) | 7 | (11.7) | 0.037 |
Yes | 44 | (73.3) | 53 | (88.3) |
3.3. Water and Sugar-Sweetened Beverages Intake
3.4. Alcoholic, Non-Alcoholic Beverages, and Energy Drinks Intake
3.5. Sarcopenic Obesity, Sarcopenia, and Viseral Fat Obesity
Control | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sarcopenic Obesity | Sarcopenia | Visceral Fat Obesity | ||||||||||||||
No | Yes | p-Value | No | Yes | p-Value | No | Yes | p-Value | ||||||||
N | (%) | N | (%) | N | (%) | N | (%) | N | (%) | N | (%) | |||||
Age category | Young adults | 4 | (25.0) | 2 | (4.5) | 0.037 | 1 | (12.5) | 5 | (9.6) | 0.80 | 4 | (33.3) | 2 | (4.2) | 0.037 |
Early middle-aged adults | 8 | (50.0) | 16 | (36.4) | 4 | (50.0) | 20 | (38.5) | 7 | (58.3) | 17 | (35.4) | ||||
Late middle aged | 3 | (18.8) | 23 | (52.3) | 3 | (37.5) | 23 | (44.2) | 0 | (0.0) | 26 | (54.2) | ||||
Elderly | 1 | (6.3) | 3 | (6.8) | 0 | (0.0) | 4 | (7.7) | 1 | (8.3) | 3 | (6.3) | ||||
Gender | Female | 10 | (62.5) | 33 | (75.0) | 0.34 | 5 | (62.5) | 38 | (73.1) | 0.57 | 6 | (50.0) | 37 | (77.1) | 0.34 |
Male | 6 | (37.5) | 11 | (25.0) | 3 | (37.5) | 14 | (26.9) | 6 | (50.0) | 11 | (22.9) | ||||
BMI category | Normal body weight | 6 | (37.5) | 2 | (4.5) | 0.000 | 4 | (50.0) | 4 | (7.7) | 0.001 | 5 | (41.7) | 3 | (6.3) | 0.000 |
Overweight | 8 | (50.0) | 14 | (31.8) | 4 | (50.0) | 18 | (34.6) | 5 | (41.7) | 17 | (35.4) | ||||
Obesity | 2 | (12.5) | 28 | (63.6) | 0 | (0.0) | 30 | (57.7) | 2 | (16.7) | 28 | (58.3) |
Cases | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sarcopenic Obesity | Sarcopenia | Visceral Fat Obesity | ||||||||||||||
No | Yes | p-Value | No | Yes | p-Value | No | Yes | p-Value | ||||||||
N | (%) | N | (%) | N | (%) | N | (%) | N | (%) | N | (%) | |||||
Age category | Young adults | 1 | (14.3) | 5 | (9.4) | 0.90 | 1 | (16.7) | 5 | (9.3) | 0.80 | 1 | (33.3) | 5 | (8.8) | 0.57 |
Early middle-aged adults | 3 | (42.9) | 21 | (39.6) | 3 | (50.0) | 21 | (38.9) | 1 | (33.3) | 23 | (40.4) | ||||
Late middle aged | 3 | (42.9) | 24 | (45.3) | 2 | (33.3) | 25 | (46.3) | 1 | (33.3) | 26 | (45.6) | ||||
Elderly | 0 | (0.0) | 3 | (5.7) | 0 | (0.0) | 3 | (5.6) | 0 | (0.0) | 3 | (5.3) | ||||
Gender | Female | 4 | (57.1) | 39 | (73.6) | 0.36 | 4 | (66.7) | 39 | (72.2) | 0.77 | 0 | (0.0) | 43 | (75.4) | 0.055 |
Male | 3 | (42.9) | 14 | (26.4) | 2 | (33.3) | 15 | (27.8) | 3 | (100.0) | 14 | (24.6) | ||||
BMI category | Normal body weight | 2 | (28.6) | 2 | (3.8) | 0.027 | 2 | (33.3) | 2 | (3.7) | 0.010 | 2 | (66.7) | 2 | (3.5) | 0.000 |
Overweight | 1 | (14.3) | 3 | (5.7) | 1 | (16.7) | 3 | (5.6) | 0 | (0.0) | 4 | (7.0) | ||||
Obesity | 4 | (57.1) | 48 | (90.6) | 3 | (50.0) | 49 | (90.7) | 1 | (33.3) | 51 | (89.5) |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Mortality in the United States. 2021. Available online: https://www.cdc.gov/nchs/products/databriefs/db456.htm (accessed on 7 May 2022).
