Invasive Lobular Carcinoma: A Review of Imaging Modalities with Special Focus on Pathology Concordance
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Mammography and Digital Breast Tomosynthesis
3.2. Ultrasonography
3.3. Magnetic Resonance Imaging
3.4. Contrast-Enhanced Mammography
3.5. Additional/Emerging Imaging Modalities
3.5.1. Computed Tomography
3.5.2. Molecular Breast Imaging/Breast Specific Gamma Imaging (technitium-99m-sestamibi)
3.5.3. Positron Emission Mammography & Positron Emission Tomography
3.5.4. Radiomics/Artificial Intelligence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American Cancer Society. Breast Cancer Facts & Figures 2022–2024; American Cancer Society, Inc.: Atlanta, GA, USA, 2022. [Google Scholar]
- American Cancer Society. Cancer Facts & Figures 2022; American Cancer Society, Inc.: Atlanta, GA, USA, 2022. [Google Scholar]
- Li, C.I.; Uribe, D.J.; Daling, J.R. Clinical characteristics of different histologic types of breast cancer. Br. J. Cancer 2005, 93, 1046–1052. [Google Scholar] [CrossRef] [Green Version]
- Rubinsak, L.A.; Kleinman, A.; Quillin, J.; Gordon, S.W.; Sullivan, S.A.; Sutton, A.L.; Sheppard, V.B.; Temkin, S.M. Awareness and acceptability of population-based screening for pathogenic BRCA variants: Do race and ethnicity matter? Gynecol. Oncol. 2019, 154, 383–387. [Google Scholar] [CrossRef]
- Monhollen, L.; Morrison, C.; Ademuyiwa, F.O.; Chandrasekhar, R.; Khoury, T. Pleomorphic lobular carcinoma: A distinctive clinical and molecular breast cancer type. Histopathology 2012, 61, 365–377. [Google Scholar] [CrossRef]
- Pramod, N.; Nigam, A.; Basree, M.; Mawalkar, R.; Mehra, S.; Shinde, N.; Tozbikian, G.; Williams, N.; Majumder, S. Comprehensive Review of Molecular Mechanisms and Clinical Features of Invasive Lobular Cancer. Oncologist 2021, 26, e943–e953. [Google Scholar] [CrossRef]
- Berx, G.; Staes, K.; van Hengel, J.; Molemans, F.; Bussemakers, M.J.; van Bokhoven, A.; van Roy, F. Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics 1995, 26, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Kelly, E.D.; Abraham, J.; Kruse, M. Invasive lobular breast cancer: A review of pathogenesis, diagnosis, management, and future directions of early stage disease. Semin. Oncol. 2019, 46, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Muttalib, M.; Ibrahem, R.; Khashan, A.S.; Hajaj, M. Prospective MRI assessment for invasive lobular breast cancer. Correlation with tumour size at histopathology and influence on surgical management. Clin. Radiol. 2014, 69, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, L.; Mascaro, A.; Poccia, I.; Andrich, R.; Amini, M.; Costarelli, L.; Cortese, G.; Farina, M.; Vitelli, C. Lobular breast cancer: Same survival and local control compared with ductal cancer, but should both be treated the same way? analysis of an institutional database over a 10-year period. Ann. Surg. Oncol. 2012, 19, 1107–1114. [Google Scholar] [CrossRef]
- Sagara, Y.; Barry, W.T.; Mallory, M.A.; Vaz-Luis, I.; Aydogan, F.; Brock, J.E.; Winer, E.P.; Golshan, M.; Metzger-Filho, O. Surgical Options and Locoregional Recurrence in Patients Diagnosed with Invasive Lobular Carcinoma of the Breast. Ann. Surg. Oncol. 2015, 22, 4280–4286. [Google Scholar] [CrossRef]
- Piper, M.L.; Wong, J.; Fahrner-Scott, K.; Ewing, C.; Alvarado, M.; Esserman, L.J.; Mukhtar, R.A. Success rates of re-excision after positive margins for invasive lobular carcinoma of the breast. NPJ Breast Cancer 2019, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K.C.; Miller, P.; Piper, M.; Prionas, N.; Son, J.D.; Alvarado, M.; Esserman, L.J.; Wong, J.M.; Ewing, C.; Mukhtar, R.A. Positive margins after mastectomy in patients with invasive lobular carcinoma of the breast: Incidence and management strategies. Am. J. Surg. 2022, 223, 699–704. [Google Scholar] [CrossRef]
- Quan, M.L.; Sclafani, L.; Heerdt, A.S.; Fey, J.V.; Morris, E.A.; Borgen, P.I. Magnetic resonance imaging detects unsuspected disease in patients with invasive lobular cancer. Ann. Surg. Oncol. 2003, 10, 1048–1053. [Google Scholar] [CrossRef]
- Duffy, S.W.; Vulkan, D.; Cuckle, H.; Parmar, D.; Sheikh, S.; Smith, R.A.; Evans, A.; Blyuss, O.; Johns, L.; Ellis, I.O.; et al. Effect of mammographic screening from age 40 years on breast cancer mortality (UK Age trial): Final results of a randomised, controlled trial. Lancet Oncol. 2020, 21, 1165–1172. [Google Scholar] [CrossRef]
- Michael, M.; Garzoli, E.; Reiner, C.S. Mammography, sonography and MRI for detection and characterization of invasive lobular carcinoma of the breast. Breast Dis. 2008, 30, 21–30. [Google Scholar] [CrossRef]
- Weaver, O.; Yang, W. Imaging of Breast Cancers With Predilection for Nonmass Pattern of Growth: Invasive Lobular Carcinoma and DCIS-Does Imaging Capture It All? AJR Am. J. Roentgenol. 2020, 215, 1504–1511. [Google Scholar] [CrossRef] [PubMed]
- Mandelson, M.T.; Oestreicher, N.; Porter, P.L.; White, D.; Finder, C.A.; Taplin, S.H.; White, E. Breast density as a predictor of mammographic detection: Comparison of interval- and screen-detected cancers. J. Natl. Cancer Inst. 2000, 92, 1081–1087. [Google Scholar] [CrossRef]
