Examining Factors Associated with Dynapenia/Sarcopenia in Patients with Schizophrenia: A Pilot Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Acquisition Period
2.3. Target Selection Criteria
2.4. Exclusion Criteria
2.5. Assessment Methods
2.5.1. Body Mass
2.5.2. Age, Height, and Weight
2.5.3. Grip Strength of the Hands
2.5.4. Skeletal Muscle Mass Index (SMI)
2.5.5. SARC-F Score
2.6. Sarcopenia/Dynapenia Assessment Method
2.7. Statistical Analysis
3. Results
4. Discussion
Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministry of Health, Labour and Welfare. Schizophrenia. Available online: https://www.mhlw.go.jp/kokoro/know/disease_into.html (accessed on 20 April 2022).
- Ringen, P.A.; Engh, J.A.; Birkenaes, A.B.; Dieset, I.; Andreassen, O.A. Increased mortality in schizophrenia due to cardiovascular disease—A non-systematic review of epidemiology, possible causes, and interventions. Front. Psychiatry 2014, 5, 137. [Google Scholar] [CrossRef] [PubMed]
- Galletly, C.A. Premature death in schizophrenia: Bridging the gap. Lancet Psychiatry 2017, 4, 263–265. [Google Scholar] [CrossRef] [PubMed]
- De Hert, M.; Schreurs, V.; Vancampfort, D.; Van Winkel, R. Metabolic syndrome in people with schizophrenia: A review. World Psychiatry 2009, 8, 15–22, Erratum in World Psychiatry 2011, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- Strassnig, M.; Signorile, J.; Gonzalez, C.; Harvey, P.D. Physical performance and disability in schizophrenia. Schizophr. Res. Cogn. 2014, 1, 112–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugawara, N.; Yasui-Furukori, N.; Tsuchimine, S.; Fujii, A.; Sato, Y.; Saito, M.; Matsuzaka, M.; Takahashi, I.; Kaneko, S. Body composition in patients with schizophrenia: Comparison with healthy controls. Ann. Gen. Psychiatry 2012, 11, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, D.C.; Vincenzi, B.; Andrea, N.V.; Ulloa, M.; Copeland, P.M. Pathophysiological mechanisms of increased cardiometabolic risk in people with schizophrenia and other severe mental illnesses. Lancet Psychiatry 2015, 2, 452–464. [Google Scholar] [CrossRef]
- Vancampfort, D.; Probst, M.; Scheewe, T.; Maurissen, K.; Sweers, K.; Knapen, J.; De Hert, M. Lack of physical activity during leisure time contributes to an impaired health related quality of life in patients with schizophrenia. Schizophr. Res. 2011, 129, 122–127. [Google Scholar] [CrossRef]
- Vancampfort, D.; Firth, J.; Schuch, F.B.; Rosenbaum, S.; Mugisha, J.; Hallgren, M.; Probst, M.; Ward, P.B.; Gaughran, F.; De Hert, M.; et al. Sedentary behavior and physical activity levels in people with schizophrenia, bipolar disorder and major depressive disorder: A global systematic review and meta-analysis. World Psychiatry 2017, 16, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Manu, P.; Dima, L.; Shulman, M.; Vancampfort, D.; De Hert, M.; Correll, C.U. Weight gain and obesity in schizophrenia: Epidemiology, pathobiology, and management. Acta Psychiatr. Scand. 2015, 132, 97–108. [Google Scholar] [CrossRef]
- Strassnig, M.; Brar, J.S.; Ganguli, R. Low cardiorespiratory fitness and physical functional capacity in obese patients with schizophrenia. Schizophr. Res. 2011, 126, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Schoepf, D.; Uppal, H.; Potluri, R.; Heun, R. Physical comorbidity and its relevance on mortality in schizophrenia: A naturalistic 12-year follow-up in general hospital admissions. Eur. Arch. Psychiatry Clin. Neurosci. 2014, 264, 3–28. [Google Scholar] [CrossRef] [PubMed]
