Sepsis in Latvia—Incidence, Outcomes, and Healthcare Utilization: A Retrospective, Observational Study
Abstract
:1. Introduction
1.1. Sepsis: Evolving Definitions, Global Impact, and the Complexities of Epidemiological Assessments
1.2. Overview of the Latvian Healthcare System and Its Implications for Sepsis Research and Care
1.3. Research Goals and Scope in Context of Global Sepsis Trends
2. Materials and Methods
2.1. Study Design and Objectives
2.2. Data Source
2.3. Study Population
2.4. Baseline Patient Characteristics
2.5. Temporary Trends Analysis
2.6. Analysis of Post-Discharge Outcomes and Care for Survivors
2.7. Statistical Analysis
3. Results
3.1. Results of Temporary Trends Analysis
3.1.1. Sepsis Incidence Characteristics
3.1.2. Mortality Characteristics
3.1.3. Hospitalization Characteristics
3.1.4. Patient Characteristics
3.2. Post-Discharge Outcomes and Health Care Utilization in Sepsis Survivors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. ICD-10 Codes Used for Selection of Patients
Explicit Sepsis Codes | Infection Codes | Codes for Organ Dysfunction |
A02.1, A20.7, A22.7, A26.7, A32.7, A40-A40.9, A41-A41.9, A54.8, B00.7, B37.7, B44.7, B45.7, B46.4, B50.8, O85, O88.3, R57.2, R57.8, R651 | A01-A02.0, A02.2, A02.9, A02.8, A03-A09.9, A19-A20.3, A20.8, A20.9, A21.7, A21.8, A21.9, A21-A21.3, A22.8, A22.9, A22-A22.2, A23-A24.0, A241-A44, A24.9, A25-A26.0, A26.8, A26.9, A27-A28.1, A28.2, A28.8, A28.9, A31-A32.12, A32.8, A32.9, A36-A39, A39.1-A39.3, A39.0, A39.4, A39.5, A39.8, A39.9, A42.7, A42.8, A42.9, A42-A42.2, A43-A46.0, A48.0-A49.9, A50-A50.9, A59-A59.9, A65-A65.0, A69-A69.1, A74, A74.8-A75.9, A77-A81.9, A83-A96.9, A98-B00.59, B00.8, B00.9, B01-B10.89, B25-B27.99, B29.4, B33-B34.9, B37-B37.6, B37.8, B37.9, B38-B50.9, B54-B55, B55.1-B55.9, B58-B60.8, B64, B67-B67.99, B91, B95-B99.9, G00-G08.0, G14-G14.6, H05.01-H05.039, H60.2-H60.23, H70.0-H70.009, I00, I02, I02.9, I26.01-I26.09, I26.90-I26.99, I33-I33.9, I38-I39.9, I40.0-I40.9, I76, I96-I96.9, I98.1, J01-J06.9, J09-J22.9, J36-J36.0, J39.0-J39.1, J85-J86.9, K35-K37.9, K57-K57.93, K61-K61.4, K63.0-K63.1, K65-K65.9, K67.8, K75.0-K75.1, K75.3, K76.3, K77.0, K81.0, K81.2, K83.0, K95.01, K95.81, L02-L08.9, M00-M02.9, M86-M86.9, M89.6-M89.69, N10-N10.9, N15.1-N15.9, N30-N30.91, N39.0, N41.0, N41.2-N41.3, N45-N45.9, N70-N77.8, N98.0, O03.3, O03.5, O03.8, O04.5, O04.8, O07.3, O08.0, O08.8, O23-O23.9, O03.0, O41.1, O41.8-O41.9, O75.3, O86-O86.8, O91, O91.0, O91.1, O91.2, O98-O98.9, R65.9, R65.0, R65.9, R78.81, T80.2-T80.29, T81.4, T82.6-T82.7, T83.5, T83.6, T84.5-T84.7, T85.7, T88.0, U04 | D65, D68.9, D695, D69.6, D69.8, D69.9, E87.2-E87.8, G93.4, I46.0-I46.9, I95.1-I95.9, J80, J95.2, J95.3, J96.0-J96.9, K72.0-K72.9, N00-N00.9, N01-N01.9, N16.0, N17.0-N17.9, R09.2, R40.0-R40.2, R39.2, R41.8, R55, R57, R57.0, R57.1, R57.9 |
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, M.C.; Scherag, A.; Adhikari, N.K.J.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K.; International Forum of Acute Care Trialists. Assessment of Global Incidence and Mortality of Hospital-treated Sepsis. Current Estimates and Limitations. Am. J. Respir. Crit. Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing Sepsis as a Global Health Priority—A WHO Resolution. New Engl. J. Med. 2017, 377, 414–417. [Google Scholar] [CrossRef] [PubMed]
- World Health Organisation Executive Board (EB140/12). Improving the Prevention, Diagnosis and Clinical Management of Sepsis. 9 January 2017. Available online: https://apps.who.int/gb/ebwha/pdf_files/EB140/B140_12-en.pdf (accessed on 15 October 2023).
