Detraining and Retraining Effects from a Multicomponent Training Program on the Functional Capacity and Health Profile of Physically Active Prehypertensive Older Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedures
2.2.1. Training Intervention
2.2.2. Detraining Period (DT) and Retraining (RT)
2.3. Health Profiles and FC Assessments
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Liu, H.; Wang, X.; Liu, J.; Xiao, H.; Wang, C.; Wu, Y. Interventions for reducing blood pressure in prehypertension: A meta-analysis. Front. Public Health 2023, 11, 1139617. [Google Scholar] [CrossRef] [PubMed]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L., Jr.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T., Jr. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: The JNC 7 report. JAMA 2003, 289, 2560–2571. [Google Scholar] [CrossRef] [PubMed]
- Pimenta, E.; Oparil, S. Prehypertension: Epidemiology, consequences and treatment. Nat. Rev. Nephrol. 2010, 6, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; McGlone, M.; Greenway, F.L.; Johnson, W.D. Prehypertension in disease-free adults: A marker for an adverse cardiometabolic risk profile. Hypertens. Res. 2010, 33, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.D.; Lima, L.S.; da Silva, N.C.S.; Telles, P.G.L.; da Mota Silva Rocha, T.M.; de Aragão Porto, V.Q.; Cardoso, V.V.; da Silva Soares, P.P. Are home-based exercises effective to reduce blood pressure in hypertensive adults? A systematic review. Clin. Hypertens. 2022, 28, 28. [Google Scholar] [CrossRef]
- Pratt, M.; Varela, A.R.; Salvo, D.; Kohl III, H.W.; Ding, D. Attacking the pandemic of physical inactivity: What is holding us back? Br. J. Sport. Med. 2020, 54, 760–762. [Google Scholar] [CrossRef]
- Cornelissen, V.A.; Smart, N.A. Exercise training for blood pressure: A systematic review and meta-analysis. J. Am. Heart Assoc. 2013, 2, e004473. [Google Scholar] [CrossRef]
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef]
- Merchant, R.A.; Chan, Y.H.; Lim, J.Y.; Morley, J.E. Prevalence of metabolic syndrome and association with grip strength in older adults: Findings from the HOPE study. Diabetes Metab. Syndr. Obes. 2020, 13, 2677–2686. [Google Scholar] [CrossRef]
- Nanna, M.G.; Navar, A.M.; Wojdyla, D.; Peterson, E.D. The association between low-density lipoprotein cholesterol and incident atherosclerotic cardiovascular disease in older adults: Results from the National Institutes of Health Pooled Cohorts. J. Am. Geriatr. Soc. 2019, 67, 2560–2567. [Google Scholar] [CrossRef]
- Yu, J.; Liu, X.; Chen, S.; Liu, Y.; Liu, H.; Zheng, H.; Yang, N.; Wu, S.; Li, Y. Effects of low-density lipoprotein cholesterol on cardiovascular disease and all-cause mortality in elderly patients (≥75 years old). Endocrine 2022, 75, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, Y.G.d.S.B.; Morato Stival, M.; Ramos de Lima, L.; Cristina Rodrigues da Silva, I.; de Oliveira Silva, A.; Vieira Gomes da Costa, M.; Cristina Morais Santa Barbara Rehem, T.; Schwerz Funghetto, S. Impact of metabolic syndrome components in high-risk cardiovascular disease development in older adults. Clin. Interv. Aging 2020, 15, 1691–1700. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Huang, Y.-J.; Zhao, L.; Wang, W.; Liu, S.; He, G.-P.; Liao, L.; Zeng, Y. Association between knowledge and risk for cardiovascular disease among older adults: A cross-sectional study in China. Int. J. Nurs. Sci. 2020, 7, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Labata-Lezaun, N.; González-Rueda, V.; Llurda-Almuzara, L.; López-de-Celis, C.; Rodríguez-Sanz, J.; Bosch-Savater, J.; Vicente-Rodríguez, G.; Gorczakowska, D.; Araluze-Arizti, P.; Perez-Bellmunt, A. Effectiveness of multicomponent training on physical performance in older adults: A systematic review and meta-analysis. Arch. Gerontol. Geriatr. 2022, 104, 104838. [Google Scholar] [CrossRef] [PubMed]