- Berg, W.A.; Gutierrez, L.; NessAiver, M.S.; Carter, W.B.; Bhargavan, M.; Lewis, R.S.; Ioffe, O.B. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology 2004, 233, 830–849. [Google Scholar] [CrossRef]
- Johnson, K.; Sarma, D.; Hwang, E.S. Lobular breast cancer series: Imaging. Breast Cancer Res. BCR 2015, 17, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigel, S.; Heindel, W.; Heidrich, J.; Hense, H.-W.; Heidinger, O. Digital mammography screening: Sensitivity of the programme dependent on breast density. Eur. Radiol. 2017, 27, 2744–2751. [Google Scholar] [CrossRef] [PubMed]
- Lopez, J.K.; Bassett, L.W. Invasive lobular carcinoma of the breast: Spectrum of mammographic, US, and MR imaging findings. Radiographics 2009, 29, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Chamming’s, F.; Kao, E.; Aldis, A.; Ferré, R.; Omeroglu, A.; Reinhold, C.; Mesurolle, B. Imaging features and conspicuity of invasive lobular carcinomas on digital breast tomosynthesis. Br. J. Radiol. 2017, 90, 20170128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariscotti, G.; Durando, M.; Houssami, N.; Zuiani, C.; Martincich, L.; Londero, V.; Caramia, E.; Clauser, P.; Campanino, P.P.; Regini, E.; et al. Digital breast tomosynthesis as an adjunct to digital mammography for detecting and characterising invasive lobular cancers: A multi-reader study. Clin. Radiol. 2016, 71, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Friedewald, S.M.; Rafferty, E.A.; Rose, S.L.; Durand, M.A.; Plecha, D.M.; Greenberg, J.S.; Hayes, M.K.; Copit, D.S.; Carlson, K.L.; Cink, T.M.; et al. Breast cancer screening using tomosynthesis in combination with digital mammography. JAMA 2014, 311, 2499–2507. [Google Scholar] [CrossRef] [Green Version]
- Krammer, J.; Stepniewski, K.; Kaiser, C.G.; Brade, J.; Riffel, P.; Schoenberg, S.O.; Wasser, K. Value of Additional Digital Breast Tomosynthesis for Preoperative Staging of Breast Cancer in Dense Breasts. Anticancer Res. 2017, 37, 5255–5261. [Google Scholar] [CrossRef]
- Berg, W.A.; Bandos, A.I.; Mendelson, E.B.; Lehrer, D.; Jong, R.A.; Pisano, E.D. Ultrasound as the Primary Screening Test for Breast Cancer: Analysis From ACRIN 6666. J. Natl. Cancer Inst. 2016, 108, djv367. [Google Scholar] [CrossRef] [PubMed]
- Stavros, A.T.; Thickman, D.; Rapp, C.L.; Dennis, M.A.; Parker, S.H.; Sisney, G.A. Solid breast nodules: Use of sonography to distinguish between benign and malignant lesions. Radiology 1995, 196, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.M.; Prakash, I.; Trabulsi, N.; Parsyan, A.; Moldoveanu, D.; Zhang, D.; Mesurolle, B.; Omeroglu, A.; Aldis, A.; Meterissian, S. Evaluating the Impact of Breast Density on Preoperative MRI in Invasive Lobular Carcinoma. J. Am. Coll. Surg. 2018, 226, 925–932. [Google Scholar] [CrossRef]
- Stivalet, A.; Luciani, A.; Pigneur, F.; Dao, T.H.; Beaussart, P.; Merabet, Z.; Perlbarg, J.; Meyblum, E.; Baranes, L.; Calitchi, E.; et al. Invasive lobular carcinoma of the breast: MRI pathological correlation following bilateral total mastectomy. Acta Radiol. 2012, 53, 367–375. [Google Scholar] [CrossRef] [Green Version]
- Munot, K.; Dall, B.; Achuthan, R.; Parkin, G.; Lane, S.; Horgan, K. Role of magnetic resonance imaging in the diagnosis and single-stage surgical resection of invasive lobular carcinoma of the breast. Br. J. Surg. 2002, 89, 1296–1301. [Google Scholar] [CrossRef]
- Tagliafico, A.S.; Calabrese, M.; Mariscotti, G.; Durando, M.; Tosto, S.; Monetti, F.; Airaldi, S.; Bignotti, B.; Nori, J.; Bagni, A.; et al. Adjunct Screening With Tomosynthesis or Ultrasound in Women With Mammography-Negative Dense Breasts: Interim Report of a Prospective Comparative Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 1882–1888. [Google Scholar] [CrossRef]
- Boetes, C.; Veltman, J.; van Die, L.; Bult, P.; Wobbes, T.; Barentsz, J.O. The role of MRI in invasive lobular carcinoma. Breast Cancer Res. Treat. 2004, 86, 31–37. [Google Scholar] [CrossRef]
- Ozcan, L.C.; Donovan, C.A.; Srour, M.; Chung, A.; Mirocha, J.; Frankel, S.D.; Hakim, P.; Giuliano, A.E.; Amersi, F. Invasive Lobular Carcinoma-Correlation Between Imaging and Final Pathology: Is MRI Better? Am. Surg. 2022, 31, 31348221101600. [Google Scholar] [CrossRef]
- Selvi, V.; Nori, J.; Meattini, I.; Francolini, G.; Morelli, N.; De Benedetto, D.; Bicchierai, G.; Di Naro, F.; Gill, M.K.; Orzalesi, L.; et al. Role of Magnetic Resonance Imaging in the Preoperative Staging and Work-Up of Patients Affected by Invasive Lobular Carcinoma or Invasive Ductolobular Carcinoma. BioMed Res. Int. 2018, 2018, 1569060. [Google Scholar] [CrossRef] [Green Version]
- Mann, R.M.; Hoogeveen, Y.L.; Blickman, J.G.; Boetes, C. MRI compared to conventional diagnostic work-up in the detection and evaluation of invasive lobular carcinoma of the breast: A review of existing literature. Breast Cancer Res. Treat. 2008, 107, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayaraghavan, G.R.; Vedantham, S.; Santos-Nunez, G.; Hultman, R. Unifocal Invasive Lobular Carcinoma: Tumor Size Concordance Between Preoperative Ultrasound Imaging and Postoperative Pathology. Clin. Breast Cancer 2018, 18, e1367–e1372. [Google Scholar] [CrossRef]
