A Clinical Prediction Model for Breast Cancer in Women Having Their First Mammogram
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Data Acquisition and Outcome Ascertainment
2.3. Data Management and Statistical Analysis
3. Results
Model Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heer, E.; Harper, A.; Escandor, N.; Sung, H.; McCormack, V.; Fidler-Benaoudia, M.M. Global Burden and Trends in Premenopausal and Postmenopausal Breast Cancer: A Population-Based Study. Lancet Glob. Health 2020, 8, e1027–e1037. [Google Scholar] [CrossRef] [PubMed]
- Samet, J.M.; Chiu, W.A.; Cogliano, V.; Jinot, J.; Kriebel, D.; Lunn, R.M.; Beland, F.A.; Bero, L.; Browne, P.; Fritschi, L.; et al. The IARC Monographs: Updated Procedures for Modern and Transparent Evidence Synthesis in Cancer Hazard Identification. JNCI J. Nat. Cancer Inst. 2019, 112, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.; Bilheem, S.; Chansaard, W.; Chitapanarux, I.; Daoprasert, K.; Khuanchana, S.; Leklob, A.; Pongnikorn, D.; Rozek, L.; Siriarechakul, S.; et al. National and Subnational Population-Based Incidence of Cancer in Thailand: Assessing Cancers with the Highest Burdens. Cancers 2017, 9, 108. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.; Chindaprasirt, J.; Wirasorn, K.; Sookprasert, A.; Somintara, O.; Vachirodom, D.; Koonmee, S.; Srinakarin, J.; Kamsa-ard, S.; Suwanrungruang, K.; et al. Breast Cancer Incidence Trends and Projections in Northeastern Thailand. J. Epidemiol. 2018, 28, JE20170045. [Google Scholar] [CrossRef] [PubMed]
- Thaineua, V.; Ansusinha, T.; Auamkul, N.; Taneepanichskul, S.; Urairoekkun, C.; Jongvanich, J.; Kannawat, C.; Traisathit, P.; Chitapanarux, I. Impact of Regular Breast Self-Examination on Breast Cancer Size, Stage, and Mortality in Thailand. Breast J. 2020, 26, 822–824. [Google Scholar] [CrossRef]
- Tabár, L.; Vitak, B.; Chen, T.H.-H.; Yen, A.M.-F.; Cohen, A.; Tot, T.; Chiu, S.Y.-H.; Chen, S.L.-S.; Fann, J.C.-Y.; Rosell, J.; et al. Swedish Two-County Trial: Impact of Mammographic Screening on Breast Cancer Mortality during 3 Decades. Radiology 2011, 260, 658–663. [Google Scholar] [CrossRef]
- Duffy, S.W.; Tabár, L.; Yen, A.M.; Dean, P.B.; Smith, R.A.; Jonsson, H.; Törnberg, S.; Chen, S.L.; Chiu, S.Y.; Fann, J.C.; et al. Mammography Screening Reduces Rates of Advanced and Fatal Breast Cancers: Results in 549,091 Women. Cancer 2020, 126, 2971–2979. [Google Scholar] [CrossRef]
- Maroni, R.; Massat, N.J.; Parmar, D.; Dibden, A.; Cuzick, J.; Sasieni, P.D.; Duffy, S.W. A Case-Control Study to Evaluate the Impact of the Breast Screening Programme on Mortality in England. Br. J. Cancer 2021, 124, 736–743. [Google Scholar] [CrossRef]
- Pitman, J.A.; McGinty, G.B.; Soman, R.R.; Drotman, M.B.; Reichman, M.B.; Arleo, E.K. Screening Mammography for Women in Their 40s: The Potential Impact of the American Cancer Society and U.S. Preventive Services Task Force Breast Cancer Screening Recommendations. Am. J. Roentgenol. 2017, 209, 697–702. [Google Scholar] [CrossRef]
- Nelson, R. Mammography Guidelines Generate Confusion and Debate. AJN Am. J. Nurs. 2010, 110, 14–15. [Google Scholar] [CrossRef]
- Özekici, S.; Pliska, S.R. Optimal Scheduling of Inspections: A Delayed Markov Model with False Positives and Negatives. Oper. Res. 1991, 39, 261–273. [Google Scholar] [CrossRef]
- Kirch, R.L.A.; Klein, M. Surveillance Schedules for Medical Examinations. Manag. Sci. 1974, 20, 1403–1409. [Google Scholar] [CrossRef]