- Herrod, P.J.; Doleman, B.; Blackwell, J.E.; O’Boyle, F.; Williams, J.P.; Lund, J.N.; Phillips, B.E. Exercise and other nonpharmacological strategies to reduce blood pressure in older adults: A systematic review and meta-analysis. J. Am. Soc. Hypertens. 2018, 12, 248–267. [Google Scholar] [CrossRef]
- Oliveira Gonçalves, I.d.; Bandeira, A.N.; Coelho-Júnior, H.J.; Silva Aguiar, S.d.; Minucci Camargo, S.; Yukio Asano, R.; Batista Junior, M.L. Multicomponent exercise on physical function, cognition and hemodynamic parameters of community-dwelling older adults: A quasi-experimental study. Int. J. Environ. Res. Public Health 2019, 16, 2184. [Google Scholar] [CrossRef] [PubMed]
- Jofré-Saldía, E.; Villalobos-Gorigoitía, Á.; Cofré-Bolados, C.; Ferrari, G.; Gea-García, G.M. Multicomponent Training in Progressive Phases Improves Functional Capacity, Physical Capacity, Quality of Life, and Exercise Motivation in Community-Dwelling Older Adults: A Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2023, 20, 2755. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, J.; Marques, E.; Ascensão, A.; Magalhães, J.; Marques, F.; Mota, J. Multicomponent exercise program improves blood lipid profile and antioxidant capacity in older women. Arch. Gerontol. Geriatr. 2010, 51, 1–5. [Google Scholar] [CrossRef]
- González-Ravé, J.M.; Cuéllar-Cañadilla, R.; García-Pastor, T.; Juárez Santos-García, D. Strength improvements of different 10-week multicomponent exercise programs in elderly women. Front. Public Health 2020, 8, 130. [Google Scholar] [CrossRef]
- Ibrahim, A.; Mat Ludin, A.F.; Singh, D.K.A.; Rajab, N.F.; Shahar, S. Changes in cardiovascular-health blood biomarkers in response to exercise intervention among older adults with cognitive frailty: A scoping review. Front. Physiol. 2023, 14, 1077078. [Google Scholar] [CrossRef]
- Subías-Perié, J.; Navarrete-Villanueva, D.; Fernández-García, Á.I.; Moradell, A.; Gesteiro, E.; Pérez-Gómez, J.; Ara, I.; Vicente-Rodríguez, G.; Casajús, J.A.; Gómez-Cabello, A. Prevalence of metabolic syndrome and association with physical activity and frailty Status in Spanish older adults with decreased functional capacity: A cross-sectional study. Nutrients 2022, 14, 2302. [Google Scholar] [CrossRef] [PubMed]
- Leitão, L.; Marocolo, M.; de Souza, H.L.; Arriel, R.A.; Campos, Y.; Mazini, M.; Junior, R.P.; Figueiredo, T.; Louro, H.; Pereira, A. Three-Month vs. One-Year Detraining Effects after Multicomponent Exercise Program in Hypertensive Older Women. Int. J. Environ. Res. Public Health 2022, 19, 2871. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, Y.; Hu, S.; Chen, H.; Zhang, M.; Yang, Y.; Liu, Y. Effects of multicomponent exercise on the muscle strength, muscle endurance and balance of frail older adults: A meta-analysis of randomised controlled trials. J. Clin. Nurs. 2023, 32, 1795–1805. [Google Scholar] [CrossRef] [PubMed]
- Mittaz Hager, A.-G.; Mathieu, N.; Lenoble-Hoskovec, C.; Swanenburg, J.; de Bie, R.; Hilfiker, R. Effects of three home-based exercise programmes regarding falls, quality of life and exercise-adherence in older adults at risk of falling: Protocol for a randomized controlled trial. BMC Geriatr. 2019, 19, 13. [Google Scholar] [CrossRef]
- Hui, E.K.-H.; Rubenstein, L.Z. Promoting physical activity and exercise in older adults. J. Am. Med. Dir. Assoc. 2006, 7, 310–314. [Google Scholar] [CrossRef]
- Matthews, C.E.; Freedson, P.S.; Hebert, J.R.; Stanek III, E.J.; Merriam, P.A.; Rosal, M.C.; Ebbeling, C.B.; Ockene, I.S. Seasonal variation in household, occupational, and leisure time physical activity: Longitudinal analyses from the seasonal variation of blood cholesterol study. Am. J. Epidemiol. 2001, 153, 172–183. [Google Scholar] [CrossRef]
- Blasco-Lafarga, C.; Cordellat, A.; Forte, A.; Roldán, A.; Monteagudo, P. Short and long-term trainability in older adults: Training and detraining following two years of multicomponent cognitive—Physical exercise training. Int. J. Environ. Res. Public Health 2020, 17, 5984. [Google Scholar] [CrossRef]