- Klompas, M.; Rhee, C. Sepsis and the theory of relativity: Measuring a moving target with a moving measuring stick. Crit. Care 2016, 20, 396. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann-Struzek, C.; Mikolajetz, A.; Schwarzkopf, D.; Cohen, J.; Hartog, C.S.; Pletz, M.; Gastmeier, P.; Reinhart, K. Challenges in assessing the burden of sepsis and understanding the inequalities of sepsis outcomes between National Health Systems: Secular trends in sepsis and infection incidence and mortality in Germany. Intensiv. Care Med. 2018, 44, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Klompas, M. Sepsis trends: Increasing incidence and decreasing mortality, or changing denominator? J. Thorac. Dis. 2020, 12, S89–S100. [Google Scholar] [CrossRef]
- Prescott, H.C.; Angus, D.C. Enhancing Recovery from Sepsis: A Review. JAMA 2018, 319, 62. [Google Scholar] [CrossRef]
- Prescott, H.C.; Iwashyna, T.J.; Blackwood, B.; Calandra, T.; Chlan, L.L.; Choong, K.; Connolly, B.; Dark, P.; Ferrucci, L.; Finfer, S.; et al. Understanding and Enhancing Sepsis Survivorship. Priorities for Research and Practice. Am. J. Respir. Crit. Care Med. 2019, 200, 972–981. [Google Scholar] [CrossRef]
- Angus, D.C.; Linde-Zwirble, W.T.; Lidicker, J.; Clermont, G.; Carcillo, J.; Pinsky, M.R. Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 2001, 29, 1303–1310. [Google Scholar] [CrossRef]
- Martin, G.S.; Mannino, D.M.; Eaton, S.; Moss, M. The Epidemiology of Sepsis in the United States from 1979 through 2000. N. Engl. J. Med. 2003, 348, 1546–1554. [Google Scholar] [CrossRef] [PubMed]
- Iwashyna, T.J.; Odden, A.; Rohde, J.; Bonham, C.; Kuhn, L.; Malani, P.; Chen, L.; Flanders, S. Identifying Patients with Severe Sepsis Using Administrative Claims: Patient-Level Validation of the Angus Implementation of the International Consensus Conference Definition of Severe Sepsis. Med. Care 2014, 52, e39–e43. [Google Scholar] [CrossRef] [PubMed]
- Jolley, R.J.; Quan, H.; Jetté, N.; Sawka, K.J.; Diep, L.; Goliath, J.; Roberts, D.J.; Yipp, B.G.; Doig, C.J. Validation and optimisation of an ICD-10-coded case definition for sepsis using administrative health data. BMJ Open 2015, 5, e009487. [Google Scholar] [CrossRef] [PubMed]
- OECD. Embracing a One Health Framework to Fight Antimicrobial Resistance. In OECD Health Policy Studies; OECD: Paris, France, 2023. [Google Scholar] [CrossRef]
- OECD/European Observatory on Health Systems and Policies, Latvia: Country Health Profile 2021, State of Health in the EU. OECD Publishing: Paris, France. 2021. Available online: https://eurohealthobservatory.who.int/publications/m/latvia-country-health-profile-2021 (accessed on 15 October 2023).