- Zelen, M. Optimal Scheduling of Examinations for the Early Detection of Disease. Biometrika 1993, 80, 279–293. [Google Scholar] [CrossRef]
- McCarthy, A.M.; Guan, Z.; Welch, M.; Griffin, M.E.; Sippo, D.A.; Deng, Z.; Coopey, S.B.; Acar, A.; Semine, A.; Parmigiani, G.; et al. Performance of Breast Cancer Risk-Assessment Models in a Large Mammography Cohort. JNCI J. Nat. Cancer Inst. 2019, 112, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Gail, M.; Rimer, B. Risk-Based Recommendations for Mammographic Screening for Women in Their Forties. J. Clin. Oncol. 1998, 16, 3105–3114. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, S.; Henderson, L.M. Adaptive Decision-Making of Breast Cancer Mammography Screening: A Heuristic-Based Regression Model. Omega 2018, 76, 70–84. [Google Scholar] [CrossRef]
- Chongthawonsatid, S. Inequity of Healthcare Utilization on Mammography Examination and Pap Smear Screening in Thailand: Analysis of a Population-Based Household Survey. PLoS ONE 2017, 12, e0173656. [Google Scholar] [CrossRef] [PubMed]
- Mukem, S.; Sriplung, H.; McNeil, E.; Tangcharoensathien, V. Breast Cancer Screening among Women in Thailand: Analyses of Population-Based Household Surveys. J. Med. Assoc. Thail. Chotmaihet Thangphaet 2014, 97, 1106–1118. [Google Scholar]
- Wang, Y.; Gao, Y.; Battsend, M.; Chen, K.; Lu, W.; Wang, Y. Development of a Risk Assessment Tool for Projecting Individualized Probabilities of Developing Breast Cancer for Chinese Women. Tumor Biol. 2014, 35, 10861–10869. [Google Scholar] [CrossRef]
- Zhou, L.; Rueda, M.; Alkhateeb, A. Classification of Breast Cancer Nottingham Prognostic Index Using High-Dimensional Embedding and Residual Neural Network. Cancers 2022, 14, 934. [Google Scholar] [CrossRef]
- Tabl, A.A.; Alkhateeb, A.; ElMaraghy, W.; Rueda, L.; Ngom, A. A Machine Learning Approach for Identifying Gene Biomarkers Guiding the Treatment of Breast Cancer. Front. Genet. 2019, 10, 256. [Google Scholar] [CrossRef]
- Feld, S.I.; Woo, K.M.; Alexandridis, R.; Wu, Y.; Liu, J.; Peissig, P.; Onitilo, A.A.; Cox, J.; Page, C.D.; Burnside, E.S. Improving Breast Cancer Risk Prediction by Using Demographic Risk Factors, Abnormality Features on Mammograms and Genetic Variants. AMIA Annu. Symp. Proc. AMIA Symp. 2018, 2018, 1253–1262. [Google Scholar]
- Anothaisintawee, T.; Teerawattananon, Y.; Wiratkapun, C.; Srinakarin, J.; Woodtichartpreecha, P.; Hirunpat, S.; Wongwaisayawan, S.; Lertsithichai, P.; Kasamesup, V.; Thakkinstian, A. Development and Validation of a Breast Cancer Risk Prediction Model for Thai Women: A Cross-Sectional Study. Asian Pac. J. Cancer Prev. 2014, 15, 6811–6817. [Google Scholar] [CrossRef]
- Chang, C.-C.; Ho, T.-C.; Lien, C.-Y.; Shen, D.H.-Y.; Chuang, K.-P.; Chan, H.-P.; Yang, M.-H.; Tyan, Y.-C. The Effects of Prior Mammography Screening on the Performance of Breast Cancer Detection in Taiwan. Healthcare 2022, 10, 1037. [Google Scholar] [CrossRef]
- Bittner, R.B. Guide to Mammography Reports: BI-RADS Terminology. Am. Fam. Physician 2010, 82, 114–115. [Google Scholar]
- Silvia, N.; Martina Nicole, G.; Daniela, P.; Massimo, S.; Francesco, F. L’uso dell’Inverse probability weighting (IPW) nella valutazione e “correzione” del selection bias. [Inverse probability weighting (IPW) for evaluating and “correcting” selection [Inverse Probability Weighting (IPW) for Evaluating and “Correcting” Selection Bias]. Epidemiol. Prev. 2014, 38, 335–341. Available online: https://epiprev.it/2600 (accessed on 6 March 2023).