- Strassnig, M.; Brar, J.S.; Ganguli, R. Increased caffeine and nicotine consumption in community-dwelling patients with schizophrenia. Schizophr. Res. 2006, 86, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, B.C.; Manini, T.M. Functional consequences of sarcopenia and dynapenia in the elderly. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 271–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, K.; Ma, W.Z.; Huck, S.; Li, B.L.; Zhang, L.; Zhu, J.; Li, T.; Zhou, D. Association between sarcopenia and depressive symptoms in Chinese older adults: Evidence from the China health and retirement longitudinal study. Front. Med. 2021, 8, 755705. [Google Scholar] [CrossRef]
- Sugai, T.; Suzuki, Y.; Yamazaki, M.; Shimoda, K.; Mori, T.; Ozeki, Y.; Matsuda, H.; Sugawara, N.; Yasui-Furukori, N.; Minami, Y.; et al. High prevalence of underweight and undernutrition in Japanese inpatients with schizophrenia: A nationwide survey. BMJ Open 2015, 5, e008720. [Google Scholar] [CrossRef] [Green Version]
- Tanita. Understanding Your Measurements. Available online: https://www.tanita.com/en/understanding-your-measurements/ (accessed on 20 April 2022).
- Tanita. Basal Metabolic Rate: What Is It and How to Measure It? Available online: https://tanita.eu/understanding-your-measurements/basal-metabolic-rate (accessed on 20 April 2022).
- Vellas, B.; Pahor, M.; Manini, T.; Rooks, D.; Guralnik, J.M.; Morley, J.; Studenski, S.; Evans, W.; Asbrand, C.; Fariello, R.; et al. Designing pharmaceutical trials for sarcopenia in frail older adults: EU/US Task Force recommendations. J. Nutr. Health Aging 2013, 17, 612–618. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.K.; Woo, J.; Assantachai, P.; Auyeung, T.W.; Chou, M.Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307.e2. [Google Scholar] [CrossRef]
- Erlandson, M.C.; Lorbergs, A.L.; Mathur, S.; Cheung, A.M. Muscle analysis using pQCT, DXA and MRI. Eur. J. Radiol. 2016, 85, 1505–1511. [Google Scholar] [CrossRef]
- Yamada, Y.; Nishizawa, M.; Uchiyama, T.; Kasahara, Y.; Shindo, M.; Miyachi, M.; Tanaka, S. Developing and validating an age-independent equation using multi-frequency bioelectrical impedance analysis for estimation of appendicular skeletal muscle mass and establishing a cutoff for sarcopenia. Int. J. Environ. Res. Public Health 2017, 14, 809. [Google Scholar] [CrossRef] [Green Version]
- Marthoenis, M.; Martina, M.; Alfiandi, R.; Dahniar, D.; Asnurianti, R.; Sari, H.; Nassimbwa, J.; Arafat, S.M.Y. Investigating body mass index and body composition in patients with schizophrenia: A case-control study. Schizophr. Res. Treat. 2022, 2022, 1381542. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.G.; Chen, W. Human body water composition measurement: Methods and clinical application. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2018, 40, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Hankin, M.E.; Munz, K.; Steinbeck, A.W. Total body water content in normal and grossly obese women. Med. J. Aust. 1976, 2, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Bulbul, F.; Tamam, L.; Demirkol, M.; Cakmak, S.; Namli, Z.; Ersahinoglu, E. The prevalence of sarcopenia in patients with schizophrenia. Psychiatry Clin. Psychopharmacol. 2021, 31, 60–66. [Google Scholar] [CrossRef]