- Mazini Filho, M.; Venturini, G.R.; Moreira, O.C.; Leitao, L.; Mira, P.A.; de Castro, J.B.; Aidar, F.J.; da Silva Novaes, J.; Vianna, J.M.; Ferreira, M.E.C. Effects of different types of resistance training and detraining on functional capacity, muscle strength, and power in older women: A randomized controlled study. J. Strength Cond. Res. 2022, 36, 984–990. [Google Scholar] [CrossRef]
- Buendía-Romero, Á.; Vetrovsky, T.; Estévez-López, F.; Courel-Ibáñez, J. Effect of physical exercise cessation on strength, functional, metabolic and structural outcomes in older adults: A protocol for systematic review and meta-analysis. BMJ Open 2021, 11, e052913. [Google Scholar] [CrossRef]
- Leitão, L.; Pereira, A.; Mazini, M.; Venturini, G.; Campos, Y.; Vieira, J.; Novaes, J.; Vianna, J.; da Silva, S.; Louro, H. Effects of three months of detraining on the health profile of older women after a multicomponent exercise program. Int. J. Environ. Res. Public Health 2019, 16, 3881. [Google Scholar] [CrossRef]
- Toraman, N.F.; Ayceman, N. Effects of six weeks of detraining on retention of functional fitness of old people after nine weeks of multicomponent training. Br. J. Sport. Med. 2005, 39, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Ratel, S.; Gryson, C.; Rance, M.; Penando, S.; Bonhomme, C.; Le Ruyet, P.; Duclos, M.; Boirie, Y.; Walrand, S. Detraining-induced alterations in metabolic and fitness markers after a multicomponent exercise-training program in older men. Appl. Physiol. Nutr. Metab. 2012, 37, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Correa, C.S.; Baroni, B.M.; Radaelli, R.; Lanferdini, F.J.; Cunha, G.D.S.; Reischak-Oliveira, Á.; Vaz, M.A.; Pinto, R.S. Effects of strength training and detraining on knee extensor strength, muscle volume and muscle quality in elderly women. Age 2013, 35, 1899–1904. [Google Scholar] [CrossRef] [PubMed]
- Henwood, T.R.; Taaffe, D.R. Detraining and retraining in older adults following long-term muscle power or muscle strength specific training. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2008, 63, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Taaffe, D.R.; Henwood, T.R.; Nalls, M.A.; Walker, D.G.; Lang, T.F.; Harris, T.B. Alterations in muscle attenuation following detraining and retraining in resistance-trained older adults. Gerontology 2009, 55, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.N.; Carballeira, E.; Silva, F.; Caldo-Silva, A.; Abreu, C.; Furtado, G.E.; Teixeira, A.M. The effect of a resistance training, detraining and retraining cycle on postural stability and estimated fall risk in institutionalized older persons: A 40-week intervention. Healthcare 2022, 10, 776. [Google Scholar] [CrossRef]
- Lee, M.; Lim, T.; Lee, J.; Kim, K.; Yoon, B. Optimal retraining time for regaining functional fitness using multicomponent training after long-term detraining in older adults. Arch. Gerontol. Geriatr. 2017, 73, 227–233. [Google Scholar] [CrossRef]
- Martínez-Aldao, D.; Diz, J.C.; Varela, S.; Sánchez-Lastra, M.A.; Ayán, C. Impact of a five-month detraining period on the functional fitness and physical activity levels on active older people. Arch. Gerontol. Geriatr. 2020, 91, 104191. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1992. [Google Scholar]
- Rikli, R.E.; Jones, C.J. Development and validation of criterion-referenced clinically relevant fitness standards for maintaining physical independence in later years. Gerontology 2013, 53, 255–267. [Google Scholar] [CrossRef]
- Benton, M.J.; Spicher, J.M.; Silva-Smith, A.L. Validity and reliability of handgrip dynamometry in older adults: A comparison of two widely used dynamometers. PLoS ONE 2022, 17, e0270132. [Google Scholar] [CrossRef]