- Briģis, Ģ. Latvia. In Voluntary Health Insurance in Europe: Country Experience; Sagan, A., Thomson, S., Eds.; World Health Organization: London, UK, 2016; Volume 42, pp. 89–92. Available online: https://www.euro.who.int/__data/assets/pdf_file/0011/310799/Voluntary-health-insurance-Europe-country-experience.pdf#page=97%20https://www.ncbi.nlm.nih.gov/books/NBK447696/ (accessed on 15 October 2023).
- SPKC. Dati Pētniecībai no Monitorēšanas Sistēmas|Slimību Profilakses un Kontroles Centrs [In Latvian]. Available online: https://www.spkc.gov.lv/lv/dati-petniecibai-no-monitoresanas-sistemas (accessed on 15 October 2023).
- Barzdins, J.; Luguzis, A.; Valeinis, J.; Lepiksone, J.; Skrule, J.; Pildava, S.; Konstante, R. Towards evidence-based management: A nationwide administrative data-based audit of acute myocardial infarction in Latvia. Int. J. Healthc. Manag. 2021, 14, 781–788. [Google Scholar] [CrossRef]
- Lenzi, J.; Reno, C.; Skrule, J.; Lepiksone, J.; Briģis, Ģ.; Dūdele, A.; Fantini, M.P. Excess Cardiovascular Mortality in Latvia: A Novel Approach Based on Patient-Level Data to Estimate the Separate Contributions of Primary Prevention, Accessibility and Quality of Hospital Care. Int. J. Health Policy Manag. 2020, 11, 820–828. [Google Scholar] [CrossRef] [PubMed]
- Pandolfi, F.; Guillemot, D.; Watier, L.; Brun-Buisson, C. Trends in bacterial sepsis incidence and mortality in France between 2015 and 2019 based on National Health Data System (Système National des données de Santé (SNDS)): A retrospective observational study. BMJ Open 2022, 12, e058205. [Google Scholar] [CrossRef] [PubMed]
- Sundararajan, V.; Henderson, T.; Perry, C.; Muggivan, A.; Quan, H.; Ghali, W.A. New ICD-10 version of the Charlson comorbidity index predicted in-hospital mortality. J. Clin. Epidemiol. 2004, 57, 1288–1294. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Republic of Latvia. Cabinet Regulations. Procedures for the Organisation of and Payment for Health Care Services. Cabinet Regulation. August 2018. Available online: https://likumi.lv/ta/en/en/id/301399 (accessed on 15 October 2023).
- NHS. Gada Publiskais Pārskats|Nacionālais Veselības Dienests [In Latvian]. Available online: https://www.vmnvd.gov.lv/lv/gada-publiskais-parskats (accessed on 15 October 2023).
- NHS. Ambulatoro Apmeklējumu Skaits pa Aprūpes Epizodes Veidiem—Datu Kopas—Latvijas Atvērto Datu Portāls [In Latvian]. Available online: https://data.gov.lv/dati/lv/dataset/ambulatoro-apmeklejumu-skaits-pa-aprupes-epizodes-veidiem (accessed on 15 October 2023).
