A Semantic Cognition Contribution to Mood and Anxiety Disorder Pathophysiology
Abstract
:1. Introduction
1.1. The Neural Basis of Mood and Anxiety Disorders
1.2. The Anterior Temporal Lobe as a Semantic Hub Region
1.3. Distorted Anterior Temporal Lobe Interactions Underlie Depression
1.4. Distorted Anterior Temporal Lobe Interactions Underlie Anxiety
1.5. Using Neuromodulation as Treatment for Depression and Anxiety
1.6. Patients with Mood and Anxiety Disorders without Symptoms of Self-Blame and Guilt
2. Factors to Take into Account for Research on the Role of the ATL in Mental Health Disorders
2.1. Sex Differences
2.2. Variety of Clinical and Subclinical Mental Health Disorders
2.3. The Use of Advanced fMRI Techniques
3. Final Remarks and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eslinger, P.J.; Anders, S.; Ballarini, T.; Eslinger, P.J.; Anders, S.; Ballarini, T.; Boutros, S.; Krach, S.; Mayer, A.V.; Moll, J.; et al. The neuroscience of social feelings: Mechanisms of adaptive social functioning. Neurosci. Biobehav. Rev. 2021, 128, 592–620. [Google Scholar] [CrossRef] [PubMed]
- Lythe, K.E.; Moll, J.; Gethin, J.A.; Workman, C.I.; Green, S.; Ralph, M.A.L.; Deakin, J.F.; Zahn, R. Self-blame–Selective Hyperconnectivity between Anterior Temporal and Subgenual Cortices and Prediction of Recurrent Depressive Episodes. JAMA Psychiatry 2015, 72, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Abramson, L.Y.; Seligman, M.E.P.; Teasdale, J.D. Learned Helplessness in Humans: Critique and Reformulation. J. Abnorm. Psychol. 1978, 87, 49–74. [Google Scholar] [CrossRef] [PubMed]
- Garnefski, N.; Legerstee, J.; Kraaij, V.; Van Den Kommer, T.; Teerds, J. Cognitive coping strategies and symptoms of depression and anxiety: A comparison between adolescents and adults. J. Adolesc. 2002, 25, 603–611. [Google Scholar] [CrossRef] [PubMed]
- Green, S.; Lambon Ralph, M.A.; Moll, J.; Deakin, J.F.W.; Zahn, R. Guilt-selective functional disconnection of anterior temporal and subgenual cortices in major depressive disorder. Arch. Gen. Psychiatry 2012, 69, 1014–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahn, R.; Weingartner, J.H.; Basilio, R.; Bado, P.; Mattos, P.; Sato, J.R.; de Oliveira-Souza, R.; Fontenelle, L.F.; Young, A.H.; Moll, J. Blame-rebalance fMRI neurofeedback in major depressive disorder: A randomised proof-of-concept trial. Neuroimage Clin. 2019, 24, 101992. [Google Scholar] [CrossRef]
- Chen, R.; Cui, Z.; Capitão, L.; Wang, G.; Satterthwaite, T.D.; Harmer, C. Brain Health: Precision biomarkers for mood disorders based on brain imaging. BMJ 2020, 371, m3618. [Google Scholar] [CrossRef]
- Sindermann, L.; Redlich, R.; Opel, N.; Böhnlein, J.; Dannlowski, U.; Leehr, E.J. Systematic transdiagnostic review of magnetic-resonance imaging results: Depression, anxiety disorders and their co-occurrence. J. Psychiatr. Res. 2021, 142, 226–239. [Google Scholar] [CrossRef]
- Knyazev, G.G.; Savostyanov, A.N.; Bocharov, A.V.; Tamozhnikov, S.S.; Saprigyn, A.E. Task-positive and task-negative networks and their relation to depression: EEG beamformer analysis. Behav. Brain Res. 2016, 306, 160–169. [Google Scholar] [CrossRef]
- Manna, C.B.G.; Tenke, C.E.; Gates, N.A.; Kayser, J.; Borod, J.C.; Stewart, J.W.; McGrath, P.J.; Bruder, G.E. EEG hemispheric asymmetries during cognitive tasks in depressed patients with high versus low trait anxiety. Clin. EEG Neurosci. 2010, 41, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Feldmann, L.; Piechaczek, C.E.; Grünewald, B.D.; Pehl, V.; Bartling, J.; Frey, M.; Schulte-Körne, G.; Greimel, E. Resting frontal EEG asymmetry in adolescents with major depression: Impact of disease state and comorbid anxiety disorder. Clin. Neurophysiol. 2018, 129, 2577–2585. [Google Scholar] [CrossRef] [PubMed]