- Ferré, R.; Omeroglu, A.; Mesurolle, B. Sonographic Appearance of Lesions Diagnosed as Lobular Neoplasia at Sonographically Guided Biopsies. AJR Am. J. Roentgenol. 2017, 208, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Shim, S.-R.; Kim, S.-J. Diagnostic Values of 8 Different Imaging Modalities for Preoperative Detection of Axillary Lymph Node Metastasis of Breast Cancer: A Bayesian Network Meta-analysis. Am. J. Clin. Oncol. 2021, 44, 331–339. [Google Scholar] [CrossRef]
- Schipper, R.J.; van Roozendaal, L.M.; de Vries, B.; Pijnappel, R.M.; Beets-Tan, R.G.H.; Lobbes, M.B.I.; Smidt, M.L. Axillary ultrasound for preoperative nodal staging in breast cancer patients: Is it of added value? Breast Edinb. Scotl. 2013, 22, 1108–1113. [Google Scholar] [CrossRef] [PubMed]
- Houser, M.; Barreto, D.; Mehta, A.; Brem, R.F. Current and Future Directions of Breast MRI. J. Clin. Med. 2021, 10, 5668. [Google Scholar] [CrossRef]
- Comstock, C.E.; Gatsonis, C.; Newstead, G.M.; Snyder, B.S.; Gareen, I.F.; Bergin, J.T.; Rahbar, H.; Sung, J.S.; Jacobs, C.; Harvey, J.A.; et al. Comparison of Abbreviated Breast MRI vs. Digital Breast Tomosynthesis for Breast Cancer Detection among Women with Dense Breasts Undergoing Screening. JAMA 2020, 323, 746–756. [Google Scholar] [CrossRef]
- de Bresser, J.; de Vos, B.; van der Ent, F.; Hulsewé, K. Breast MRI in clinically and mammographically occult breast cancer presenting with an axillary metastasis: A systematic review. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2010, 36, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Morris, E.A.; Schwartz, L.H.; Drotman, M.B.; Kim, S.J.; Tan, L.K.; Liberman, L.; Abramson, A.F.; Van Zee, K.J.; Dershaw, D.D. Evaluation of pectoralis major muscle in patients with posterior breast tumors on breast MR images: Early experience. Radiology 2000, 214, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Monticciolo, D.L.; Newell, M.S.; Moy, L.; Niell, B.; Monsees, B.; Sickles, E.A. Breast Cancer Screening in Women at Higher-Than-Average Risk: Recommendations From the ACR. J. Am. Coll. Radiol. JACR 2018, 15, 408–414. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.J.; Kim, H.H.; Cha, J.H.; Shin, H.J.; Chae, E.Y. Comparison of Pathologic Response Evaluation Systems After Neoadjuvant Chemotherapy in Breast Cancers: Correlation with Computer-Aided Diagnosis of MRI Features. Am. J. Roentgenol. 2019, 213, 944–952. [Google Scholar] [CrossRef]
- Hovis, K.K.; Lee, J.M.; Hippe, D.S.; Linden, H.; Flanagan, M.R.; Kilgore, M.R.; Yee, J.; Partridge, S.C.; Rahbar, H. Accuracy of Preoperative Breast MRI Versus Conventional Imaging in Measuring Pathologic Extent of Invasive Lobular Carcinoma. J. Breast Imaging 2021, 3, 288–298. [Google Scholar] [CrossRef] [PubMed]
- McGhan, L.J.; Wasif, N.; Gray, R.J.; Giurescu, M.E.; Pizzitola, V.J.; Lorans, R.; Ocal, I.T.; Stucky, C.-C.; Pockaj, B.A. Use of preoperative magnetic resonance imaging for invasive lobular cancer: Good, better, but maybe not the best. Ann. Surg. Oncol. 2010, 17 (Suppl. 3), 255–262. [Google Scholar] [CrossRef]
- Caramella, T.; Chapellier, C.; Ettore, F.; Raoust, I.; Chamorey, E.; Balu-Maestro, C. Value of MRI in the surgical planning of invasive lobular breast carcinoma: A prospective and a retrospective study of 57 cases: Comparison with physical examination, conventional imaging, and histology. Clin. Imaging 2007, 31, 155–161. [Google Scholar] [CrossRef]
- Elsamaloty, H.; Elzawawi, M.S.; Mohammad, S.; Herial, N. Increasing accuracy of detection of breast cancer with 3-T MRI. AJR Am. J. Roentgenol. 2009, 192, 1142–1148. [Google Scholar] [CrossRef]
- Bakker, M.F.; de Lange, S.V.; Pijnappel, R.M.; Mann, R.M.; Peeters, P.H.M.; Monninkhof, E.M.; Emaus, M.J.; Loo, C.E.; Bisschops, R.H.C.; Lobbes, M.B.I.; et al. Supplemental MRI Screening for Women with Extremely Dense Breast Tissue. N. Engl. J. Med. 2019, 381, 2091–2102. [Google Scholar] [CrossRef]
- Bansal, G.J.; Santosh, D.; Davies, E.L. Selective magnetic resonance imaging (MRI) in invasive lobular breast cancer based on mammographic density: Does it lead to an appropriate change in surgical treatment? Br. J. Radiol. 2016, 89, 20150679. [Google Scholar] [CrossRef] [Green Version]
- Mann, R.M.; Veltman, J.; Barentsz, J.O.; Wobbes, T.; Blickman, J.G.; Boetes, C. The value of MRI compared to mammography in the assessment of tumour extent in invasive lobular carcinoma of the breast. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2008, 34, 135–142. [Google Scholar] [CrossRef]
- Mann, R.M. The effectiveness of MR imaging in the assessment of invasive lobular carcinoma of the breast. Magn. Reason. Imaging Clin. N. Am. 2010, 18, 259–276, ix. [Google Scholar] [CrossRef]
- Mennella, S.; Garlaschi, A.; Paparo, F.; Perillo, M.; Celenza, M.; Massa, T.; Rollandi, G.A.; Garlaschi, G. Magnetic resonance imaging of breast cancer: Factors affecting the accuracy of preoperative lesion sizing. Acta Radiol. 2015, 56, 260–268. [Google Scholar] [CrossRef]