- Dupuis, C.; Bouadma, L.; Ruckly, S.; Perozziello, A.; Van-Gysel, D.; Mageau, A.; Mourvillier, B.; de Montmollin, E.; Bailly, S.; Papin, G.; et al. Sepsis and septic shock in France: Incidences, outcomes and costs of care. Ann. Intensive Care 2020, 10, 145. [Google Scholar] [CrossRef]
- Rhee, C.; Gohil, S.; Klompas, M. Regulatory Mandates for Sepsis Care—Reasons for Caution. N. Engl. J. Med. 2014, 370, 1673–1676. [Google Scholar] [CrossRef]
- Fleischmann-Struzek, C.; Thomas-Rüddel, D.O.; Schettler, A.; Schwarzkopf, D.; Stacke, A.; Seymour, C.W.; Haas, C.; Dennler, U.; Reinhart, K. Comparing the validity of different ICD coding abstraction strategies for sepsis case identification in German claims data. PLoS ONE 2018, 13, e0198847. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.; Dantes, R.; Epstein, L.; Murphy, D.J.; Seymour, C.W.; Iwashyna, T.J.; Kadri, S.S.; Angus, D.C.; Danner, R.L.; Fiore, A.E.; et al. Incidence and Trends of Sepsis in US Hospitals Using Clinical vs Claims Data, 2009-2014. JAMA 2017, 318, 1241. [Google Scholar] [CrossRef] [PubMed]
- Mellhammar, L.; Wullt, S.; Lindberg, Å.; Lanbeck, P.; Christensson, B.; Linder, A. Sepsis Incidence: A Population-Based Study. Open Forum Infect. Dis. 2016, 3, ofw207. [Google Scholar] [CrossRef] [PubMed]
- Yébenes, J.C.; SOCMIC (Catalonian Critical Care Society) Sepsis Working Group; Ruiz-Rodriguez, J.C.; Ferrer, R.; Clèries, M.; Bosch, A.; Lorencio, C.; Rodriguez, A.; Nuvials, X.; Martin-Loeches, I.; et al. Epidemiology of sepsis in Catalonia: Analysis of incidence and outcomes in a European setting. Ann. Intensive Care 2017, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, K.; Lee, H.; Ahn, S. Epidemiology of sepsis in Korea: A population-based study of incidence, mortality, cost and risk factors for death in sepsis. Clin. Exp. Emerg. Med. 2019, 6, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Sunderland, N.; Rathnayake, K.; Westbrook, J. Sepsis epidemiology in Australian Public Hospitals, a nationwide longitudinal study (2013-2018). Infect. Dis. Heal. 2021, 26, S9. [Google Scholar] [CrossRef]
- Imaeda, T.; Nakada, T.-A.; Takahashi, N.; Yamao, Y.; Nakagawa, S.; Ogura, H.; Shime, N.; Umemura, Y.; Matsushima, A.; Fushimi, K. Trends in the incidence and outcome of sepsis using data from a Japanese nationwide medical claims database-the Japan Sepsis Alliance (JaSA) study group-. Crit. Care 2021, 25, 338. [Google Scholar] [CrossRef]
- Fleischmann, C.; Thomas-Rueddel, D.O.; Hartmann, M.; Hartog, C.S.; Welte, T.; Heublein, S.; Dennler, U.; Reinhart, K. Hospital Incidence and Mortality Rates of Sepsis: An Analysis of Hospital Episode (DRG) Statistics in Germany From 2007 to 2013. Dtsch. Aerzteblatt Int. 2016, 113, 159–166. [Google Scholar] [CrossRef]
- Fleischmann-Struzek, C.; Rose, N.; Freytag, A.; Spoden, M.; Prescott, H.C.; Schettler, A.; Wedekind, L.; Ditscheid, B.; Storch, J.; Born, S.; et al. Epidemiology and Costs of Postsepsis Morbidity, Nursing Care Dependency, and Mortality in Germany, 2013 to 2017. JAMA Netw. Open 2021, 4, e2134290. [Google Scholar] [CrossRef]