- Adolph, D.; Margraf, J. The differential relationship between trait anxiety, depression, and resting frontal α-asymmetry. J. Neural Transm. 2017, 124, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D.A.; Roach, A.; Ellison, A.; Husid Burton, E.; Jelsone-Swain, L. Symptoms of depression together with trait anxiety increase the ability to predict alpha power change between attention and resting states. Int. J. Psychophysiol. 2022, 182, 57–69. [Google Scholar] [CrossRef]
- Picó-Pérez, M.; Radua, J.; Steward, T.; Menchón, J.M.; Soriano-Mas, C. Emotion regulation in mood and anxiety disorders: A meta-analysis of fMRI cognitive reappraisal studies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2017, 79, 96–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, K.S.; Sandman, C.F.; Craske, M.G. Positive and negative emotion regulation in adolescence: Links to anxiety and depression. Brain Sci. 2019, 9, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambon Ralph, M.A.; Jefferies, E.; Patterson, K.; Rogers, T.T. The neural and computational bases of semantic cognition. Nat. Rev. Neurosci. 2016, 18, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Woollams, A.M.; Patterson, K. Cognitive consequences of the left-right asymmetry of atrophy in semantic dementia. Cortex 2018, 107, 64–77. [Google Scholar] [CrossRef]
- Lambon Ralph, M.A.; Patterson, K. Generalization and differentiation in semantic memory: Insights from semantic dementia. Ann. NY Acad. Sci. 2008, 1124, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Hodges, J.R.; Patterson, K.; Oxbury, S.; Funnell, E. Semantic dementia: Progressive fluent aphasia with temporal lobe atrophy. Brain 1992, 115, 1783–1806. [Google Scholar] [CrossRef]
- Snowden, J. Disorders of semantic memory. In Handbook of Memory Disorder, 2nd ed.; Baddeley, A., Wilson, B., Kopelman, M., Eds.; John Wiley: Hoboken, NJ, USA, 2002; pp. 293–314. [Google Scholar]
- Phan, T.G.; Donnan, G.A.; Wright, P.M.; Reutens, D.C. A digital map of middle cerebral artery infarcts associated with middle cerebral artery trunk and branch occlusion. Stroke 2005, 36, 986–991. [Google Scholar] [CrossRef]
- Visser, M.; Jefferies, E.; Lambon Ralph, M.A. Semantic processing in the anterior temporal lobes: A meta-analysis of the functional neuroimaging literature. J. Cogn. Neurosci. 2010, 22, 1083–1094. [Google Scholar] [CrossRef] [PubMed]
- Jefferies, E.; Lambon Ralph, M.A. Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain 2006, 129, 2132–2147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binney, R.J.; Embleton, K.V.; Jefferies, E.; Parker, G.J.M.; Lambon Ralph, M.A. The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: Evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. Cereb. Cortex 2010, 20, 2728–2738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, M.; Forn, C.; Lambon Ralph, M.A.; Hoffman, P.; Ibáñez, A.G.; Sunajuán, A.; Negre, P.R.; Villanueva, V.; Avila, C. Evidence for degraded low frequency verbal concepts in left resected temporal lobe epilepsy patients. Neuropsychologia 2018, 114, 88–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binney, R.J.; Lambon Ralph, M.A. Using a combination of fMRI and anterior temporal lobe rTMS to measure intrinsic and induced activation changes across the semantic cognition network. Neuropsychologia 2015, 76, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Binney, R.; Ramsey, R. Social Semantics: The role of conceptual knowledge and cognitive control in a neurobiological model of the social brain. Neurosci. Biobehav. Rev. 2020, 112, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, P.; Binney, R.J.; Lambon Ralph, M.A. Differing contributions of inferior prefrontal and anterior temporal cortex to concrete and abstract conceptual knowledge. Cortex 2015, 63, 250–266. [Google Scholar] [CrossRef]