- Jethava, A.; Ali, S.; Wakefield, D.; Crowell, R.; Sporn, J.; Vrendenburgh, J. Diagnostic Accuracy of MRI in Predicting Breast Tumor Size: Comparative Analysis of MRI vs Histopathological Assessed Breast Tumor Size. Conn Med. 2015, 79, 261–267. [Google Scholar]
- Gest, R.; Cayet, S.; Arbion, F.; Vildé, A.; Body, G.; Ouldamer, L. Predictive factors of major deviation (>20 mm) between lesion sizes measured by magnetic resonance imaging and histology for invasive lobular breast cancer. Eur. J. Obstet. Gynecol. Reprod. Biol. 2020, 251, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.P.; Orel, S.G.; Heller, R.; Reynolds, C.; Czerniecki, B.; Solin, L.J.; Schnall, S.M. MR imaging of the breast in patients with invasive lobular carcinoma. AJR Am. J. Roentgenol. 2001, 176, 399–406. [Google Scholar] [CrossRef]
- Barker, S.J.; Anderson, E.; Mullen, R. Magnetic resonance imaging for invasive lobular carcinoma: Is it worth it? Gland Surg. 2019, 8, 237–241. [Google Scholar] [CrossRef]
- Ha, S.M.; Chae, E.Y.; Cha, J.H.; Kim, H.H.; Shin, H.J.; Choi, W.J. Breast MR Imaging before Surgery: Outcomes in Patients with Invasive Lobular Carcinoma by Using Propensity Score Matching. Radiology 2018, 287, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Brennan, M.E.; McKessar, M.; Snook, K.; Burgess, I.; Spillane, A.J. Impact of selective use of breast MRI on surgical decision-making in women with newly diagnosed operable breast cancer. Breast Edinb. Scotl. 2017, 32, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Steinhof-Radwańska, K.; Lorek, A.; Holecki, M.; Barczyk-Gutkowska, A.; Grażyńska, A.; Szczudło-Chraścina, J.; Bożek, O.; Habas, J.; Szyluk, K.; Niemiec, P.; et al. Multifocality and Multicentrality in Breast Cancer: Comparison of the Efficiency of Mammography, Contrast-Enhanced Spectral Mammography, and Magnetic Resonance Imaging in a Group of Patients with Primarily Operable Breast Cancer. Curr. Oncol. 2021, 28, 4016–4030. [Google Scholar] [CrossRef]
- Sardanelli, F.; Giuseppetti, G.M.; Panizza, P.; Bazzocchi, M.; Fausto, A.; Simonetti, G.; Lattanzio, V.; Del Maschio, A. Sensitivity of MRI versus mammography for detecting foci of multifocal, multicentric breast cancer in Fatty and dense breasts using the whole-breast pathologic examination as a gold standard. AJR Am. J. Roentgenol. 2004, 183, 1149–1157. [Google Scholar] [CrossRef]
- Parvaiz, M.A.; Yang, P.; Razia, E.; Mascarenhas, M.; Deacon, C.; Matey, P.; Isgar, B.; Sircar, T. Breast MRI in Invasive Lobular Carcinoma: A Useful Investigation in Surgical Planning? Breast J. 2016, 22, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Moloney, B.M.; McAnena, P.F.; Ryan, É.J.; Beirn, E.O.; Waldron, R.M.; Connell, A.O.; Walsh, S.; Ennis, R.; Glynn, C.; Lowery, A.J.; et al. The Impact of Preoperative Breast Magnetic Resonance Imaging on Surgical Management in Symptomatic Patients with Invasive Lobular Carcinoma. Breast Cancer Basic Clin. Res. 2020, 14, 1178223420948477. [Google Scholar] [CrossRef] [PubMed]
- Hlubocky, J.; Bhavnagri, S.; Swinford, A.; Mitri, C.; Rebner, M.; Pai, V. Does the use of pretreatment MRI change the management of patients with newly diagnosed breast cancer? Breast J. 2018, 24, 309–313. [Google Scholar] [CrossRef]
- van Nijnatten, T.J.A.; Ploumen, E.H.; Schipper, R.J.; Goorts, B.; Andriessen, E.H.; Vanwetswinkel, S.; Schavemaker, M.; Nelemans, P.; de Vries, B.; Beets-Tan, R.G.H.; et al. Routine use of standard breast MRI compared to axillary ultrasound for differentiating between no, limited and advanced axillary nodal disease in newly diagnosed breast cancer patients. Eur. J. Radiol. 2016, 85, 2288–2294. [Google Scholar] [CrossRef]
- Abel, M.K.; Greenwood, H.; Kelil, T.; Guo, R.; Brabham, C.; Hylton, N.; Wong, J.; Alvarado, M.; Ewing, C.; Esserman, L.J.; et al. Accuracy of breast MRI in evaluating nodal status after neoadjuvant therapy in invasive lobular carcinoma. NPJ Breast Cancer 2021, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Tsunoda, H.; Takamoto, Y.; Murai, M.; Kikuchi, M.; Honda, S.; Suzuki, K.; Yamauchi, H. MRI and ultrasound evaluation of invasive lobular carcinoma of the breast after primary systemic therapy. Breast Cancer Tokyo Jpn. 2015, 22, 356–365. [Google Scholar] [CrossRef]
- Tse, G.M.K.; Chaiwun, B.; Wong, K.-T.; Yeung, D.K.; Pang, A.L.M.; Tang, A.P.Y.; Cheung, H.S. Magnetic resonance imaging of breast lesions—A pathologic correlation. Breast Cancer Res. Treat. 2007, 103, 1–10. [Google Scholar] [CrossRef]
- Amin, A.L.; Sack, S.; Larson, K.E.; Winblad, O.; Balanoff, C.R.; Nazir, N.; Wagner, J.L. Does the Addition of Breast MRI Add Value to the Diagnostic Workup of Invasive Lobular Carcinoma? J. Surg. Res. 2021, 257, 144–152. [Google Scholar] [CrossRef]
- Sinclair, K.; Sakellariou, S.; Dawson, N.; Litherland, J. Does preoperative breast MRI significantly impact on initial surgical procedure and re-operation rates in patients with screen-detected invasive lobular carcinoma? Clin. Radiol. 2016, 71, 543–550. [Google Scholar] [CrossRef]