- Andrade, M.S.; Honorato, M.P.; Vargas, J.P.; de los Angeles Galvez, M.; Rojas, M.R. Comparison of two handgrip dynamometers in older adults before elective surgery. Perioper. Med. 2023, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Marques, E.; Carvalho, J.; Soares, J.; Marques, F.; Mota, J. Effects of resistance and multicomponent exercise on lipid profiles of older women. Maturitas 2009, 63, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Leitão, L.; Marocolo, M.; de Souza, H.L.; Arriel, R.A.; Vieira, J.G.; Mazini, M.; Figueiredo, T.; Louro, H.; Pereira, A. Multicomponent exercise program for improvement of functional capacity and lipidic profile of older women with high cholesterol and high triglycerides. Int. J. Environ. Res. Public Health 2021, 18, 10731. [Google Scholar] [CrossRef]
- Bouaziz, W.; Lang, P.-O.; Schmitt, E.; Kaltenbach, G.; Geny, B.; Vogel, T. Health benefits of multicomponent training programs in seniors: A systematic review. Int. J. Clin. Pract. 2016, 70, 520–536. [Google Scholar] [CrossRef] [PubMed]
- Doewes, R.I.; Gharibian, G.; Zaman, B.A.; Akhavan-Sigari, R. An updated systematic review on the effects of aerobic exercise on human blood lipid profile. Curr. Probl. Cardiol. 2023, 48, 101108. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.R.; Buttelli, A.C.K.; Vieira, A.F.; Coconcelli, L.; de Lima Magalhães, R.; Delevatti, R.S.; Kruel, L.F.M. Effect of strength training on lipid and inflammatory outcomes: Systematic review with meta-analysis and meta-regression. J. Phys. Act. Health 2019, 16, 477–491. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sport. Med. 2014, 44, 211–221. [Google Scholar] [CrossRef]
- Earnest, C.P.; Artero, E.G.; Sui, X.; Lee, D.-c.; Church, T.S.; Blair, S.N. Maximal estimated cardiorespiratory fitness, cardiometabolic risk factors, and metabolic syndrome in the aerobics center longitudinal study. Mayo Clin. Proc. 2013, 88, 259–270. [Google Scholar] [CrossRef]
- Glomset, J.A. Physiological role of lecithin—Cholesterol acyltransferase. Am. J. Clin. Nutr. 1970, 23, 1129–1136. [Google Scholar] [CrossRef]
- Merkel, M.; Eckel, R.H.; Goldberg, I.J. Lipoprotein lipase. J. Lipid Res. 2002, 43, 1997–2006. [Google Scholar] [CrossRef]
- Leite, J.C.; Forte, R.; de Vito, G.; Boreham, C.A.; Gibney, M.J.; Brennan, L.; Gibney, E.R. Comparison of the effect of multicomponent and resistance training programs on metabolic health parameters in the elderly. Arch. Gerontol. Geriatr. 2015, 60, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Leitão, L.; Marocolo, M.; Souza, H.L.d.; Arriel, R.A.; Vieira, J.G.; Mazini, M.; Louro, H.; Pereira, A. Can exercise help regulate blood pressure and improve functional capacity of older women with hypertension against the deleterious effects of physical inactivity? Int. J. Environ. Res. Public Health 2021, 18, 9117. [Google Scholar] [CrossRef] [PubMed]
- Xi, H.; He, Y.; Niu, Y.; Sui, X.; Zhang, J.; Zhu, R.; Xu, H.; Zhang, S.; Li, Y.; Yuan, Y. Effect of combined aerobic and resistance exercise on blood pressure in postmenopausal women: A systematic review and meta-analysis of randomized controlled trials. Exp. Gerontol. 2021, 155, 111560. [Google Scholar] [CrossRef] [PubMed]
- Trape, A.A.; Rodrigues, J.A.L.; Ferezin, L.P.; Ferrari, G.D.; Lizzi, E.A.d.S.; Moraes, V.N.d.; Silva, R.F.d.; Zago, A.S.; Brazo-Sayavera, J.; Bueno Junior, C.R. NOS3 Polymorphisms can influence the effect of multicomponent training on blood pressure, nitrite concentration and physical fitness in prehypertensive and hypertensive older adult women. Front. Physiol. 2021, 12, 566023. [Google Scholar] [CrossRef] [PubMed]
- Ben-Sira, D.; Oliveira, J. Hypertension in aging: Physical activity as primary prevention. Eur. Rev. Aging Phys. Act. 2007, 4, 85–89. [Google Scholar] [CrossRef]
- Pescatello, L.S.; Franklin, B.A.; Fagard, R.; Farquhar, W.B.; Kelley, G.A.; Ray, C.A. Exercise and hypertension. Med. Sci. Sports Exerc. 2004, 36, 533–553. [Google Scholar] [CrossRef] [PubMed]