- Mori, K.; Murata, S.; Goda, A.; Kikuchi, Y.; Shiraiwa, K.; Horie, J.; Nakano, H. Gait characteristics of dynapenia, sarcopenia, and presarcopenia in community-dwelling Japanese older women: A cross-sectional study. Healthcare 2022, 10, 1905. [Google Scholar] [CrossRef]
- Aliño-Dies, M.; Sánchez-Ortí, J.V.; Correa-Ghisays, P.; Balanzá-Martínez, V.; Vila-Francés, J.; Selva-Vera, G.; Correa-Estrada, P.; Forés-Martos, J.; San-Martín Valenzuela, C.; Monfort-Pañego, M.; et al. Grip Strength, Neurocognition, and social functioning in people WithType-2 diabetes mellitus, major depressive disorder, bipolar disorder, and schizophrenia. Front. Psychol. 2020, 11, 525231. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Imagama, S.; Ando, K.; Nakashima, H.; Machino, M.; Morozumi, M.; Kanbara, S.; Ito, S.; Inoue, T.; Yamaguchi, H.; et al. Dynapenia and physical performance in community-dwelling elderly people in Japan. Nagoya J. Med. Sci. 2020, 82, 415–424. [Google Scholar] [CrossRef]
- Neves, T.; Ferriolli, E.; Lopes, M.B.M.; Souza, M.G.C.; Fett, C.A.; Fett, W.C.R. Prevalence and factors associated with sarcopenia and dynapenia in elderly people. J. Frailty Sarcopenia Falls 2018, 3, 194–202. [Google Scholar] [CrossRef]
- Biolo, G.; Cederholm, T.; Muscaritoli, M. Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: From sarcopenic obesity to cachexia. Clin. Nutr. 2014, 33, 737–748. [Google Scholar] [CrossRef]
- Harvey, P.D.; Strassnig, M.T. Cognition and disability in schizophrenia: Cognition-related skills deficits and decision-making challenges add to morbidity. World Psychiatry 2019, 18, 165–167. [Google Scholar] [CrossRef]
- Strassnig, M.T.; Harvey, P.D.; Miller, M.L.; Depp, C.A.; Granholm, E. Real world sedentary behavior and activity levels in patients with schizophrenia and controls: An ecological momentary assessment study. Ment. Health Phys. Act. 2021, 20, 100364. [Google Scholar] [CrossRef]
- Kurose, S.; Nishikawa, S.; Nagaoka, T.; Kusaka, M.; Kawamura, J.; Nishioka, Y.; Sato, S.; Tsutsumi, H.; Kimura, Y. Prevalence and risk factors of sarcopenia in community-dwelling older adults visiting regional medical institutions from the Kadoma sarcopenia Study. Sci. Rep. 2020, 10, 19129. [Google Scholar] [CrossRef]
- Nilwik, R.; Snijders, T.; Leenders, M.; Groen, B.B.; van Kranenburg, J.; Verdijk, L.B.; van Loon, L.J. The decline in skeletal muscle mass with aging is mainly attributed to a reduction in type II muscle fiber size. Exp. Gerontol. 2013, 48, 492–498. [Google Scholar] [CrossRef]
- Mitchell, W.K.; Williams, J.; Atherton, P.; Larvin, M.; Lund, J.; Narici, M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front. Physiol. 2012, 3, 260. [Google Scholar] [CrossRef] [Green Version]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical definition of sarcopenia. Clin Cases Miner Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.A.; Evans, W.J. Changes in skeletal muscle with aging: Effects of exercise training. Exerc. Sport Sci. Rev. 1993, 21, 65–102. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, A.; Seino, S.; Abe, T.; Nofuji, Y.; Yokoyama, Y.; Amano, H.; Nishi, M.; Taniguchi, Y.; Narita, M.; Fujiwara, Y.; et al. Sarcopenia: Prevalence, associated factors, and the risk of mortality and disability in Japanese older adults. J. Cachexia Sarcopenia Muscle 2021, 12, 30–38. [Google Scholar] [CrossRef]