- Peters, N.H.G.M.; van Esser, S.; van den Bosch, M.A.A.J.; Storm, R.K.; Plaisier, P.W.; van Dalen, T.; Diepstraten, S.C.E.; Weis, T.; Westenend, P.J.; Stapper, G.; et al. Preoperative MRI and surgical management in patients with nonpalpable breast cancer: The MONET—Randomised controlled trial. Eur. J. Cancer Oxf. Engl. 2011, 47, 879–886. [Google Scholar] [CrossRef]
- Lobbes, M.B.I.; Vriens, I.J.H.; van Bommel, A.C.M.; Nieuwenhuijzen, G.A.P.; Smidt, M.L.; Boersma, L.J.; van Dalen, T.; Smorenburg, C.; Struikmans, H.; Siesling, S.; et al. Breast MRI increases the number of mastectomies for ductal cancers, but decreases them for lobular cancers. Breast Cancer Res. Treat. 2017, 162, 353–364. [Google Scholar] [CrossRef] [Green Version]
- Mann, R.M.; Loo, C.E.; Wobbes, T.; Bult, P.; Barentsz, J.O.; Gilhuijs, K.G.A.; Boetes, C. The impact of preoperative breast MRI on the re-excision rate in invasive lobular carcinoma of the breast. Breast Cancer Res. Treat. 2010, 119, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Fortune-Greeley, A.K.; Wheeler, S.B.; Meyer, A.-M.; Reeder-Hayes, K.E.; Biddle, A.K.; Muss, H.B.; Carpenter, W.R. Preoperative breast MRI and surgical outcomes in elderly women with invasive ductal and lobular carcinoma: A population-based study. Breast Cancer Res. Treat. 2014, 143, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Heil, J.; Bühler, A.; Golatta, M.; Rom, J.; Harcos, A.; Schipp, A.; Rauch, G.; Junkermann, H.; Sohn, C. Does a supplementary preoperative breast MRI in patients with invasive lobular breast cancer change primary and secondary surgical interventions. Ann. Surg. Oncol. 2011, 18, 2143–2149. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, L.; Brown, S.; Harvey, I.; Olivier, C.; Drew, P.; Napp, V.; Hanby, A.; Brown, J. Comparative effectiveness of MRI in breast cancer (COMICE) trial: A randomised controlled trial. Lancet Lond. Engl. 2010, 375, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Yeh, E.D.; Slanetz, P.J.; Edmister, W.B.; Talele, A.; Monticciolo, D.; Kopans, D.B. Invasive lobular carcinoma: Spectrum of enhancement and morphology on magnetic resonance imaging. Breast J. 2003, 9, 13–18. [Google Scholar] [CrossRef]
- Schmitz, A.C.; Meeuwis, C.; Veldhuis, W.B.; van Hillegersberg, R.; Schipper, M.E.I.; van den Bosch, M.A.A.J. High-spatial-resolution bilateral contrast-enhanced breast MRI at 3 T: Preoperative staging of patients diagnosed with invasive lobular cancer. Breast J. 2008, 14, 206–208. [Google Scholar] [CrossRef]
- Jochelson, M.S.; Lobbes, M.B.I. Contrast-enhanced Mammography: State of the Art. Radiology 2021, 299, 36–48. [Google Scholar] [CrossRef]
- Lee, C.H.; Phillips, J.; Sung, J.S.; Lewin, J.M.; Newell, M.S. Contrast Enhanced Mammography: A Supplement to ACR BI-RADS Mammography 2013. 2022. Available online: https://www.acr.org/-/media/ACR/Files/RADS/BI-RADS/BIRADS_CEM_2022.pdf (accessed on 25 February 2023).
- Ali-Mucheru, M.; Pockaj, B.; Patel, B.; Pizzitola, V.; Wasif, N.; Stucky, C.-C.; Gray, R. Contrast-Enhanced Digital Mammography in the Surgical Management of Breast Cancer. Ann. Surg. Oncol. 2016, 23, 649–655. [Google Scholar] [CrossRef]
- Gelardi, F.; Ragaini, E.M.; Sollini, M.; Bernardi, D.; Chiti, A. Contrast-Enhanced Mammography versus Breast Magnetic Resonance Imaging: A Systematic Review and Meta-Analysis. Diagnostics 2022, 12, 1890. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Rao, H.; Zhou, L. A meta-analysis of contrast-enhanced spectral mammography versus MRI in the diagnosis of breast cancer. Thorac. Cancer 2020, 11, 1423–1432. [Google Scholar] [CrossRef] [Green Version]
- Xing, D.; Lv, Y.; Sun, B.; Xie, H.; Dong, J.; Hao, C.; Chen, Q.; Chi, X. Diagnostic Value of Contrast-Enhanced Spectral Mammography in Comparison to Magnetic Resonance Imaging in Breast Lesions. J. Comput. Assist. Tomogr. 2019, 43, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, A.; Magni, V.; Zanardo, M.; Schiaffino, S.; Sardanelli, F. Contrast-enhanced Mammography: A Systematic Review and Meta-Analysis of Diagnostic Performance. Radiology 2022, 302, 568–581. [Google Scholar] [CrossRef]
- Costantini, M.; Montella, R.A.; Fadda, M.P.; Tondolo, V.; Franceschini, G.; Bove, S.; Garganese, G.; Rinaldi, P.M. Diagnostic Challenge of Invasive Lobular Carcinoma of the Breast: What Is the News? Breast Magnetic Resonance Imaging and Emerging Role of Contrast-Enhanced Spectral Mammography. J. Pers. Med. 2022, 12, 867. [Google Scholar] [CrossRef] [PubMed]
- Amato, F.; Bicchierai, G.; Cirone, D.; Depretto, C.; Di Naro, F.; Vanzi, E.; Scaperrotta, G.; Bartolotta, T.V.; Miele, V.; Nori, J. Preoperative loco-regional staging of invasive lobular carcinoma with contrast-enhanced digital mammography (CEDM). Radiol. Med. (Torino) 2019, 124, 1229–1237. [Google Scholar] [CrossRef]
- Fallenberg, E.M.; Dromain, C.; Diekmann, F.; Engelken, F.; Krohn, M.; Sing, J.M.; Ingold-Heppner, B.; Winzer, K.J.; Bick, U.; Renz, D.M. Contrast-enhanced spectral mammography versus MRI: Initial results in the detection of breast cancer and assessment of tumor size. Eur. Radiol. 2014, 1, 256–264. [Google Scholar] [CrossRef]