- Pacifico, L.; Perla, F.M.; Chiesa, C. Sarcopenia and nonalcoholic fatty liver disease: A causal relationship. HepatoBiliary Surg. Nutr. 2019, 8, 144. [Google Scholar] [CrossRef]
- Sayiner, M.; Golabi, P.; Younossi, Z.M. Disease burden of hepatocellular carcinoma: A global perspective. Dig. Dis. Sci. 2019, 64, 910–917. [Google Scholar] [CrossRef] [PubMed]
- Golabi, P.; Paik, J.M.; AlQahtani, S.; Younossi, Y.; Tuncer, G.; Younossi, Z.M. Burden of non-alcoholic fatty liver disease in Asia, the Middle East and North Africa: Data from global burden of disease 2009–2019. J. Hepatol. 2021, 75, 795–809. [Google Scholar] [CrossRef] [PubMed]
- Paik, J.M.; Golabi, P.; Younossi, Y.; Srishord, M.; Mishra, A.; Younossi, Z.M. The growing burden of disability related to nonalcoholic fatty liver disease: Data from the global burden of disease 2007–2017. Hepatol. Commun. 2020, 4, 1769–1780. [Google Scholar] [CrossRef] [PubMed]
- Foulds, C.E.; Treviño, L.S.; York, B.; Walker, C.L. Endocrine-disrupting chemicals and fatty liver disease. Nat. Rev. Endocrinol. 2017, 13, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Kulik, L.; El-Serag, H.B. Epidemiology and management of hepatocellular carcinoma. Gastroenterology 2019, 156, 477–491.e1. [Google Scholar] [CrossRef] [PubMed]
- Ratziu, V.; Bellentani, S.; Cortez-Pinto, H.; Day, C.; Marchesini, G. A position statement on MASLD/NASH based on the EASL 2009 special conference. J. Hepatol. 2010, 53, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.; Golabi, P.; Paik, J.; Henry, A.; Van Dongen, C.; Henry, L. The global epidemiology of nonalcoholic fatty liver disease (MASLD) and non-alcoholic steatohepatitis (NASH): A systematic review. Hepatology 2023, 10, 1097. [Google Scholar]
- Nishioji, K.; Sumida, Y.; Kamaguchi, M.; Mochizuki, N.; Kobayashi, M.; Nishimura, T.; Yamaguchi, K.; Itoh, Y. Prevalence of and risk factors for non-alcoholic fatty liver disease in a non-obese Japanese population, 2011–2012. J. Gastroenterol. 2015, 50, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of MASLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Liu, J.; Ayada, I.; Zhang, X.; Wang, L.; Li, Y.; Wen, T.; Ma, Z.; Bruno, M.J.; de Knegt, R.J.; Cao, W.; et al. Estimating global prevalence of metabolic dysfunction-associated fatty liver disease in overweight or obese adults. Clin. Gastroenterol. Hepatol. 2022, 20, e573–e582. [Google Scholar] [CrossRef]
- Zarghamravanbakhsh, P.; Frenkel, M.; Poretsky, L. Metabolic causes and consequences of nonalcoholic fatty liver disease (MASLD). Metab. Open 2021, 12, 100149. [Google Scholar] [CrossRef]
- Mehio Sibai, A.; Nasreddine, L.; Mokdad, A.H.; Adra, N.; Tabet, M.; Hwalla, N. Nutrition transition and cardiovascular disease risk factors in Middle East and North Africa countries: Reviewing the evidence. Ann. Nutr. Metab. 2011, 57, 193–203. [Google Scholar] [CrossRef]
- Al-Jawaldeh, A.; Taktouk, M.; Naalbandian, S.; Aguenaou, H.; Al Hamad, N.; Almamary, S.; Al-Tamimi, H.A.; Alyafei, S.A.; Barham, R.; Hoteit, M.; et al. Sugar Reduction Initiatives in the Eastern Mediterranean Region: A Systematic Review. Nutrients 2022, 15, 55. [Google Scholar] [CrossRef]