- Sharman, J.E.; Smart, N.A.; Coombes, J.S.; Stowasser, M. Exercise and sport science australia position stand update on exercise and hypertension. J. Hum. Hypertens. 2019, 33, 837–843. [Google Scholar] [CrossRef]
- Hautala, A.J.; Kiviniemi, A.M.; Tulppo, M.P. Individual responses to aerobic exercise: The role of the autonomic nervous system. Neurosci. Biobehav. Rev. 2009, 33, 107–115. [Google Scholar] [CrossRef]
- Maeda, S.; Tanabe, T.; Miyauchi, T.; Otsuki, T.; Sugawara, J.; Iemitsu, M.; Kuno, S.; Ajisaka, R.; Yamaguchi, I.; Matsuda, M. Aerobic exercise training reduces plasma endothelin-1 concentration in older women. J. Appl. Physiol. 2003, 95, 336–341. [Google Scholar] [CrossRef]
- Gielen, S.; Sandri, M.; Erbs, S.; Adams, V. Exercise-induced modulation of endothelial nitric oxide production. Curr. Pharm. Biotechnol. 2011, 12, 1375–1384. [Google Scholar] [CrossRef]
- DeLorey, D.S. Sympathetic vasoconstriction in skeletal muscle: Modulatory effects of aging, exercise training, and sex. Appl. Physiol. Nutr. Metab. 2021, 46, 1437–1447. [Google Scholar] [CrossRef] [PubMed]
- Calcinotto, A.; Kohli, J.; Zagato, E.; Pellegrini, L.; Demaria, M.; Alimonti, A. Cellular senescence: Aging, cancer, and injury. Physiol. Rev. 2019, 99, 1047–1078. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Lein, D.H., Jr.; Alotaibi, M.; Almutairi, M.; Singh, H. Normative reference values and validity for the 30-second chair-stand test in healthy young adults. Int. J. Sport. Phys. Ther. 2022, 17, 907. [Google Scholar] [PubMed]
- Arrieta, H.; Rezola-Pardo, C.; Zarrazquin, I.; Echeverria, I.; Yanguas, J.J.; Iturburu, M.; Gil, S.M.; Rodriguez-Larrad, A.; Irazusta, J. A multicomponent exercise program improves physical function in long-term nursing home residents: A randomized controlled trial. Exp. Gerontol. 2018, 103, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Santana-Sosa, E.; Barriopedro, M.; López-Mojares, L.M.; Pérez, M.; Lucia, A. Exercise training is beneficial for Alzheimer’s patients. Int. J. Sport. Med. 2008, 29, 845–850. [Google Scholar] [CrossRef]
- Zanini, A.; Crisafulli, E.; D’Andria, M.; Gregorini, C.; Cherubino, F.; Zampogna, E.; Azzola, A.; Spanevello, A.; Schiavone, N.; Chetta, A. Minimum clinically important difference in 30-s sit-to-stand test after pulmonary rehabilitation in subjects with COPD. Respir. Care 2019, 64, 1261–1269. [Google Scholar] [CrossRef]
- Soubra, R.; Chkeir, A.; Novella, J.-L. A systematic review of thirty-one assessment tests to evaluate mobility in older adults. BioMed Res. Int. 2019, 2019, 1354362. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. Development and validation of a functional fitness test for community-residing older adults. J. Aging Phys. Act. 1999, 7, 129–161. [Google Scholar] [CrossRef]
- García-Gollarte, F.; Mora-Concepción, A.; Pinazo-Hernandis, S.; Segura-Ortí, E.; Amer-Cuenca, J.J.; Arguisuelas-Martínez, M.D.; Lisón, J.F.; Benavent-Caballer, V. Effectiveness of a supervised group-based Otago exercise program on functional performance in frail institutionalized older adults: A multicenter randomized controlled trial. J. Geriatr. Phys. Ther. 2023, 46, 15–25. [Google Scholar] [CrossRef]
- López-López, S.; Abuín-Porras, V.; Berlanga, L.A.; Martos-Duarte, M.; Perea-Unceta, L.; Romero-Morales, C.; Pareja-Galeano, H. Functional mobility and physical fitness are improved through a multicomponent training program in institutionalized older adults. GeroScience 2023. [Google Scholar] [CrossRef]
- Rikli, R.E.; Jones, C.J. The reliability and validity of a 6-minute walk test as a measure of physical endurance in older adults. J. Aging Phys. Act. 1998, 6, 363–375. [Google Scholar] [CrossRef]
- Choi, T.C.M.; Tsang, H.C.; Lui, S.R.; Yam, T.F.; Lee, Y.S.; To, Y.L.; Choo, K.L. An Initial Assessment of the Decline With Age for the 6-minute Walk Test (6MWT) in Chinese Older Adults With Chronic Obstructive Pulmonary Disease (COPD). Arch. Rehabil. Res. Clin. Transl. 2023, 5, 100262. [Google Scholar] [CrossRef]