- Cheung, Y.C.; Juan, Y.H.; Lo, Y.F.; Lin, Y.C.; Yeh, C.H.; Ueng, S.H. Preoperative assessment of contrast-enhanced spectral mammography of diagnosed breast cancers after sonographic biopsy: Correlation to contrast-enhanced magnetic resonance imaging and 5-year postoperative follow-up. Medicine. 2020, 19024. [Google Scholar] [CrossRef]
- Patel, B.K.; Garza, S.A.; Eversman, S.; Lopez-Alvarez, Y.; Kosiorek, H.; Pockaj, B.A. Assessing tumor extent on contrast-enhanced spectral mammography versus full-field digital mammography and ultrasound. Clin. Imaging 2017, 46, 78–84. [Google Scholar] [CrossRef]
- Patel, B.K.; Davis, J.; Ferraro, C.; Kosiorek, H.; Hasselbach, K.; Ocal, T.; Pockaj, B. Value Added of Preoperative Contrast-Enhanced Digital Mammography in Patients with Invasive Lobular Carcinoma of the Breast. Clin. Breast Cancer 2018, 18, e1339-45. [Google Scholar] [CrossRef]
- Carnahan, M.B.; Pockaj, B.; Pizzitola, V.; Giurescu, M.E.; Lorans, R.; Eversman, W.; Sharpe, R.E.; Cronin, P.; Patel, B.K. Contrast-Enhanced Mammography for Newly Diagnosed Breast Cancer in Women with Breast Augmentation: Preliminary Findings. AJR Am. J. Roentgenol. 2021, 217, 855–856. [Google Scholar] [CrossRef]
- Marino, M.A.; Avendano, D.; Zapata, P.; Riedl, C.C.; Pinker, K. Lymph Node Imaging in Patients with Primary Breast Cancer: Concurrent Diagnostic Tools. Oncologist 2020, 25, e231–e242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, X.; Zhang, Q.; Wu, X.; Zou, T.; Duan, J.; Song, S.; Nie, J.; Tao, C.; Tang, M.; Wang, M.; et al. Advances in Imaging in Evaluating the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Front. Oncol. 2022, 12, 816297. [Google Scholar] [CrossRef] [PubMed]
- Iotti, V.; Ravaioli, S.; Vacondio, R.; Coriani, C.; Caffarri, S.; Sghedoni, R.; Nitrosi, A.; Ragazzi, M.; Gasparini, E.; Masini, C.; et al. Contrast-enhanced spectral mammography in neoadjuvant chemotherapy monitoring: A comparison with breast magnetic resonance imaging. Breast Cancer Res. BCR 2017, 19, 106. [Google Scholar] [CrossRef]
- Patel, B.K.; Hilal, T.; Covington, M.; Zhang, N.; Kosiorek, H.E.; Lobbes, M.; Northfelt, D.W.; Pockaj, B.A. Contrast-Enhanced Spectral Mammography is Comparable to MRI in the Assessment of Residual Breast Cancer Following Neoadjuvant Systemic Therapy. Ann. Surg. Oncol. 2018, 25, 1350–1356. [Google Scholar] [CrossRef]
- Canteros, D.; Walbaum, B.; Córdova-Delgado, M.; Torrealba, A.; Reyes, C.; Navarro, M.E.; Razmilic, D.; Camus, M.; Dominguez, F.; Navarrete, O.; et al. Contrast-enhanced mammography predicts pathological response after neoadjuvant chemotherapy in locally advanced breast cancer. Ecancermedicalscience 2022, 16, 1396. [Google Scholar] [CrossRef]
- Patel, B.K.; Gray, R.J.; Pockaj, B.A. Potential Cost Savings of Contrast-Enhanced Digital Mammography. AJR Am. J. Roentgenol. 2017, 208, W231–W237. [Google Scholar] [CrossRef]
- Phillips, J.; Miller, M.M.; Mehta, T.S.; Fein-Zachary, V.; Nathanson, A.; Hori, W.; Monahan-Earley, R.; Slanetz, P.J. Contrast-enhanced spectral mammography (CESM) versus MRI in the high-risk screening setting: Patient preferences and attitudes. Clin. Imaging 2017, 42, 193–197. [Google Scholar] [CrossRef]
- Sogani, J.; Mango, V.L.; Keating, D.; Sung, J.S.; Jochelson, M.S. Contrast-enhanced mammography: Past, present, and future. Clin. Imaging 2021, 69, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Zanardo, M.; Cozzi, A.; Trimboli, R.M.; Labaj, O.; Monti, C.B.; Schiaffino, S.; Carbonaro, L.A.; Sardanelli, F. Technique, protocols and adverse reactions for contrast-enhanced spectral mammography (CESM): A systematic review. Insights Imaging 2019, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, M.M.; Taylor, D.B.; Buzynski, S.; Peake, R.E. Contrast-enhanced spectral mammography (CESM) and contrast enhanced MRI (CEMRI): Patient preferences and tolerance. J. Med. Imaging Radiat. Oncol. 2015, 59, 300–305. [Google Scholar] [CrossRef]
- Patel, B.K.; Lobbes, M.B.I.; Lewin, J. Contrast Enhanced Spectral Mammography: A Review. Semin. Ultrasound CT MR 2018, 39, 70–79. [Google Scholar] [CrossRef] [PubMed]
- James, J.R.; Pavlicek, W.; Hanson, J.A.; Boltz, T.F.; Patel, B.K. Breast Radiation Dose With CESM Compared With 2D FFDM and 3D Tomosynthesis Mammography. AJR Am. J. Roentgenol. 2017, 208, 362–372. [Google Scholar] [CrossRef]
- James, J. Contrast-enhanced spectral mammography (CESM)-guided breast biopsy as an alternative to MRI-guided biopsy. Br. J. Radiol. 2022, 95, 20211287. [Google Scholar] [CrossRef]
- National Library of Medicine (U.S.). (23 November 2022). Comparison of Breast Cancer Screening With CESM to DBT in Women With Dense Breasts (CMIST). Identifier NCT05625659. Available online: https://clinicaltrials.gov/ct2/show/NCT05625659 (accessed on 25 February 2023).
- National Library of Medicine (U.S.). (18 June 2020). Added Value of Preoperative Contrast Enhanced Mammography in Staging of Malignant Breast Lesions (PROCEM). Identifier NCT04437602. Available online: https://clinicaltrials.gov/ct2/show/NCT04437602 (accessed on 25 February 2023).