- Naja, F.; Hwalla, N.; Hachem, F.; Abbas, N.; Chokor, F.A.Z.; Kharroubi, S.; Chamieh, M.C.; Jomaa, L.; Nasreddine, L. Erosion of the Mediterranean diet among adolescents: Evidence from an Eastern Mediterranean Country. Br. J. Nutr. 2021, 125, 346–356. [Google Scholar] [CrossRef]
- Abenavoli, L.; Milic, N.; Di Renzo, L.; Preveden, T.; Medić-Stojanoska, M.; De Lorenzo, A. Metabolic aspects of adult patients with nonalcoholic fatty liver disease. World J. Gastroenterol. 2016, 22, 7006. [Google Scholar] [CrossRef]
- Huh, Y.; Cho, Y.J.; Nam, G.E. Recent epidemiology and risk factors of nonalcoholic fatty liver disease. J. Obes. Metab. Syndr. 2022, 31, 17. [Google Scholar] [CrossRef]
- Powell, E.E.; Wong, V.W.-S.; Rinella, M. Non-alcoholic fatty liver disease. Lancet 2021, 397, 2212–2224. [Google Scholar] [CrossRef]
- Chen, H.W.; Dunn, M.A. Arresting frailty and sarcopenia in cirrhosis: Future prospects. Clin. Liver Dis. 2018, 11, 52. [Google Scholar] [CrossRef]
- Li, A.A.; Kim, D.; Ahmed, A. Association of sarcopenia and MASLD: An overview. Clin. Liver Dis. 2020, 16, 73. [Google Scholar] [CrossRef]
- Shida, T.; Akiyama, K.; Oh, S.; Sawai, A.; Isobe, T.; Okamoto, Y.; Ishige, K.; Mizokami, Y.; Yamagata, K.; Onizawa, K.; et al. Skeletal muscle mass to visceral fat area ratio is an important determinant affecting hepatic conditions of non-alcoholic fatty liver disease. J. Gastroenterol. 2018, 53, 535–547. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Panjawatanan, P.; Aby, E.; Ahmed, A.; Kim, D. Nonalcoholic fatty liver disease in the over-60s: Impact of sarcopenia and obesity. Maturitas 2019, 124, 48–54. [Google Scholar] [CrossRef]
- Choi, K.M. Sarcopenia and sarcopenic obesity. Endocrinol. Metab. 2013, 28, 86–89. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Carias, S.; Castellanos, A.L.; Vilchez, V.; Nair, R.; Dela Cruz, A.C.; Watkins, J.; Barrett, T.; Trushar, P.; Esser, K.; Gedaly, R. Nonalcoholic steatohepatitis is strongly associated with sarcopenic obesity in patients with cirrhosis undergoing liver transplant evaluation. J. Gastroenterol. Hepatol. 2016, 31, 628–633. [Google Scholar] [CrossRef]
- Song, W.; Yoo, S.H.; Jang, J.; Baik, S.J.; Lee, B.K.; Lee, H.W.; Park, J.S. Association between sarcopenic obesity status and nonalcoholic fatty liver disease and fibrosis. Gut Liver 2023, 17, 130–138. [Google Scholar] [CrossRef]
- Zembura, M.; Matusik, P. Sarcopenic obesity in children and adolescents: A systematic review. Front. Endocrinol. 2022, 13, 914740. [Google Scholar] [CrossRef]
- Batsis, J.A.; Gilbert-Diamond, D.; McClure, A.C.; Weintraub, A.; Sette, D.; Mecchella, J.N.; Rotenberg, S.; Cook, S.B.; Rothstein, R.I. Prevalence of sarcopenia obesity in patients treated at a rural, multidisciplinary weight and wellness center. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2019, 12, 1179544119862288. [Google Scholar] [CrossRef]