- Puceta, L.; Dumpis, U. Clinical characteristics and outcomes for patients with a sepsis-related diagnosis in multidisciplinary hospital in Latvia. Eur. J. Case Rep. Intern. Med. 2019, 6 (Suppl. S1), 1. [Google Scholar] [CrossRef]
- Brīdiņa, L.; Krūmiņa, A.; Šuba, O.; Cauce, V.; Vanags, I.; Vīksna, L. Severe Sepsis—Clinical Manifestations and Pharmaco-Economic Analysis in an Intensive Care Unit in Latvia. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2016, 70, 237–244. [Google Scholar] [CrossRef]
- Davis, J.S.; He, V.; Anstey, N.M.; Condon, J.R. Long Term Outcomes Following Hospital Admission for Sepsis Using Relative Survival Analysis: A Prospective Cohort Study of 1,092 Patients with 5 Year Follow Up. PLoS ONE 2014, 9, e112224. [Google Scholar] [CrossRef] [PubMed]
- Shankar-Hari, M.; Harrison, D.A.; Ferrando-Vivas, P.; Rubenfeld, G.D.; Rowan, K. Risk Factors at Index Hospitalization Associated With Longer-term Mortality in Adult Sepsis Survivors. JAMA Netw. Open 2019, 2, e194900. [Google Scholar] [CrossRef] [PubMed]
- Pandolfi, F.; Brun-Buisson, C.; Guillemot, D.; Watier, L. One-year hospital readmission for recurrent sepsis: Associated risk factors and impact on 1-year mortality—A French nationwide study. Crit. Care 2022, 26, 371. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.E.; Szychowski, J.M.; Griffin, R.; Safford, M.M.; Shapiro, N.I.; Howard, G. Long-term mortality after community-acquired sepsis: A longitudinal population-based cohort study. BMJ Open 2014, 4, e004283. [Google Scholar] [CrossRef] [PubMed]
- Spoden, M.; Hartog, C.S.; Schlattmann, P.; Freytag, A.; Ostermann, M.; Wedekind, L.; Storch, J.; Reinhart, K.; Günster, C.; Fleischmann-Struzek, C. Occurrence and Risk Factors for New Dependency on Chronic Care, Respiratory Support, Dialysis and Mortality in the First Year After Sepsis. Front. Med. 2022, 9, 878337. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Ambler, M.; Mahalingasivam, V.; Jones, A.; Rowan, K.; Rubenfeld, G.D. Evidence for a causal link between sepsis and long-term mortality: A systematic review of epidemiologic studies. Crit. Care 2016, 20, 101. [Google Scholar] [CrossRef]
- Shankar-Hari, M.; Saha, R.; Wilson, J.; Prescott, H.C.; Harrison, D.; Rowan, K.; Rubenfeld, G.D.; Adhikari, N.K.J. Rate and risk factors for rehospitalisation in sepsis survivors: Systematic review and meta-analysis. Intensive Care Med. 2020, 46, 619–636. [Google Scholar] [CrossRef]
- Schmidt, K.F.R.; Huelle, K.; Reinhold, T.; Prescott, H.C.; Gehringer, R.; Hartmann, M.; Lehmann, T.; Mueller, F.; Reinhart, K.; Schneider, N.; et al. Healthcare Utilization and Costs in Sepsis Survivors in Germany–Secondary Analysis of a Prospective Cohort Study. J. Clin. Med. 2022, 11, 1142. [Google Scholar] [CrossRef]
Characteristic | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | Trend 2015–2020 1 |
---|---|---|---|---|---|---|---|
Sepsis incidence characteristics: | |||||||