- Åhsberg, K.; Gardfjell, A.; Nimeus, E.; Ryden, L.; Zackrisson, S. The PROCEM study protocol: Added value of preoperative contrast-enhanced mammography in staging of malignant breast lesions—A prospective randomized multicenter study. BMC Cancer 2021, 21, 1115. [Google Scholar] [CrossRef]
- Hikino, H.; Okada, N.; Kodama, K.; Takeda, H.; Ozaki, N.; Nagaoka, S.; Kai, T. Computed-tomographic features of invasive lobular carcinoma. Clin. Imaging 2005, 29, 383–388. [Google Scholar] [CrossRef]
- Shien, T.; Akashi-Tanaka, S.; Yoshida, M.; Hojo, T.; Iwamoto, E.; Miyagawa, K.; Kinoshita, T. Usefulness of preoperative multidetector-row computed tomography in evaluating the extent of invasive lobular carcinoma in patients with or without neoadjuvant chemotherapy. Breast Cancer 2009, 16, 30–36. [Google Scholar] [CrossRef]
- Ahn, S.J.; Kim, Y.S.; Kim, E.Y.; Park, H.K.; Cho, E.K.; Kim, Y.K.; Sung, Y.M.; Choi, H.-Y. The value of chest CT for prediction of breast tumor size: Comparison with pathology measurement. World J. Surg. Oncol. 2013, 11, 130. [Google Scholar] [CrossRef] [Green Version]
- Wienbeck, S.; Lotz, J.; Fischer, U. Review of clinical studies and first clinical experiences with a commercially available cone-beam breast CT in Europe. Clin. Imaging 2017, 42, 50–59. [Google Scholar] [CrossRef]
- Wienbeck, S.; Fischer, U.; Luftner-Nagel, S.; Lotz, J.; Uhlig, J. Contrast-enhanced cone-beam breast-CT (CBBCT): Clinical performance compared to mammography and MRI. Eur. Radiol. 2018, 28, 3731–3741. [Google Scholar] [CrossRef]
- Uhlig, J.; Uhlig, A.; Biggemann, L.; Fischer, U.; Lotz, J.; Wienbeck, S. Diagnostic accuracy of cone-beam breast computed tomography: A systematic review and diagnostic meta-analysis. Eur. Radiol. 2019, 29, 1194–1202. [Google Scholar] [CrossRef]
- Zhu, Y.; O’Connell, A.M.; Ma, Y.; Liu, A.; Li, H.; Zhang, Y.; Zhang, X.; Ye, Z. Dedicated breast CT: State of the art-Part II. Clinical application and future outlook. Eur. Radiol. 2022, 32, 2286–2300. [Google Scholar] [CrossRef]
- Tao, A.T.; Hruska, C.B.; Conners, A.L.; Hunt, K.N.; Swanson, T.N.; Tran, T.D.; Manduca, A.; Borges, L.; Maidment, A.D.A.; Lake, D.; et al. Dose Reduction in Molecular Breast Imaging With a New Image-Processing Algorithm. AJR Am. J. Roentgenol. 2020, 214, 185–193. [Google Scholar] [CrossRef]
- Huppe, A.I.; Mehta, A.K.; Brem, R.F. Molecular Breast Imaging: A Comprehensive Review. Semin. Ultrasound CT MR 2018, 39, 60–69. [Google Scholar] [CrossRef]
- Hruska, C.B.; Boughey, J.C.; Phillips, S.W.; Rhodes, D.J.; Wahner-Roedler, D.L.; Whaley, D.H.; Degnim, A.C.; O’Conner, M.K. Scientific Impact Recognition Award: Molecular breast imaging: A review of the Mayo Clinic experience. Am. J. Surg. 2008, 196, 470–476. [Google Scholar] [CrossRef] [Green Version]
- Sumkin, J.H.; Berg, W.A.; Carter, G.J.; Bandos, A.I.; Chough, D.M.; Ganott, M.A.; Hakim, C.M.; Kelly, A.E.; Zuley, M.L.; Houshmand, G.; et al. Diagnostic Performance of MRI, Molecular Breast Imaging, and Contrast-enhanced Mammography in Women with Newly Diagnosed Breast Cancer. Radiology 2019, 293, 531–540. [Google Scholar] [CrossRef]
- Kuhl, C.K.; Strobel, K.; Bieling, H.; Leutner, C.; Schild, H.H.; Schrading, S. Supplemental Breast MR Imaging Screening of Women with Average Risk of Breast Cancer. Radiology 2017, 283, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Dibble, E.H.; Hunt, K.N.; Ehman, E.C.; O’Connor, M.K. Molecular Breast Imaging in Clinical Practice. AJR Am. J. Roentgenol. 2020, 215, 277–284. [Google Scholar] [CrossRef]
- Brem, R.F.; Ioffe, M.; Rapelyea, J.A.; Yost, K.G.; Weigert, J.M.; Bertrand, M.L.; Stern, L.H. Invasive lobular carcinoma: Detection with mammography, sonography, MRI, and breast-specific gamma imaging. AJR Am. J. Roentgenol. 2009, 192, 379–383. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, D.J.; Hruska, C.B.; Conners, A.L.; Tortorelli, C.L.; Maxwell, R.W.; Jones, K.N.; Toledano, A.Y.; O’Connor, M.K. Journal club: Molecular breast imaging at reduced radiation dose for supplemental screening in mammographically dense breasts. AJR Am. J. Roentgenol. 2015, 204, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Covington, M.F.; Parent, E.E.; Dibble, E.H.; Rauch, G.M.; Fowler, A.M. Advances and Future Directions in Molecular Breast Imaging. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2022, 63, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, D.; Hunt, K.; Conners, A.; Zingula, S.; Whaley, D.; Ellis, R.; Spilde, J.G.; Mehta, R.; Polley, M.-Y.; O’Connor, M.; et al. Molecular Breast Imaging and Tomosynthesis to Eliminate the Reservoir of Undetected Cancer in Dense Breasts: The Density MATTERS Trial. Cancer Res. 2019, 79 (Suppl. 4), PD4-05. [Google Scholar] [CrossRef]
- Conners, A.L.; Jones, K.N.; Hruska, C.B.; Geske, J.R.; Boughey, J.C.; Rhodes, D.J. Direct-Conversion Molecular Breast Imaging of Invasive Breast Cancer: Imaging Features, Extent of Invasive Disease, and Comparison Between Invasive Ductal and Lobular Histology. AJR Am. J. Roentgenol. 2015, 205, W374–W381. [Google Scholar] [CrossRef] [PubMed]
- Berg, W.A.; Madsen, K.S.; Schilling, K.; Tartar, M.; Pisano, E.D.; Larsen, L.H.; Narayanan, D.; Kalinyak, J. Comparative effectiveness of positron emission mammography and MRI in the contralateral breast of women with newly diagnosed breast cancer. AJR Am. J. Roentgenol. 2012, 198, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, D.; Madsen, K.S.; Kalinyak, J.E.; Berg, W.A. Interpretation of positron emission mammography: Feature analysis and rates of malignancy. AJR Am. J. Roentgenol. 2011, 196, 956–970. [Google Scholar] [CrossRef]
- Yano, F.; Itoh, M.; Hirakawa, H.; Yamamoto, S.; Yoshikawa, A.; Hatazawa, J. Diagnostic Accuracy of Positron Emission Mammography with 18F-fluorodeoxyglucose in Breast Cancer Tumor of Less than 20 mm in Size. Asia Ocean J. Nucl. Med. Biol. 2019, 7, 13–21. [Google Scholar] [CrossRef]