- Hoffman, P.; Lambon Ralph, M.A.; Woollams, A.M. Triangulation of the neurocomputational architecture underpinning reading aloud. Proc. Natl. Acad. Sci. USA 2015, 112, 3719–3728. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, P.; Lambon Ralph, M.A. From percept to concept in the ventral temporal lobes: Graded hemispheric specialisation based on stimulus and task. Cortex 2018, 101, 107–118. [Google Scholar] [CrossRef]
- Visser, M.; Embleton, K.V.; Jefferies, E.; Parker, G.J.; Ralph, M.A.L. The inferior, anterior temporal lobes and semantic memory clarified: Novel evidence from distortion-corrected fMRI. Neuropsychologia 2010, 48, 1689–1696. [Google Scholar] [CrossRef]
- Visser, M.; Lambon Ralph, M.A. Differential contributions of bilateral ventral anterior temporal lobe and left anterior superior temporal gyrus to semantic processes. J. Cogn. Neurosci. 2011, 23, 3121–3131. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Jefferies, E.; Embleton, K.V.; Ralph, M.A.L. Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: Distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J. Cogn. Neurosci. 2012, 24, 1766–1778. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.D.; Jagra, A.S.; Yang, B.; Fernandez, B.; Banerjee, S.; Wang, Y. Detecting Task Functional MRI Activation Using the Multiband Multiecho (MBME) Echo-Planar Imaging (EPI) Sequence. J. Magn. Reason. Imaging 2021, 53, 1366–1374. [Google Scholar] [CrossRef] [PubMed]
- Halai, A.D.; Parkes, L.M.; Welbourne, S.R. Dual-echo fMRI can detect activations in inferior temporal lobe during intelligible speech comprehension. Neuroimage 2015, 122, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Lambon Ralph, M.A.; Sage, K.; Jones, R.W.; Mayberry, E.J. Coherent concepts are computed in the anterior temporal lobes. Proc. Natl. Acad. Sci. USA 2010, 107, 2717–2722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, G.E.; Hoffman, P.; Lambon Ralph, M.A. Graded specialization within and between the anterior temporal lobes. Ann. NY Acad. Sci. 2015, 1359, 84–97. [Google Scholar] [CrossRef] [Green Version]
- Rice, G.E.; Ralph, M.A.L.; Hoffman, P. The roles of left versus right anterior temporal lobes in conceptual knowledge: An ALE meta-analysis of 97 functional neuroimaging studies. Cereb. Cortex 2015, 25, 4374–4391. [Google Scholar] [CrossRef]
- Lambon Ralph Mcclelland, J.L.; Patterson, K.; Galton, C.J.; Hodges, J.R. No right to speak? The relationship between object naming and semantic impairment: Neuropsychological evidence and a computational model. J. Cogn. Neurosci. 2001, 13, 341–356. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lambon Ralph, M.A. Mapping the Dynamic Network Interactions Underpinning Cognition: A cTBS-fMRI Study of the Flexible Adaptive Neural System for Semantics. Cereb. Cortex 2016, 26, 3580–3590. [Google Scholar] [CrossRef] [Green Version]
- Rice, G.E.; Caswell, H.; Moore, P.; Hoffman, P.; Lambon Ralph, M.A. The roles of left versus right anterior temporal lobes in semantic memory: A neuropsychological comparison of postsurgical temporal lobe epilepsy patients. Cereb. Cortex 2018, 28, 1487–1501. [Google Scholar] [CrossRef] [Green Version]
- Pobric, G.; Jefferies, E.; Lambon Ralph, M.A. Amodal semantic representations depend on both anterior temporal lobes: Evidence from repetitive transcranial magnetic stimulation. Neuropsychologia 2010, 48, 1336–1342. [Google Scholar] [CrossRef] [PubMed]
- Bonnì, S.; Koch, G.; Miniussi, C.; Bassi, M.S.; Caltagirone, C.; Gainotti, G. Role of the anterior temporal lobes in semantic representations: Paradoxical results of a cTBS study. Neuropsychologia 2015, 76, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hung, J.; Wang, X.; Wang, X.; Bi, Y. Functional subdivisions in the anterior temporal lobes: A large scale meta-analytic investigation. Neurosci. Biobehav. Rev. 2020, 115, 134–145. [Google Scholar] [CrossRef]