Number of hospitalizations | 2177 | 2780 | 2855 | 3334 | 3330 | 3361 | ↗ |
Number of unique patients | 2090 (96.0%) 2 | 2672 (96.1%) | 2746 (96.2%) | 3188 (95.6%) | 3199 (96.1%) | 3233 (96.2%) | ↗ |
Number of admissions, median (IQR) | 1 (1, 1) | 1 (1, 1) | 1 (1, 1) | 1 (1, 1) | 1 (1, 1) | 1 (1, 1) | NS |
Re-admissions (during the year following the last admission) | 131 (6.0%) | 142 (5.1%) | 177 (6.2%) | 203 (6.1%) | 180 (5.4%) | N/A | NS |
Incidence per 100,000 (age/sex standardized) | 109.6 | 139.8 | 143.3 | 166.5 | 165.6 | 165.2 | ↗ |
Mortality characteristics: | |||||||
In-hospital death cases | 756 (34.7%) | 1036 (37.3%) | 1045 (36.6%) | 1387 (41.6%) | 1356 (40.7%) | 1472 (43.8%) | ↗ |
Case fatality (age/sex standardized) | 34.7% | 36.5% | 35.1% | 39.9% | 38.6% | 40.5% | ↗ |
Deaths per 100,000 (age/sex standardized) | 38.1 | 51.9 | 51.9 | 68.3 | 65.8 | 70.5 | ↗ |
Hospitalization characteristics: | |||||||
Hospital LOS (days), median (IQR) | 10 (5, 18) | 10 (5, 19) | 10 (5, 19) | 10 (5, 19) | 11 (5, 20) | 11 (6, 20) | ↗ |
Cost (EUR), median (IQR) | 691 (349, 1460) | 678 (345, 1415) | 679 (354, 1310) | 822 (424, 1565) | 973 (511, 1876) | 1139 (628, 2042) | ↗ |
Patient characteristics: | |||||||
Male sex | 1016 (47%) | 1300 (47%) | 1334 (47%) | 1541 (46%) | 1577 (47%) | 1579 (47%) | ↗ |
Age, years median (IQR) | 68 (52, 79) | 69 (55, 79) | 71 (56, 81) | 71 (57, 81) | 71 (56, 81) | 72 (59, 81) | ↗ |
Age 19–39 | 308 (15%) | 343 (12%) | 334 (11%) | 361 (11%) | 373 (11%) | 286 (9%) | NS |
Age 40–59 | 448 (21%) | 507 (18%) | 498 (17%) | 605 (18%) | 598 (18%) | 567 (17%) | ↗ |
Age 60–79 | 902 (41%) | 1 236 (44%) | 1 226 (43%) | 1392 (42%) | 1377 (41%) | 1451 (43%) | ↗ |
Age > 80 | 519 (24%) | 694 (25%) | 797 (28%) | 976 (29%) | 982 (29%) | 1057 (31%) | ↗ |
Charlson comorbidity score, median (IQR) | 2 (1, 4) | 2 (1, 4) | 2 (1, 4) | 3 (1, 4) | 2 (1, 4) | 3 (1, 4) | NS |
Comorbidities quantity (Charlson definitions): | |||||||
Prior myocardial infarction | 299 (14%) | 394 (14%) | 431 (15%) | 464 (14%) | 509 (15%) | 457 (14%) | ↗ |
Congestive heart failure | 1036 (48%) | 1440 (52%) | 1505 (53%) | 1771 (53%) | 1731 (52%) | 1790 (53%) | ↗ |
Peripheral vascular disease | 361 (17%) | 554 (20%) | 572 (20%) | 653 (20%) | 682 (20%) | 729 (22%) | ↗ |
Cerebrovascular disease | 650 (30%) | 926 (33%) | 1002 (35%) | 1194 (36%) | 1237 (37%) | 1301 (39%) | ↗ |
Dementia | 109 (5%) | 155 (6%) | 176 (6%) | 227 (7%) | 258 (8%) | 288 (9%) | ↗ |
Chronic pulmonary disease | 518 (24%) | 663 (24%) | 732 (26%) | 809 (24%) | 723 (22%) | 648 (19%) | NS |
Rheumatologic disease | 54 (3%) | 57 (2%) | 72 (3%) | 84 (3%) | 77 (2%) | 76 (2%) | ↗ |
Peptic ulcer disease | 106 (5%) | 116 (4%) | 149 (5%) | 159 (5%) | 143 (4%) | 127 (4%) | NS |
Mild liver disease | 164 (8%) | 189 (7%) | 204 (7%) | 234 (7%) | 197 (6%) | 232 (7%) | NS |
Diabetes | 123 (6%) | 183 (7%) | 241 (8%) | 259 (8%) | 266 (8%) | 311 (9%) | ↗ |
Diabetes with chronic complications | 229 (11%) | 340 (12%) | 329 (12%) | 410 (12%) | 464 (14%) | 500 (15%) | ↗ |