- Keshavarz, K.; Jafari, M.; Lotfi, F.; Bastani, P.; Salesi, M.; Gheisari, F.; Hemami, M.R. Positron Emission Mammography (PEM) in the diagnosis of breast cancer: A systematic review and economic evaluation. Med. J. Islam. Repub. Iran 2020, 34, 100. [Google Scholar] [CrossRef]
- Berg, W.A.; Madsen, K.S.; Schilling, K.; Tartar, M.; Pisano, E.D.; Larsen, L.H.; Narayanan, D.; Ozonoff, A.; Miller, J.P.; Kalinyak, J.E. Breast cancer: Comparative effectiveness of positron emission mammography and MR imaging in presurgical planning for the ipsilateral breast. Radiology 2011, 258, 59–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, N.Y.; Kim, S.H.; Kim, S.H.; Seo, Y.Y.; Oh, J.K.; Choi, H.S.; You, W.J. Effectiveness of Breast MRI and (18)F-FDG PET/CT for the Preoperative Staging of Invasive Lobular Carcinoma versus Ductal Carcinoma. J. Breast Cancer 2015, 18, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Ulaner, G.A.; Goldman, D.A.; Gönen, M.; Pham, H.; Castillo, R.; Lyashchenko, S.K.; Lewis, J.S.; Dang, C. Initial results of a prospective clinical trial of (18)F-fluciclovine PET/CT in newly diagnosed invasive ductal and invasive lobular breast cancers. J. Nucl. Med. 2016, 57, 1350–1356. [Google Scholar] [CrossRef] [Green Version]
- Eshet, Y.; Tau, N.; Apter, S.; Nissan, N.; Levanon, K.; Bernstein-Molho, R.; Globus, O.; Itay, A.; Shapira, T.; Oedegaard, C.; et al. The Role of 68Ga-FAPI PET/CT in Detection of Metastatic Lobular Breast Cancer. Clin. Nucl. Med. 2023, 48, 228. [Google Scholar] [CrossRef] [PubMed]
- Jairam, M.P.; Ha, R. A review of artificial intelligence in mammography. Clin. Imaging 2022, 88, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.A.; Islam, W.; Faiz, R.; Chen, X.; Zheng, B. Applying artificial intelligence technology to assist with breast cancer diagnosis and prognosis prediction. Front. Oncol. 2022, 12, 980793. [Google Scholar] [CrossRef] [PubMed]
- Madani, M.; Behzadi, M.M.; Nabavi, S. The Role of Deep Learning in Advancing Breast Cancer Detection Using Different Imaging Modalities: A Systematic Review. Cancers 2022, 14, 5334. [Google Scholar] [CrossRef]
- Lehman, C.D.; Topol, E.J. Readiness for mammography and artificial intelligence. Lancet Lond. Engl. 2021, 398, 1867. [Google Scholar] [CrossRef]
- Lei, Y.-M.; Yin, M.; Yu, M.-H.; Yu, J.; Zeng, S.-E.; Lv, W.-Z.; Li, J.; Ye, H.-R.; Cui, X.-W.; Dietrich, C.F. Artificial Intelligence in Medical Imaging of the Breast. Front. Oncol. 2021, 11, 600557. [Google Scholar] [CrossRef]
- Davey, M.G.; Davey, M.S.; Boland, M.R.; Ryan, É.J.; Lowery, A.J.; Kerin, M.J. Radiomic differentiation of breast cancer molecular subtypes using pre-operative breast imaging—A systematic review and meta-analysis. Eur. J. Radiol. 2021, 144, 109996. [Google Scholar] [CrossRef]
- Marino, M.A.; Leithner, D.; Sung, J.; Avendano, D.; Morris, E.A.; Pinker, K.; Jochelson, M.X. Radiomics for Tumor Characterization in Breast Cancer Patients: A Feasibility Study Comparing Contrast-Enhanced Mammography and Magnetic Resonance Imaging. Diagnostics 2020, 10, 492. [Google Scholar] [CrossRef]
- Schelfout, K.; Van Goethem, M.; Kersschot, E.; Verslegers, I.; Biltjes, I.; Leyman, P.; Colpaert, C.; Thienpont, L.; Van den Haute, J.; Gillardin, J.P.; et al. Preoperative breast MRI in patients with invasive lobular breast cancer. Eur. Radiol. 2004, 14, 1209–1216. [Google Scholar] [CrossRef]
- Saslow, D.; Boetes, C.; Burke, W.; Harms, S.; Leach, M.O.; Lehman, C.D.; Morris, E.; Pisano, E.; Schnall, M.; Sener, S.; et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J. Clin. 2007, 57, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Al Ewaidat, H.; Ayasrah, M. A Concise Review on the Utilization of Abbreviated Protocol Breast MRI over Full Diagnostic Protocol in Breast Cancer Detection. Int. J. Biomed. Imaging 2022, 2022, 8705531. [Google Scholar] [CrossRef] [PubMed]
MMG | US | MRI | CEM | |
---|---|---|---|---|
Imaging–pathology size correlation | 0.24–0.27 | 0.678–0.957 | 0.58–0.97 | 0.858–0.937 |
Sensitivity rate | 34–92% | 68–92% | 83–100%, most >95% | 97.36–100% |
Multifocal/multicentric detection rate | 24% | 80.8% | 89–91.17% | 84.2–97.36% |
Change in surgical planning (from BCS to more extensive unilateral surgery) | 25–50% | 13.3–20% | ||
Rate of re-excision | 6.7% | 9% | 6.7% | |
False positive detection rate | 8–24% | 22% | 26–33.3% | 19.3–33.3% |
MRI | CEM | |
---|---|---|
Results independent of breast density | + + + | + + + |
Evaluation of the axilla | + + + | + |
Use in neoadjuvant setting | + + + | + + + |
Biopsy capability | + + | + ** |
Compatible with implanted devices and retained metals | + | + + + |
Patient preference | + | + + |
Cost | + + + | + |
Ionizing radiation | n/a | + + + |
Risk of contrast reaction | + | + + |
Examination duration | + + | + |
Image interpretation time | + + | + |
Equipment availability | + | + + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereslucha, A.M.; Wenger, D.M.; Morris, M.F.; Aydi, Z.B. Invasive Lobular Carcinoma: A Review of Imaging Modalities with Special Focus on Pathology Concordance. Healthcare 2023, 11, 746. https://doi.org/10.3390/healthcare11050746
Pereslucha AM, Wenger DM, Morris MF, Aydi ZB. Invasive Lobular Carcinoma: A Review of Imaging Modalities with Special Focus on Pathology Concordance. Healthcare. 2023; 11(5):746. https://doi.org/10.3390/healthcare11050746
Chicago/Turabian StylePereslucha, Alicia M, Danielle M Wenger, Michael F Morris, and Zeynep Bostanci Aydi. 2023. "Invasive Lobular Carcinoma: A Review of Imaging Modalities with Special Focus on Pathology Concordance" Healthcare 11, no. 5: 746. https://doi.org/10.3390/healthcare11050746
APA StylePereslucha, A. M., Wenger, D. M., Morris, M. F., & Aydi, Z. B. (2023). Invasive Lobular Carcinoma: A Review of Imaging Modalities with Special Focus on Pathology Concordance. Healthcare, 11(5), 746. https://doi.org/10.3390/healthcare11050746