- Jackson, R.L.; Hoffman, P.; Pobric, G.; Lambon Ralph, M.A. The semantic network at work and rest: Differential connectivity of anterior temporal lobe subregions. J. Neurosci. 2016, 36, 1490–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual, B.; Masdeu, J.C.; Hollenbeck, M.; Makris, N.; Insausti, R.; Ding, S.L.; Dickerson, B.C. Large-scale brain networks of the human left temporal pole: A functional connectivity MRI study. Cereb. Cortex 2015, 25, 680–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahn, R.; Moll, J.; Krueger, F.; Huey, E.D.; Garrido, G.; Grafman, J. Social concepts are represented in the superior anterior temporal cortex. Proc. Natl. Acad. Sci. USA 2007, 104, 6430–6435. [Google Scholar] [CrossRef] [Green Version]
- Zahn, R.; Moll, J.; Paiva, M.; Garrido, G.; Krueger, F.; Huey, E.D.; Grafman, J. The neural basis of human social values: Evidence from functional MRI. Cereb. Cortex 2009, 19, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Binney, R.J.; Hoffman, P.; Lambon Ralph, M.A. Mapping the Multiple Graded Contributions of the Anterior Temporal Lobe Representational Hub to Abstract and Social Concepts: Evidence from Distortion-corrected fMRI. Cereb. Cortex 2016, 26, 4227–4241. [Google Scholar] [CrossRef]
- Wang, X.; Wang, B.; Bi, Y. Close yet independent: Dissociation of social from valence and abstract semantic dimensions in the left anterior temporal lobe. Hum. Brain Mapp. 2019, 40, 4759–4776. [Google Scholar] [CrossRef] [Green Version]
- Wong, C.; Gallate, J. Low-frequency repetitive transcranial magnetic stimulation of the anterior temporal lobes does not dissociate social versus nonsocial semantic knowledge. Q J Exp Psychol (Hove). 2011, 64, 855–870. [Google Scholar] [CrossRef]
- Balgova, E.; Diveica, V.; Walbrin, J.; Binney, R.J. The role of the ventrolateral anterior temporal lobes in social cognition. Human Brain Mapp. 2022, 43, 4589–4608. [Google Scholar] [CrossRef]
- Wong, C.; Gallate, J. The function of the anterior temporal lobe: A review of the empirical evidence. Brain Res. 2012, 1449, 94–116. [Google Scholar] [CrossRef] [PubMed]
- Gainotti, G. Different patterns of famous people recognition disorders in patients with right and left anterior temporal lesions: A systematic review. Neuropsychologia. 2007, 45, 1591–1607. [Google Scholar] [CrossRef]
- Olson, I.R.; McCoy, D.; Klobusicky, E.; Ross, L.A. Social cognition and the anterior temporal lobes: A review and theoretical framework. Soc. Cogn. Affect. Neurosci. 2013, 8, 123–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahn, R.; Moll, J.; Iyengar, V.; Huey, E.D.; Tierney, M.; Krueger, F.; Grafman, J. Social conceptual impairments in frontotemporal lobar degeneration with right anterior temporal hypometabolism. Brain 2009, 132, 604–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, S.; Lambon Ralph, M.A.; Moll, J.; Stamatakis, E.A.; Grafman, J.; Zahn, R. Selective functional integration between anterior temporal and distinct fronto-mesolimbic regions during guilt and indignation. Neuroimage 2010, 52, 1720–1726. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.A.; Watson, D. Tripartite model of anxiety and depression: Psychometric evidence and taxonomic implications. J. Abnorm. Psychol. 1991, 100, 316–336. [Google Scholar] [CrossRef]
- Hofmann, S.G.; Sawyer, A.T.; Fang, A.; Asnaani, A. Emotion dysregulation model of mood and anxiety disorders. Depress. Anxiety 2012, 29, 409–416. [Google Scholar] [CrossRef]
- Werner-Seidler, A.; Banks, R.; Dunn, B.D.; Moulds, M.L. An investigation of the relationship between positive affect regulation and depression. Behav. Res. Ther. 2013, 51, 46–56. [Google Scholar] [CrossRef]