Cerebrovascular (hemiplegia) event | 34 (2%) | 33 (1%) | 27 (1%) | 50 (2%) | 53 (2%) | 56 (2%) | ↗ |
Moderate-to-severe renal disease | 335 (15%) | 522 (19%) | 601 (21%) | 637 (19%) | 747 (22%) | 752 (22%) | ↗ |
Cancer without metastases | 268 (12%) | 360 (13%) | 379 (13%) | 444 (13%) | 429 (13%) | 448 (13%) | ↗ |
Moderate or severe liver disease | 188 (9%) | 270 (10%) | 217 (8%) | 253 (8%) | 236 (7%) | 237 (7%) | NS |
Metastatic solid tumor | 86 (4%) | 64 (2%) | 81 (3%) | 91 (3%) | 95 (3%) | 106 (3%) | NS |
Acquired immune deficiency syndrome | 42 (2%) | 51 (2%) | 43 (2%) | 64 (2%) | 49 (2%) | 55 (2%) | NS |
Principal diagnosis at discharge (ICD-10 chapters): | |||||||
Diseases of the respiratory system (J00-J99) | 583 (27%) | 733 (26%) | 750 (26%) | 859 (26%) | 778 (23%) | 538 (16%) | NS |
Certain infectious and parasitic diseases (A00-B99) | 373 (17%) | 443 (16%) | 453 (16%) | 516 (15%) | 565 (17%) | 452 (13%) | NS |
Diseases of the circulatory system (I00-I99) | 281 (13%) | 417 (15%) | 407 (14%) | 514 (15%) | 570 (17%) | 482 (14%) | ↗ |
Diseases of the genitourinary system (N00-N99) | 181 (8%) | 284 (10%) | 312 (11%) | 353 (11%) | 356 (11%) | 386 (11%) | ↗ |
Diseases of the digestive system (K00-K93) | 163 (8%) | 201 (7%) | 191 (7%) | 287 (9%) | 229 (7%) | 264 (8%) | NS |
Neoplasms (C00-D48) | 200 (9%) | 188 (7%) | 220 (8%) | 214 (6%) | 177 (5%) | 216 (6%) | NS |
Pregnancy, childbirth, and the puerperium (O00-O99) | 158 (7%) | 199 (7%) | 174 (6%) | 194 (6%) | 207 (6%) | 147 (4%) | NS |
Injury, poisoning, and certain other consequences of external causes (S00-T98) | 59 (2.7%) | 76 (2.7%) | 94 (3.3%) | 109 (3.3%) | 104 (3.1%) | 111 (3.3%) | ↗ |
Codes for special purposes (U00-U85) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 473 (14%) | NS |
Others | 179 (8%) | 239 (9%) | 254 (9%) | 288 (9%) | 343 (10%) | 292 (9%) | ↗ |
Characteristic | Sepsis Cohort N = 7764 1 | Reference Cohort N = 20,686 1 | SMD 2 |
---|---|---|---|
Age (years) | 67 (49, 78) | 67 (48, 79) | 0.01 |
Gender (male) | 3343 (43%) | 8281 (40%) | 0.06 |
Length of stay of index hospitalization (days) | 11 (7, 19) | 10 (7, 16) | 0.2 |
CCI score, median | 2 (0, 3) | 2 (0, 3) | 0.14 |
Comorbidities (Charlson definitions) | |||
Prior myocardial infarction | 919 (12%) | 2290 (11%) | 0.02 |
Congestive heart failure | 3485 (45%) | 9048 (44%) | 0.02 |
Peripheral vascular disease | 1019 (13%) | 2508 (12%) | 0.03 |
Cerebrovascular disease | 2162 (28%) | 5629 (27%) | 0.01 |
Dementia | 313 (4%) | 741 (4%) | 0.02 |
Chronic pulmonary disease | 1913 (25%) | 4915 (24%) | 0.02 |
Rheumatologic disease | 156 (2%) | 393 (2%) | 0.01 |
Peptic ulcer disease | 305 (4%) | 700 (3%) | 0.03 |
Mild liver disease | 537 (7%) | 1345 (7%) | 0.02 |
Diabetes | 522 (7%) | 1319 (6%) | 0.01 |
Diabetes with chronic complications | 870 (11%) | 2045 (10%) | 0.04 |
Cerebrovascular (hemiplegia) event | 77 (1%) | 165 (1%) | 0.02 |
Moderate to severe renal disease | 1313 (17%) | 2729 (13%) | 0.10 |