- Choudhary, N.S.; Duseja, A.; Kalra, N.; Das, A.; Dhiman, R.K.; Chawla, Y.K. Correlation of adipose tissue with liver histology in Asian Indian patients with nonalcoholic fatty liver disease (MASLD). Ann. Hepatol. 2012, 11, 478–486. [Google Scholar] [CrossRef]
- Kim, H.Y.; Baik, S.J.; Lee, H.A.; Lee, B.K.; Lee, H.S.; Kim, T.H.; Yoo, K. Relative fat mass at baseline and its early change may be a predictor of incident nonalcoholic fatty liver disease. Sci. Rep. 2020, 10, 17491. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, S.M.-T.; Schooren, L.; Kroh, A.; Koch, A.; Stier, C.; Neumann, U.P.; Ulmer, T.F.; Alizai, P.H. Association of body composition and sarcopenia with NASH in obese patients. J. Clin. Med. 2021, 10, 3445. [Google Scholar] [CrossRef] [PubMed]
- VanWagner, L.B.; Khan, S.S.; Ning, H.; Siddique, J.; Lewis, C.E.; Carr, J.J.; Vos, M.B.; Speliotes, E.; Terrault, N.A.; Rinella, M.E.; et al. Body mass index trajectories in young adulthood predict non-alcoholic fatty liver disease in middle age: The CARDIA cohort study. Liver Int. 2018, 38, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Barreira, T.V.; Broyles, S.T.; Gupta, A.K.; Katzmarzyk, P.T. Relationship of anthropometric indices to abdominal and total body fat in youth: Sex and race differences. Obesity 2014, 22, 1345–1350. [Google Scholar] [CrossRef] [PubMed]
- Tomah, S.; Hamdy, O.; Abuelmagd, M.M.; Hassan, A.H.; Alkhouri, N.; Al-Badri, M.R.; Gardner, H.; Eldib, A.H.; Eid, E.A. Prevalence of and risk factors for non-alcoholic fatty liver disease (MAFLD) and fibrosis among young adults in Egypt. BMJ Open Gastroenterol. 2021, 8, e000780. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Nascimbeni, F.; Mantovani, A.; Targher, G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J. Hepatol. 2018, 68, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Doycheva, I.; Cui, J.; Nguyen, P.; Costa, E.A.; Hooker, J.; Hofflich, H.; Bettencourt, R.; Brouha, S.; Sirlin, C.B.; Loomba, R. Non-invasive screening for MAFLD and advanced fibrosis in diabetes in primary care setting by MRI and MRE. Aliment. Pharmacol. Ther. 2016, 43, 83. [Google Scholar] [CrossRef]
- Kwok, R.; Choi, K.C.; Wong, G.L.-H.; Zhang, Y.; Chan, H.L.-Y.; Luk, A.O.-Y.; Shu, S.S.-T.; Chan, A.W.-H.; Yeung, M.-W.; Chan, J.C.-N.; et al. Screening diabetic patients for non-alcoholic fatty liver disease with controlled attenuation parameter and liver stiffness measurements: A prospective cohort study. Gut 2016, 65, 1359–1368. [Google Scholar] [CrossRef]
- Lonardo, A.; Bellentani, S.; Argo, C.K.; Ballestri, S.; Byrne, C.D.; Caldwell, S.H.; Cortez-Pinto, H.; Grieco, A.; Machado, M.V.; Miele, L.; et al. Epidemiological modifiers of non-alcoholic fatty liver disease: Focus on high-risk groups. Dig. Liver Dis. 2015, 47, 997–1006. [Google Scholar] [CrossRef]
- Ye, Q.; Zou, B.; Yeo, Y.H.; Li, J.; Huang, D.Q.; Wu, Y.; Yang, H.; Liu, C.; Kam, L.Y.; Tan, X.X.E.; et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 739–752. [Google Scholar] [CrossRef]