- Eggenberger, P.; Theill, N.; Holenstein, S.; Schumacher, V.; de Bruin, E.D. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: A secondary analysis of a 6-month randomized controlled trial with 1-year follow-up. Clin. Interv. Aging 2015, 10, 1711–1732. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, F.S.; Evangelista, A.L.; Teixeira, C.V.L.S.; Paunksnis, M.R.R.; Rica, R.L.; Evangelista, R.A.G.d.T.; João, G.A.; Doro, M.R.; Sita, D.M.; Serra, A.J. Effects of a multicomponent exercise program on the functional fitness in elderly women. Rev. Bras. De Med. Do Esporte 2018, 24, 36–39. [Google Scholar] [CrossRef]
- Sousa, N.; Mendes, R.; Silva, A.; Oliveira, J. Combined exercise is more effective than aerobic exercise in the improvement of fall risk factors: A randomized controlled trial in community-dwelling older men. Clin. Rehabil. 2017, 31, 478–486. [Google Scholar] [CrossRef]
- Bruyère, O.; Beaudart, C.; Reginster, J.-Y.; Buckinx, F.; Schoene, D.; Hirani, V.; Cooper, C.; Kanis, J.A.; Rizzoli, R.; McCloskey, E. Assessment of muscle mass, muscle strength and physical performance in clinical practice: An international survey. Eur. Geriatr. Med. 2016, 7, 243–246. [Google Scholar] [CrossRef]
- Pan, P.-J.; Hsu, N.-W.; Lee, M.-J.; Lin, Y.-Y.; Tsai, C.-C.; Lin, W.-S. Physical fitness and its correlation with handgrip strength in active community-dwelling older adults. Sci. Rep. 2022, 12, 17227. [Google Scholar] [CrossRef]
- Sadjapong, U.; Yodkeeree, S.; Sungkarat, S.; Siviroj, P. Multicomponent exercise program reduces frailty and inflammatory biomarkers and improves physical performance in community-dwelling older adults: A randomized controlled trial. Int. J. Environ. Res. Public Health 2020, 17, 3760. [Google Scholar] [CrossRef]
- Carvalho, M.; Marques, E.; Mota, J. Training and detraining effects on functional fitness after a multicomponent training in older women. Gerontology 2009, 55, 41–48. [Google Scholar] [CrossRef]
- Gu, Q.; Burt, V.L.; Paulose-Ram, R.; Yoon, S.; Gillum, R.F. High blood pressure and cardiovascular disease mortality risk among US adults: The third National Health and Nutrition Examination Survey mortality follow-up study. Ann. Epidemiol. 2008, 18, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Nordestgaard, B.G.; Benn, M.; Schnohr, P.; Tybjærg-Hansen, A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007, 298, 299–308. [Google Scholar] [CrossRef] [PubMed]
- Upmeier, E.; Lavonius, S.; Lehtonen, A.; Viitanen, M.; Isoaho, H.; Arve, S. Serum lipids and their association with mortality in the elderly: A prospective cohort study. Aging Clin. Exp. Res. 2009, 21, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Prestgaard, E.; Hodnesdal, C.; Engeseth, K.; Erikssen, J.; Bodegård, J.; Liestøl, K.; Gjesdal, K.; Kjeldsen, S.E.; Grundvold, I.; Berge, E. Long-term predictors of stroke in healthy middle-aged men. Int. J. Stroke 2018, 13, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, G.; Ferrari, P.; Freisling, H.; Qiao, Y.; Wu, L.; Shao, L.; Ke, C. Associations of handgrip strength with morbidity and all-cause mortality of cardiometabolic multimorbidity. BMC Med. 2022, 20, 191. [Google Scholar] [CrossRef]
- Mujika, I.; Padilla, S. Detraining: Loss of training-induced physiological and performance adaptations. Part I: Short term insufficient training stimulus. Sport. Med. 2000, 30, 79–87. [Google Scholar] [CrossRef]
- Häkkinen, K.; Alen, M.; Kallinen, M.; Newton, R.; Kraemer, W. Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people. Eur. J. Appl. Physiol. 2000, 83, 51–62. [Google Scholar] [CrossRef]
- Blocquiaux, S.; Gorski, T.; Van Roie, E.; Ramaekers, M.; Van Thienen, R.; Nielens, H.; Delecluse, C.; De Bock, K.; Thomis, M. The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men. Exp. Gerontol. 2020, 133, 110860. [Google Scholar] [CrossRef]