- Jung, Y.; Hu, J. A K-Fold Averaging Cross-Validation Procedure. J. Nonparametr. Stat. 2015, 27, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Kotepui, M.; Chupeerach, C. Age Distribution of Breast Cancer from a Thailand Population-Based Cancer Registry. Asian Pac. J. Cancer Prev. 2013, 14, 3815–3817. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Ma, S.H.; Shin, A.; Chang, M.-C.; Choi, J.-Y.; Kim, S.; Han, W.; Noh, D.-Y.; Ahn, S.-H.; Kang, D.; et al. Korean Risk Assessment Model for Breast Cancer Risk Prediction. PLoS ONE 2013, 8, e76736. [Google Scholar] [CrossRef] [PubMed]
- Munsell, M.F.; Sprague, B.L.; Berry, D.A.; Chisholm, G.; Trentham-Dietz, A. Body Mass Index and Breast Cancer Risk According to Postmenopausal Estrogen-Progestin Use and Hormone Receptor Status. Epidemiol. Rev. 2014, 36, 114–136. [Google Scholar] [CrossRef]
- Nathanson, K.N.; Wooster, R.; Weber, B.L. Breast Cancer Genetics: What We Know and What We Need. Nat. Med. 2001, 7, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Jacobi, C.E.; Jonker, M.A.; Nagelkerke, N.J.D.; van Houwelingen, J.C.; Bock, G.H. de Prevalence of Family Histories of Breast Cancer in the General Population and the Incidence of Related Seeking of Health Care. J. Med. Genet. 2003, 40, e83. [Google Scholar] [CrossRef] [PubMed]
- Sukpan, P.; Kanokwiroon, K.; Sriplung, H.; Paisarn, P.; Sangkhathat, S. Survival Outcomes in Breast Cancer Patients and Associated Factors in a Border Province of Thailand: A Hospital-Based Review. J. Health Sci. Medical. Res. 2022. [Google Scholar] [CrossRef]
- Chen, L.; Zhou, W.-B.; Zhao, Y.; Liu, X.-A.; Ding, Q.; Zha, X.-M.; Wang, S. Bloody Nipple Discharge Is a Predictor of Breast Cancer Risk: A Meta-Analysis. Breast Cancer Res. Treat. 2012, 132, 9–14. [Google Scholar] [CrossRef]
- Walker, S.; Hyde, C.; Hamilton, W. Risk of Breast Cancer in Symptomatic Women in Primary Care: A Case–Control Study Using Electronic Records. Br. J. Gen. Pract. 2014, 64, e788–e793. [Google Scholar] [CrossRef]
- Mulligan, J.M.; Hill, L.A.; Deharo, S.; Irwin, G.; Boyle, D.; Keating, K.E.; Raji, O.Y.; McDyer, F.A.; O’Brien, E.; Bylesjo, M.; et al. Identification and Validation of an Anthracycline/Cyclophosphamide–Based Chemotherapy Response Assay in Breast Cancer. JNCI J. Natl. Cancer Inst. 2014, 106, djt335. [Google Scholar] [CrossRef]
- Verkooijen, H.M.; Yap, K.P.L.; Bhalla, V.; Chow, K.Y.; Chia, K.S. Multiparity and the Risk of Premenopausal Breast Cancer: Different Effects across Ethnic Groups in Singapore. Breast Cancer Res. Treat. 2009, 113, 553–558. [Google Scholar] [CrossRef]
- Zouré, A.A.; Bambara, A.H.; Sawadogo, A.Y.; Ouattara, A.K.; Ouédraogo, M.; Traoré, S.S.; Bakri, Y.; Simporé, J. Multiparity and Breast Cancer Risk Factor among Women in Burkina Faso. Asian Pac. J. Cancer Prev. APJCP 2016, 17, 5095–5099. [Google Scholar] [CrossRef]