- McPherson, S.; Hardy, T.; Henderson, E.; Burt, A.D.; Day, C.P.; Anstee, Q.M. Evidence of MASLD progression from steatosis to fibrosing-steatohepatitis using paired biopsies: Implications for prognosis and clinical management. J. Hepatol. 2015, 62, 1148–1155. [Google Scholar] [CrossRef]
- Fakhoury-Sayegh, N.; Younes, H.; Heraoui, G.N.; Sayegh, R. Nutritional profile and dietary patterns of lebanese non-alcoholic fatty liver disease patients: A case-control study. Nutrients 2017, 9, 1245. [Google Scholar] [CrossRef]
- Zhang, X.; Heredia, N.I.; Balakrishnan, M.; Thrift, A.P. Prevalence and factors associated with MASLD detected by vibration controlled transient elastography among US adults: Results from NHANES 2017–2018. PLoS ONE 2021, 16, e0252164. [Google Scholar]
- Kashiwagi, K.; Takayama, M.; Fukuhara, K.; Shimizu-Hirota, R.; Chu, P.-S.; Nakamoto, N.; Inoue, N.; Iwao, Y.; Kanai, T. A significant association of non-obese non-alcoholic fatty liver disease with sarcopenic obesity. Clin. Nutr. ESPEN 2020, 38, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.C.; Hwang, S.Y.; Choi, H.Y.; Yoo, H.J.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Baik, S.H.; Choi, D.S.; Choi, K.M. Relationship between sarcopenia and nonalcoholic fatty liver disease: The Korean Sarcopenic Obesity Study. Hepatology 2014, 59, 1772–1778. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Jung, K.S.; Kim, S.U.; Yoon, H.-J.; Yun, Y.J.; Lee, B.-W.; Kang, E.S.; Han, K.-H.; Lee, H.C.; Cha, B.-S. Sarcopaenia is associated with MASLD independently of obesity and insulin resistance: Nationwide surveys (KNHANES 2008–2011). J. Hepatol. 2015, 63, 486–493. [Google Scholar] [CrossRef]
- Lee, M.J.; Kim, E.-H.; Bae, S.-J.; Kim, G.-A.; Park, S.W.; Choe, J.; Jung, C.H.; Lee, W.J.; Kim, H.-K. Age-related decrease in skeletal muscle mass is an independent risk factor for incident nonalcoholic fatty liver disease: A 10-year retrospective cohort study. Gut Liver 2019, 13, 67. [Google Scholar] [CrossRef]
- Moon, J.S.; Yoon, J.S.; Won, K.C.; Lee, H.W. The role of skeletal muscle in development of nonalcoholic Fatty liver disease. Diabetes Metab. J. 2013, 37, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.K.; Kim, D.; Joo, S.K.; Kim, J.H.; Chang, M.S.; Kim, B.G.; Lee, K.L.; Kim, W. Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis. J. Hepatol. 2017, 66, 123–131. [Google Scholar] [CrossRef]
- Asgari-Taee, F.; Zerafati-Shoae, N.; Dehghani, M.; Sadeghi, M.; Baradaran, H.R.; Jazayeri, S. Association of sugar sweetened beverages consumption with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Eur. J. Nutr. 2019, 58, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wang, J.; Li, Z.; Lam, C.W.K.; Xiao, Y.; Wu, Q.; Zhang, W. Consumption of sugar-sweetened beverages has a dose-dependent effect on the risk of non-alcoholic fatty liver disease: An updated systematic review and dose-response meta-analysis. Int. J. Environ. Res. Public Health 2019, 16, 2192. [Google Scholar] [CrossRef] [PubMed]
- Kechagias, S.; Nasr, P.; Blomdahl, J.; Ekstedt, M. Established and emerging factors affecting the progression of nonalcoholic fatty liver disease. Metabolism 2020, 111, 154183. [Google Scholar] [CrossRef] [PubMed]