Cancer without metastases | 896 (12%) | 2248 (11%) | 0.02 |
Moderate to severe liver disease | 369 (5%) | 205 (1%) | 0.23 |
Metastatic solid tumor | 141 (2%) | 369 (2%) | 0.00 |
Acquired immune-deficiency syndrome | 116 (2%) | 255 (1%) | 0.02 |
Year of discharge for index hospitalization | |||
2015 | 1265 (16%) | 3633 (18%) | 0.04 |
2016 | 1558 (20%) | 4201 (20%) | |
2017 | 1610 (21%) | 4386 (21%) | |
2018 | 1643 (21%) | 4248 (21%) | |
2019 | 1687 (22%) | 4207 (20%) |
Characteristic | Sepsis Cohort N = 7764 1 | Reference Cohort N = 20,686 1 | p-Value 2 |
---|---|---|---|
Death in 365 days | 957 (12%) | 458 (2%) | <0.001 |
Rehospitalization in 365 days | 3721 (48%) | 9697 (47%) | 0.110 |
Healthcare utilization volumes (per patient) | |||
Inpatient care: | |||
Number of rehospitalizations per patient | 0 (0, 1) | 0 (0, 1) | 0.042 * |
Length of stay for all rehospitalizations (days) | 13 (6, 27) | 12 (5, 23) | <0.001 |
Outpatient care: | |||
Number of outpatient care episodes total | 8 (3, 17) | 9 (3, 18) | 0.002 |
Primary care physician visits | 2 (1, 5) | 3 (1, 6) | 0.015 |
Specialist consultations | 1 (0, 3) | 1 (0, 4) | <0.001 |
Laboratory diagnostics | 2 (0, 5) | 2 (0, 5) | 0.3 |
Other outpatient care | 1 (0, 3) | 1 (0, 3) | <0.001 ** |
Pharmaceuticals prescriptions | |||
Number of filled prescriptions | 5 (0, 17) | 5 (0, 16) | <0.001 |
Healthcare utilization costs (per patient EUR) 3 | |||
Inpatient care (rehospitalizations) | 1027 (457, 2 359) | 920 (438, 1 999) | <0.001 |
Outpatient care (total) | 183 (73, 415) | 211 (87, 447) | <0.001 |
Primary care physician visits | 74 (37, 130) | 74 (37, 130) | 0.3 |
Specialist consultations | 47 (21, 114) | 56 (22, 136) | <0.001 |
Laboratory diagnostics | 34 (15, 72) | 33 (16, 67) | 0.2 |
Other outpatient care | 65 (19, 2 018) | 73 (23, 222) | 0.005 |
Pharmaceuticals | 210 (66, 609) | 175 (60, 477) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puceta, L.; Luguzis, A.; Dumpis, U.; Dansone, G.; Aleksandrova, N.; Barzdins, J. Sepsis in Latvia—Incidence, Outcomes, and Healthcare Utilization: A Retrospective, Observational Study. Healthcare 2024, 12, 272. https://doi.org/10.3390/healthcare12020272
Puceta L, Luguzis A, Dumpis U, Dansone G, Aleksandrova N, Barzdins J. Sepsis in Latvia—Incidence, Outcomes, and Healthcare Utilization: A Retrospective, Observational Study. Healthcare. 2024; 12(2):272. https://doi.org/10.3390/healthcare12020272
Chicago/Turabian StylePuceta, Laura, Artis Luguzis, Uga Dumpis, Guna Dansone, Natalija Aleksandrova, and Juris Barzdins. 2024. "Sepsis in Latvia—Incidence, Outcomes, and Healthcare Utilization: A Retrospective, Observational Study" Healthcare 12, no. 2: 272. https://doi.org/10.3390/healthcare12020272
APA StylePuceta, L., Luguzis, A., Dumpis, U., Dansone, G., Aleksandrova, N., & Barzdins, J. (2024). Sepsis in Latvia—Incidence, Outcomes, and Healthcare Utilization: A Retrospective, Observational Study. Healthcare, 12(2), 272. https://doi.org/10.3390/healthcare12020272