- Pfeiffer, R.M.; Webb-Vargas, Y.; Wheeler, W.; Gail, M.H. Proportion of U.S. Trends in Breast Cancer Incidence Attributable to Long-Term Changes in Risk Factor Distributions. Cancer Epidemiol. Prev. Biomark. 2018, 27, cebp.0098.2018. [Google Scholar] [CrossRef]
Indication | All Datasets | Analyzed Datasets | ||||||
---|---|---|---|---|---|---|---|---|
Total | Non-Cancer | Cancer | p-Value | Total | Non-Cancer | Cancer | p-Value | |
N = 4634 (%) | N = 4358 (%) | N = 276 (%) | N = 822 (%) | N = 732 (%) | N = 90 (%) | |||
Screening | 1840 (39.7) | 1816 (41.7) | 24 (8.7) | <0.001 γ | 330 (40.1) | 316 (43.2) | 14 (15.6) | <0.001 γ |
Symptom | ||||||||
Mass | 2063 (44.5) | 1831 (42) | 232 (84.1) | 383 (46.6) | 313 (42.8) | 70 (77.8) | ||
Nipple discharge | 77 (1.7) | 68 (1.6) | 9 (3.3) | 22 (2.7) | 18 (2.5) | 4 (4.4) | ||
Pain | 576 (12.4) | 570 (13.1) | 6 (2.2) | 76 (9.2) | 74 (10.1) | 2 (2.2) | ||
Other | 78 (1.7) | 73 (1.7) | 5 (1.8) | 11 (1.3) | 11 (1.5) | 0 (0) |
Characteristic | Total N = 822 | Non-Cancer N = 732 | Cancer N = 90 | p-Value |
---|---|---|---|---|
Age, years | 49 (41, 58) | 48 (40, 57) | 55.5 (50, 61.8) | <0.001 ϯ |
BMI, kg/m2 | 23.1 (20.4, 25.8) | 22.9 (20.3, 25.6) | 24.4 (21.5, 27.3) | 0.001 ϯ |
Religion; n (%) | 0.782 γ | |||
Non-Muslim | 744 (91.9) | 662 (91.7) | 82 (93.2) | |
Muslim | 66 (8.1) | 60 (8.3) | 6 (6.8) | |
History of other types of cancer; n (%) | 0.319 £ | |||
No | 776 (94.5) | 694 (94.8) | 82 (92.1) | |
Yes | 45 (5.5) | 38 (5.2) | 7 (7.9) | |
Family history of breast cancer; n (%) | 0.156 γ | |||
No | 748 (91.2) | 670 (91.8) | 78 (86.7) | |
Yes | 72 (8.8) | 60 (8.2) | 12 (13.3) | |
Family history of ovarian cancer, n (%) | 1 £ | |||
No | 801 (97.6) | 713 (97.5) | 88 (97.8) | |
Yes | 20 (2.4) | 18 (2.5) | 2 (2.2) | |
Reproductive history | ||||
Menarche; age | 13 (12, 15) | 13 (12, 15) | 14 (12, 15) | 0.743 ϯ |
Menstrual status; n (%) | <0.001 γ | |||
Pre-menopause; (%) | 451 (55.2) | 417 (57.4) | 34 (37.8) | |
Post-menopause; (%) | 366 (44.8) | 310 (42.6) | 56 (62.2) | |
Age at menopause; year | 48 ± 5.9 | 49 (45, 52) | 50 (48, 52) | 0.124 ϯ |
Oophorectomy; n (%) | 0.428 ϯ | |||
No surgery | 733 (89.3) | 657 (89.8) | 76 (85.4) | |
Unilateral | 24 (2.9) | 20 (2.7) | 4 (4.5) | |
Bilateral | 64 (7.8) | 55 (7.5) | 9 (10.1) | |
External Hormone use | ||||
History of contraception use; n (%) | 0.287 ϯ | |||
Never used | 490 (65.3) | 440 (66) | 50 (60.2) | |
OCP used | 219 (29.2) | 189 (28.3) | 30 (36.1) | |
No OCP used | 41 (5.5) | 38 (5.7) | 3 (3.6) | |
Hormonal therapy; n (%) | 0.071 γ | |||
Never used | 699 (85.1) | 617 (84.3) | 82 (92.1) | |
Ever used | 122 (14.9) | 115 (15.7) | 7 (7.9) | |
Indication; n (%) | <0.001 γ | |||
Screening/asymptomatic | 330 (40.1) | 316 (43.2) | 14 (15.6) | |
Mass | 383 (46.6) | 313 (42.8) | 70 (77.8) | |
Nipple discharge | 22 (2.7) | 18 (2.5) | 4 (4.4) | |
Pain | 76 (9.2) | 74 (10.1) | 2 (2.2) | |