- Zahn, R.; Lythe, K.E.; Gethin, J.A.; Green, S.; Deakin, J.F.W.; Young, A.H.; Moll, J. The role of self-blame and worthlessness in the psychopathology of major depressive disorder. J. Affect. Disord. 2015, 186, 337–341. [Google Scholar] [CrossRef]
- Laeger, I.; Dobel, C.; Dannlowski, U.; Kugel, H.; Grotegerd, D.; Kissler, J.; Keuper, K.; Eden, A.; Zwitserlood, P.; Zwanzger, P. Amygdala responsiveness to emotional words is modulated by subclinical anxiety and depression. Behav. Brain Res. 2012, 233, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Stein, M. Increased Amygdala and Insula Activation During Emotion Processing in Anxiety-Prone Subjects. Am. J. Psychiatry 2007, 164, 318. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, J.M.; Klumpp, H.; Langenecker, S.; Phan, K.L. Transdiagnostic neural correlates of volitional emotion regulation in anxiety and depression. Depress. Anxiety 2019, 36, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Siegle, G.J.; Condray, R.; Thase, M.E.; Keshavan, M.; Steinhauer, S.R. Sustained gamma-band EEG following negative words in depression and schizophrenia. Int. J. Psychophysiol. 2010, 75, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Eden, A.S.; Schreiber, J.; Anwander, A.; Keuper, K.; Laeger, I.; Zwanzger, P.; Zwitserlood, P.; Kugel, H.; Dobel, C. Emotion regulation and trait anxiety are predicted by the microstructure of fibers between amygdala and prefrontal cortex. J. Neurosci. 2015, 35, 6020–6027. [Google Scholar] [CrossRef] [Green Version]
- Warren, S.L.; Zhang, Y.; Duberg, K.; Mistry, P.; Cai, W.; Qin, S.; Bostan, S.N.; Padmanabhan, A.; Carrion, V.G.; Menon, V. Anxiety and Stress Alter Decision-Making Dynamics and Causal Amygdala-Dorsolateral Prefrontal Cortex Circuits During Emotion Regulation in Children. Biol. Psychiatry 2020, 88, 576–586. [Google Scholar] [CrossRef]
- Pantazatos, S.P.; Talati, A.; Schneier, F.R.; Hirsch, J. Reduced anterior temporal and hippocampal functional connectivity during face processing discriminates individuals with social anxiety disorder from healthy controls and panic disorder, and increases following treatment. Neuropsychopharmacology 2014, 39, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Satyshur, M.D.; Layden, E.A.; Gowins, J.R.; Buchanan, A.; Gollan, J.K. Functional connectivity of reflective and brooding rumination in depressed and healthy women. Cogn. Affect. Behav. Neurosci. 2018, 18, 884–901. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Cui, H.; Zhu, Z.; Kong, L.; Guo, Q.; Zhu, Y.; Hu, Q.; Zhang, L.; Li, H.; Li, Q.; et al. Aberrant functional connectivity between the amygdala and the temporal pole in drug-free generalized anxiety disorder. Front. Hum. Neurosci. 2016, 10, 549. [Google Scholar] [CrossRef] [Green Version]
- Hitchcock, P.F.; Fried, E.I.; Frank, M.J. Computational Psychiatry Needs Time and Context. Annu. Rev. Psychol. 2022, 73, 243. [Google Scholar] [CrossRef]
- Olesen, J.; Gustavsson, A.; Svensson, M.; Wittchen, H.U.; Jönsson, B. The economic cost of brain disorders in Europe. Eur. J. Neurol. 2012, 19, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.X.; Miller, S.O.; Xu, W.; Yin, A.; Chen, B.Z.; Delios, A.; Dong, R.K.; Chen, R.Z.; McIntyre, R.S.; Wan, X.; et al. Meta-analytic evidence of depression and anxiety in Eastern Europe during the COVID-19 pandemic. Eur. J. Psychotraumatology 2022, 13, 2000132. [Google Scholar] [CrossRef] [PubMed]