Baseline | CI | 24 Weeks of the MTP | CI | 36 Weeks of the MTP | CI | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EG | BF% (%) | 38.74 | ± | 1.33 | 38.11 | − | 39.24 | 36.61 | ± | 1.22 a | 36.04 | − | 37.07 | 36.68 | ± | 1.62 b | 35.93 | − | 37.30 |
HGS (kg) | 17.36 | ± | 1.43 | 16.70 | − | 17.91 | 18.34 | ± | 1.51 a | 17.64 | − | 18.91 | 18.82 | ± | 1.34 b | 18.20 | − | 19.34 | |
HRPeak (bpm) | 129.81 | ± | 2.23 | 128.85 | − | 130.73 | 135.57 | ± | 2.36 a | 134.55 | − | 136.54 | 138.62 | ± | 2.57 b | 137.50 | − | 139.67 | |
6MWT (m) | 573.57 | ± | 34.21 | 559.14 | − | 588.03 | 626.19 | ± | 36.20 a | 610.88 | − | 641.45 | 657.57 | ± | 39.46 b | 641.00 | − | 674.33 | |
8-FUG (s) | 5.93 | ± | 0.33 | 5.79 | − | 6.07 | 5.42 | ± | 0.35 a | 5.28 | − | 5.57 | 5.36 | ± | 0.34 b | 5.22 | − | 5.50 | |
30-CS (rep) | 18.43 | ± | 2.24 | 17.47 | − | 19.36 | 21.43 | ± | 2.19 a | 20.49 | − | 22.34 | 22.52 | ± | 2.13 b | 21.60 | − | 23.40 | |
TC (dL/ml) | 219.24 | ± | 8.10 | 215.70 | − | 222.55 | 203.00 | ± | 8.52 a | 199.44 | − | 206.64 | 198.04 | ± | 8.29 b | 194.54 | − | 201.54 | |
TG (mg/dL) | 225.38 | ± | 6.78 | 222.34 | − | 228.07 | 214.62 | ± | 6.09 a | 211.84 | − | 216.99 | 209.81 | ± | 5.68 b | 207.27 | − | 212.07 | |
GL (mg/dL) | 94.71 | ± | 3.91 | 92.97 | − | 96.28 | 91.62 | ± | 3.96 a | 89.87 | − | 93.21 | 90.19 | ± | 3.68 b | 88.61 | − | 91.72 | |
SBP (mmHg) | 140.33 | ± | 2.32 | 139.36 | − | 141.31 | 134.81 | ± | 10.17 | 130.41 | − | 139.00 | 132.10 | ± | 9.91 b | 127.86 | − | 136.23 | |
DBP (mmHg) | 85.67 | ± | 2.93 | 84.39 | − | 86.86 | 82.24 | ± | 3.37 a | 80.83 | − | 83.67 | 82.29 | ± | 2.88 b | 81.08 | − | 83.51 | |
CG | BF% (%) | 38.86 | ± | 1.24 | 38.14 | − | 39.58 | 39.09 | ± | 1.43 | 38.43 | − | 39.75 | 39.05 | ± | 1.14 | 38.23 | − | 39.87 |
HGS (kg) | 17.34 | ± | 1.36 | 16.55 | − | 18.12 | 17.37 | ± | 0.73 | 16.95 | − | 17.80 | 17.61 | ± | 0.71 | 17.20 | − | 18.02 | |
HR Peak (bpm) | 130.79 | ± | 2.64 | 129.26 | − | 132.31 | 131.00 | ± | 1.47 | 130.15 | − | 131.85 | 131.36 | ± | 1.45 | 130.52 | − | 132.19 | |
6-MWT (m) | 577.86 | ± | 39.84 | 554.85 | − | 600.86 | 577.50 | ± | 34.18 | 557.77 | − | 597.24 | 575.71 | ± | 37.82 | 553.88 | − | 597.55 | |
8-FUG (s) | 5.83 | ± | 0.17 | 5.73 | − | 5.93 | 5.85 | ± | 0.15 | 5.77 | − | 5.94 | 5.87 | ± | 0.15 | 5.79 | − | 5.96 | |
30-CS (rep) | 16.50 | ± | 1.09 | 15.87 | − | 17.13 | 16.71 | ± | 1.27 | 15.98 | − | 17.45 | 17.07 | ± | 1.77 | 16.05 | − | 18.10 | |
TC (dL/ml) | 205.57 | ± | 12.48 | 198.37 | − | 212.78 | 205.21 | ± | 13.28 | 197.55 | − | 212.88 | 202.64 | ± | 11.52 | 195.99 | − | 209.29 | |
TG (mg/dL) | 182.29 | ± | 19.26 | 171.17 | − | 193.40 | 180.29 | ± | 18.01 | 169.89 | − | 190.69 | 180.79 | ± | 13.99 | 172.71 | − | 188.86 | |
GL (mg/dL) | 87.36 | ± | 3.82 | 85.15 | − | 89.56 | 87.29 | ± | 3.56 | 85.23 | − | 89.34 | 86.64 | ± | 4.18 | 84.23 | − | 89.06 | |
SBP (mmHg) | 144.64 | ± | 2.65 | 143.11 | − | 146.17 | 144.00 | ± | 2.18 | 142.74 | − | 145.26 | 144.21 | ± | 1.37 | 143.42 | − | 145.01 | |
DBP (mmHg) | 86.86 | ± | 1.92 | 85.75 | − | 87.96 | 86.57 | ± | 2.14 | 85.34 | − | 87.81 | 86.79 | ± | 1.72 | 85.79 | − | 87.78 |
4-Week DT | CI | 12 Weeks of DT | CI | 8 Weeks of RT | CI | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EG | BF% (%) | 37.64 | ± | 1.87 a | 36.77 | − | 38.35 | 38.94 | ± | 1.94 b | 38.04 | − | 39.68 | 37.57 | ± | 1.70 c | 36.78 | − | 38.22 |
HGS (kg) | 18.65 | ± | 1.35 | 18.03 | − | 19.17 | 18.20 | ± | 1.32 b | 17.60 | − | 18.71 | 19.53 | ± | 1.42 c | 18.88 | − | 20.09 | |
HRPeak (bpm) | 136.00 | ± | 3.14 a | 134.63 | − | 137.29 | 129.76 | ± | 3.44 b | 128.30 | − | 131.20 | 134.67 | ± | 4.37 c | 132.78 | − | 136.47 | |
6-MWT (m) | 641.14 | ± | 36.68 a | 625.64 | − | 656.61 | 617.43 | ± | 37.16 b | 601.72 | − | 633.11 | 668.10 | ± | 37.84 c | 652.77 | − | 684.73 | |
8-FUG (s) | 5.55 | ± | 0.35 a | 5.40 | − | 5.70 | 5.84 | ± | 0.35 b | 5.69 | − | 5.98 | 5.37 | ± | 0.25 c | 5.26 | − | 5.47 | |