- Maersk, M.; Belza, A.; Stødkilde-Jørgensen, H.; Ringgaard, S.; Chabanova, E.; Thomsen, H.; Pedersen, S.B.; Astrup, A.; Richelsen, B. Sucrose-sweetened beverages increase fat storage in the liver, muscle, and visceral fat depot: A 6-mo randomized intervention study. Am. J. Clin. Nutr. 2012, 95, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Tseng, T.S.; Lin, W.T.; Ting, P.S.; Huang, C.K.; Chen, P.H.; Gonzalez, G.V.; Lin, H.Y. Sugar-Sweetened Beverages and Artificially Sweetened Beverages Consumption and the Risk of Nonalcoholic Fatty Liver (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Nutrients 2023, 15, 3997. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, Y.; Kubota, N.; Yamauchi, T.; Kadowaki, T. Role of Insulin Resistance in MAFLD. Int. J. Mol. Sci. 2021, 22, 4156. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kim, C.W.; Park, C.-H.; Choi, J.Y.; Han, K.; Merchant, A.T.; Park, Y.-M. Low skeletal muscle mass is associated with non-alcoholic fatty liver disease in Korean adults: The Fifth Korea National Health and Nutrition Examination Survey. Hepatobiliary Pancreat. Dis. Int. 2016, 15, 39–47. [Google Scholar] [CrossRef]
- Gielen, E.; O’Neill, T.W.; Pye, S.R.; Adams, J.E.; Wu, F.C.; Laurent, M.R.; Claessens, F.; Ward, K.A.; Boonen, S.; Bouillon, R.; et al. Endocrine determinants of incident sarcopenia in middle-aged and elderly European men. J. Cachexia Sarcopenia Muscle 2015, 6, 242–252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoteit, M.; Dagher, M.; Tzenios, N.; Al Kaaki, N.; Rkein, G.; Chahine, A.R.; Sacre, Y.; Hotayt, S.; Matar, R.; Hallal, M.; et al. Influence of Sugar-Sweetened Beverages Intake on Sarcopenic Obesity, Visceral Obesity, and Sarcopenia in Lebanese Patients with MASLD: A Case-Control Study. Healthcare 2024, 12, 591. https://doi.org/10.3390/healthcare12050591
Hoteit M, Dagher M, Tzenios N, Al Kaaki N, Rkein G, Chahine AR, Sacre Y, Hotayt S, Matar R, Hallal M, et al. Influence of Sugar-Sweetened Beverages Intake on Sarcopenic Obesity, Visceral Obesity, and Sarcopenia in Lebanese Patients with MASLD: A Case-Control Study. Healthcare. 2024; 12(5):591. https://doi.org/10.3390/healthcare12050591
Chicago/Turabian StyleHoteit, Maha, Myriam Dagher, Nikolaos Tzenios, Najat Al Kaaki, Ghadir Rkein, Abdul Rahman Chahine, Yonna Sacre, Samer Hotayt, Rami Matar, Mahmoud Hallal, and et al. 2024. "Influence of Sugar-Sweetened Beverages Intake on Sarcopenic Obesity, Visceral Obesity, and Sarcopenia in Lebanese Patients with MASLD: A Case-Control Study" Healthcare 12, no. 5: 591. https://doi.org/10.3390/healthcare12050591
APA StyleHoteit, M., Dagher, M., Tzenios, N., Al Kaaki, N., Rkein, G., Chahine, A. R., Sacre, Y., Hotayt, S., Matar, R., Hallal, M., Maitar, M., & Hotayt, B. (2024). Influence of Sugar-Sweetened Beverages Intake on Sarcopenic Obesity, Visceral Obesity, and Sarcopenia in Lebanese Patients with MASLD: A Case-Control Study. Healthcare, 12(5), 591. https://doi.org/10.3390/healthcare12050591