- Hajek, A.; Sabat, I.; Neumann-Böhme, S.; Schreyögg, J.; Barros, P.P.; Stargardt, T.; König, H.H. Prevalence and determinants of probable depression and anxiety during the COVID-19 pandemic in seven countries: Longitudinal evidence from the European COVID Survey (ECOS). J. Affect. Disord. 2022, 299, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Geraedts, A.S.; Fokkema, M.; Kleiboer, A.M.; Smit, F.; Wiezer, N.W.; Majo, M.C.; van Mechelen, W.; Cuijpers, P.; Penninx, B.W. The longitudinal prediction of costs due to health care uptake and productivity losses in a cohort of employees with and without depression or anxiety. J. Occup. Environ. Med. 2014, 56, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Kuehner, C. Why is depression more common among women than among men? Lancet Psychiatry 2017, 4, 146–158. [Google Scholar] [CrossRef]
- Eaton, N.R.; Keyes, K.M.; Krueger, R.F.; Balsis, S.; Skodol, A.E.; Markon, K.E.; Grant, B.F.; Hasin, D.S. An Invariant Dimensional Liability Model of Gender Differences in Mental Disorder Prevalence: Evidence from a National Sample. J. Abnorm. Psychol. 2012, 121, 282. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Peral, P.; Conejo-Cerón, S.; Motrico, E.; Rodríguez-Morejón, A.; Fernández, A.; García-Campayo, J.; Roca, M.; Serrano-Blanco, A.; Rubio-Valera, M.; Bellón, J.Á. Risk factors for the onset of panic and generalised anxiety disorders in the general adult population: A systematic review of cohort studies. J. Affect. Disord. 2014, 168, 337–348. [Google Scholar] [CrossRef]
- Neitzke, A.B. An Illness of Power: Gender and the Social Causes of Depression. Cult. Med. Psychiatry 2016, 40, 59–73. [Google Scholar] [CrossRef]
- Tangney, J.P. The mixed legacy of the superego: Adaptive and maladaptive aspects of shame and guilt. In Empirical Perspectives on Object Relations Theory; Masling, J.M., Bornstein, R.F., Eds.; American Psychological Association: Washington, DC, USA, 1994; pp. 1–28. [Google Scholar] [CrossRef]
- Duan, S.; Lawrence, A.; Valmaggia, L.; Moll, J.; Zahn, R. Maladaptive blame-related action tendencies are associated with vulnerability to major depressive disorder. J. Psychiatr. Res. 2021, 145, 70–76. [Google Scholar] [CrossRef]
- Besteher, B.; Gaser, C.; Nenadić, I. Brain Structure and Subclinical Symptoms: A Dimensional Perspective of Psychopathology in the Depression and Anxiety Spectrum. Neuropsychobiology 2020, 79, 270–283. [Google Scholar] [CrossRef]
- Mumford, E.A.; Taylor, B.G.; Liu, W.; Giordano, P.C. Dating Relationship Dynamics, Mental Health, and Dating Victimization: A Longitudinal Path Analysis. J. Res. Adolesc. 2019, 29, 777–791. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.S.; Lundwall, R.A.; Gabrielsen, T.; Cox, J.C.; South, M. Looking good but feeling bad: “Camouflaging” behaviors and mental health in women with autistic traits. Autism 2020, 24, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Santamaría-García, H.; Soriano-Mas, C.; Burgaleta, M.; Ayneto, A.; Alonso, P.; Menchón, J.M.; Cardoner NSebastián-Gallés, N. Social context modulates cognitive markers in Obsessive-Compulsive Disorder. Soc. Neurosci. 2017, 13, 579–593. [Google Scholar] [CrossRef] [PubMed]
- Popal, H.; Wang, Y.; Olson, I.R. A Guide to Representational Similarity Analysis for Social Neuroscience. Soc. Cogn. Affect. Neurosci. 2019, 14, 1243–1253. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-García, I.; Visser, M. A Semantic Cognition Contribution to Mood and Anxiety Disorder Pathophysiology. Healthcare 2023, 11, 821. https://doi.org/10.3390/healthcare11060821
González-García I, Visser M. A Semantic Cognition Contribution to Mood and Anxiety Disorder Pathophysiology. Healthcare. 2023; 11(6):821. https://doi.org/10.3390/healthcare11060821
Chicago/Turabian StyleGonzález-García, Iván, and Maya Visser. 2023. "A Semantic Cognition Contribution to Mood and Anxiety Disorder Pathophysiology" Healthcare 11, no. 6: 821. https://doi.org/10.3390/healthcare11060821
APA StyleGonzález-García, I., & Visser, M. (2023). A Semantic Cognition Contribution to Mood and Anxiety Disorder Pathophysiology. Healthcare, 11(6), 821. https://doi.org/10.3390/healthcare11060821