30-CS (rep) | 22.33 | ± | 2.10 | 21.41 | − | 23.18 | 21.43 | ± | 2.17 b | 20.50 | − | 22.33 | 23.24 | ± | 1.64 c | 22.52 | − | 23.90 | |
TC (dL/ml) | 199.33 | ± | 9.04 | 195.56 | − | 203.19 | 211.57 | ± | 9.12 b | 207.69 | − | 215.39 | 199.81 | ± | 9.16 c | 195.93 | − | 203.66 | |
TG (mg/dL) | 215.10 | ± | 5.84 a | 212.45 | − | 217.38 | 222.29 | ± | 7.24 b | 218.94 | − | 225.06 | 214.14 | ± | 7.33 c | 210.82 | − | 217.01 | |
GL (mg/dL) | 90.95 | ± | 3.83 | 89.26 | − | 92.49 | 93.24 | ± | 3.92 b | 91.51 | − | 94.82 | 91.14 | ± | 3.90 c | 89.44 | − | 92.73 | |
SBP (mmHg) | 134.57 | ± | 9.17 a | 130.63 | − | 138.37 | 136.05 | ± | 9.00 b | 132.24 | − | 139.84 | 128.76 | ± | 8.54 c | 125.14 | − | 132.36 | |
DBP (mmHg) | 83.90 | ± | 2.49 a | 82.82 | − | 84.93 | 84.95 | ± | 2.30 b | 83.95 | − | 85.89 | 81.10 | ± | 2.48 c | 80.04 | − | 82.13 | |
CG | BF% (%) | 39.06 | ± | 1.34 | 38.28 | − | 39.83 | 39.09 | ± | 1.01 | 38.50 | − | 39.67 | 39.09 | ± | 0.95 | 38.55 | − | 39.64 |
HGS (kg) | 17.66 | ± | 0.93 | 17.13 | − | 18.20 | 17.84 | ± | 0.63 | 17.48 | − | 18.21 | 17.73 | ± | 0.50 | 17.44 | − | 18.02 | |
HRPeak (bpm) | 132.07 | ± | 2.46 | 130.65 | − | 133.49 | 131.79 | ± | 2.58 | 130.30 | − | 133.27 | 131.14 | ± | 1.96 | 130.01 | − | 132.27 | |
6-MWT (m) | 578.93 | ± | 41.70 | 554.85 | − | 603.01 | 580.14 | ± | 18.55 | 569.43 | − | 590.86 | 581.64 | ± | 14.62 | 573.20 | − | 590.08 | |
8-FUG (s) | 5.81 | ± | 0.28 | 5.68 | − | 5.92 | 5.81 | ± | 0.18 | 5.79 | − | 5.95 | 5.85 | ± | 0.18 | 5.75 | − | 5.96 | |
30-CS (rep) | 16.64 | ± | 1.98 | 15.50 | − | 17.79 | 16.43 | ± | 1.16 | 15.76 | − | 17.10 | 16.36 | ± | 1.08 | 15.73 | − | 16.98 | |
TC (dL/ml) | 204.57 | ± | 11.04 | 198.20 | − | 210.94 | 201.21 | ± | 4.25 | 198.76 | − | 203.67 | 200.57 | ± | 4.48 | 197.98 | − | 203.16 | |
TG (mg/dL) | 183.36 | ± | 15.70 | 174.29 | − | 192.42 | 180.64 | ± | 8.48 | 175.75 | − | 185.54 | 180.71 | ± | 8.05 | 176.07 | − | 185.36 | |
GL (mg/dL) | 87.64 | ± | 4.67 | 84.95 | − | 90.34 | 88.14 | ± | 4.47 | 85.56 | − | 90.72 | 88.57 | ± | 3.82 | 86.37 | − | 90.78 | |
SBP (mmHg) | 143.79 | ± | 2.15 | 142.54 | − | 145.03 | 143.57 | ± | 0.65 | 143.20 | − | 143.95 | 143.71 | ± | 0.73 | 143.30 | − | 144.13 | |
DBP (mmHg) | 87.14 | ± | 2.03 | 85.97 | − | 88.32 | 86.64 | ± | 0.74 | 86.21 | − | 87.07 | 86.71 | ± | 0.61 | 86.36 | − | 87.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leitão, L.; Campos, Y.; Louro, H.; Figueira, A.C.C.; Figueiredo, T.; Pereira, A.; Conceição, A.; Marinho, D.A.; Neiva, H.P. Detraining and Retraining Effects from a Multicomponent Training Program on the Functional Capacity and Health Profile of Physically Active Prehypertensive Older Women. Healthcare 2024, 12, 271. https://doi.org/10.3390/healthcare12020271
Leitão L, Campos Y, Louro H, Figueira ACC, Figueiredo T, Pereira A, Conceição A, Marinho DA, Neiva HP. Detraining and Retraining Effects from a Multicomponent Training Program on the Functional Capacity and Health Profile of Physically Active Prehypertensive Older Women. Healthcare. 2024; 12(2):271. https://doi.org/10.3390/healthcare12020271
Chicago/Turabian StyleLeitão, Luís, Yuri Campos, Hugo Louro, Ana Cristina Corrêa Figueira, Teresa Figueiredo, Ana Pereira, Ana Conceição, Daniel A. Marinho, and Henrique P. Neiva. 2024. "Detraining and Retraining Effects from a Multicomponent Training Program on the Functional Capacity and Health Profile of Physically Active Prehypertensive Older Women" Healthcare 12, no. 2: 271. https://doi.org/10.3390/healthcare12020271
APA StyleLeitão, L., Campos, Y., Louro, H., Figueira, A. C. C., Figueiredo, T., Pereira, A., Conceição, A., Marinho, D. A., & Neiva, H. P. (2024). Detraining and Retraining Effects from a Multicomponent Training Program on the Functional Capacity and Health Profile of Physically Active Prehypertensive Older Women. Healthcare, 12(2), 271. https://doi.org/10.3390/healthcare12020271