Other | 11 (1.3) | 11 (1.5) | 0 (0) |
Variable | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|
Crude Odds Ratio (95% CI) | p-Value | Coeff | Adjusted Odds Ratio (95% CI) | p-Value | |
Age, years | |||||
<50 | 1 | 0 | 1 | ||
≥50 | 3.2 (2.5–4.2) | <0.001 | 1.7 | 5.5 (4.2–7.3) | <0.001 |
BMI, kg/m2 | |||||
≤23 | 1 | 0 | 1 | ||
23–29 | 1.4 (1.1–1.8) | 0.009 | 0.2 | 1.2 (0.9–1.6) | 0.1406 |
≥30 | 3.2 (2.2–4.6) | <0.001 | 0.9 | 2.4 (1.6–3.5) | <0.001 |
Family history of breast cancer | |||||
No | 1 | 0 | 1 | ||
Yes | 1.4 (1.0–2.0) | 0.055 | 0.4 | 1.5 (1.0–2.2) | 0.0439 |
Breast symptom | |||||
Screening/asymptomatic | 1 | 0 | |||
Mass | 5.5 (4.1–7.7) | <0.001 | 2.2 | 8.9 (6.4–12.6) | <0.001 |
Nipple discharge | 7.8 (3.9–14.8) | <0.001 | 2.6 | 12.9 (6.2 -25.2) | <0.001 |
Pain | 0.5 (0.2–1.0) | 0.063 | −13.0 | 0.5 (0.2–1.1) | 0.1141 |
Others | 0.0 (NA) | 0.966 | −0.6 | 0.0 | 0.9639 |
Factor Model | Variables | AIC | AUC (95% CI) | |
---|---|---|---|---|
Training | 10-Fold Cross Validation | |||
5 factors | age, BMI, menstrual status, family history of breast cancer, indication | 1380.2 | 0.82 (0.8–0.9) | 0.78 (0.8–0.8) |
4 factors | age, BMI, family history of breast cancer, indication | 1387.9 | 0.82 (0.8–0.9) | 0.78 (0.8–0.8) |
3 factors | age, BMI, indication | 1388.7 | 0.81 (0.7–0.9) | 0.77 (0.8–0.8) |
2 factors | age, indication | 1404.0 | 0.79 (0.7–0.8) | 0.75 (0.7–0.8) |
Factors without indication | ||||
4 factors | age, BMI, family history of breast cancer, menstrual status | 1637.6 | 0.71 (0.6–0.8) | 0.66 (0.6–0.7) |
3 factors | age, BMI, family history of breast cancer | 1643 | 0.68 (0.6–0.8) | 0.65 (0.6–0.7) |
2 factors | age, BMI | 1644.2 | 0.68 (0.7–0.8) | 0.64 (0.6–0.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangkulangkul, P.; Laohawiriyakamol, S.; Puttawibul, P.; Sangkhathat, S.; Pradaranon, V.; Ingviya, T. A Clinical Prediction Model for Breast Cancer in Women Having Their First Mammogram. Healthcare 2023, 11, 856. https://doi.org/10.3390/healthcare11060856
Wangkulangkul P, Laohawiriyakamol S, Puttawibul P, Sangkhathat S, Pradaranon V, Ingviya T. A Clinical Prediction Model for Breast Cancer in Women Having Their First Mammogram. Healthcare. 2023; 11(6):856. https://doi.org/10.3390/healthcare11060856
Chicago/Turabian StyleWangkulangkul, Piyanun, Suphawat Laohawiriyakamol, Puttisak Puttawibul, Surasak Sangkhathat, Varanatjaa Pradaranon, and Thammasin Ingviya. 2023. "A Clinical Prediction Model for Breast Cancer in Women Having Their First Mammogram" Healthcare 11, no. 6: 856. https://doi.org/10.3390/healthcare11060856
APA StyleWangkulangkul, P., Laohawiriyakamol, S., Puttawibul, P., Sangkhathat, S., Pradaranon, V., & Ingviya, T. (2023). A Clinical Prediction Model for Breast Cancer in Women Having Their First Mammogram. Healthcare, 11(6), 856. https://doi.org/10.3390/healthcare11060856