- Chang, C.I.; Huang, K.C.; Chan, D.C.; Wu, C.H.; Lin, C.C.; Hsiung, C.A.; Hsu, C.C.; Chen, C.Y. The impacts of sarcopenia and obesity on physical performance in the elderly. Obes. Res. Clin. Pract. 2015, 9, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Fukuoka, Y.; Narita, T.; Fujita, H.; Morii, T.; Sato, T.; Sassa, M.H.; Yamada, Y. Importance of physical evaluation using skeletal muscle mass index and body fat percentage to prevent sarcopenia in elderly Japanese diabetes patients. J. Diabetes Investig. 2019, 10, 322–330. [Google Scholar] [CrossRef]
- Okumura, Y.; Ito, H.; Kobayashi, M.; Mayahara, K.; Matsumoto, Y.; Hirakawa, J. Prevalence of diabetes and antipsychotic prescription patterns in patients with schizophrenia: A nationwide retrospective cohort study. Schizophr. Res. 2010, 119, 145–152. [Google Scholar] [CrossRef]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Verlaan, S.; Maier, A.B.; Bauer, J.M.; Bautmans, I.; Brandt, K.; Donini, L.M.; Maggio, M.; McMurdo, M.E.T.; Mets, T.; Seal, C.; et al. Sufficient levels of 25-hydroxyvitamin D and protein intake required to increase muscle mass in sarcopenic older adults—The PROVIDE study. Clin. Nutr. 2018, 37, 551–557. [Google Scholar] [CrossRef] [Green Version]
- Hara, H.; Nakamura, Y.; Hatano, M.; Iwashita, T.; Shimizu, T.; Ogawa, T.; Kanozawa, K.; Hasegawa, H. Protein Energy Wasting and Sarcopenia in Dialysis Patients. Contrib. Nephrol. 2018, 196, 243–249. [Google Scholar] [CrossRef]
- Sugawara, N.; Maruo, K.; Sugai, T.; Suzuki, Y.; Ozeki, Y.; Shimoda, K.; Someya, T.; Yasui-Furukori, N. Prevalence of underweight in patients with schizophrenia: A meta-analysis. Schizophr. Res. 2018, 195, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Brobakken, M.F.; Nygård, M.; Wang, E. Physical Health Impairment and Exercise as Medicine in Severe Mental Disorders: A Narrative Review. Sports Med. Open 2022, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Tanioka, R.; Ito, H.; Takase, K.; Kai, Y.; Sugawara, K.; Tanioka, T.; Locsin, R.; Tomotake, M. Usefulness of 2D Video Analysis for Evaluation of Shoulder Range of Motion during Upper Limb Exercise in Patients with Psychiatric Disorders. J. Med. Investig. 2022, 69, 70–79. [Google Scholar] [CrossRef] [PubMed]
Items | Healthy Group | Patient Group | Welch’s t-Test | 95% Confidence Interval | ||||
---|---|---|---|---|---|---|---|---|
n = 30 | n = 30 | |||||||
Mean | ±SD | Mean | ±SD | t | p | Lower | Upper | |
Age | 64.3 | 10.16 | 62.53 | 10.26 | 0.67 | 0.51 | −3.51 | 7.04 |
Body height, cm | 161.47 | 6.11 | 159.5 | 9.08 | 0.98 | 0.33 | −2.04 | 5.97 |
Body weight, kg | 57.25 | 8.49 | 60.55 | 15.52 | −1.03 | 0.31 | −9.82 | 3.2 |
BMR, kcal | 1195.9 | 176.66 | 1216.97 | 276.33 | −0.35 | 0.73 | −141.38 | 99.25 |
Bone mass, kg | 2.37 | 0.34 | 2.25 | 0.46 | 1.12 | 0.27 | −0.09 | 0.33 |
Body water, % | 53.56 | 3.94 | 49.77 | 6.58 | 2.71 | <0.01 | 0.98 | 6.61 |
Visceral fat level score | 6.6 | 3.71 | 9.12 | 5.35 | −2.11 | 0.04 | −4.91 | −0.13 |
Body fat, % | 24.95 | 6.05 | 30.41 | 9 | −2.76 | <0.01 | −9.44 | −1.49 |
BMI, kg/m2 | 21.89 | 2.3 | 23.88 | 4.65 | −2.1 | 0.04 | −3.91 | −0.08 |
MM L-arm, kg | 2 | 0.45 | 1.99 | 0.63 | 0.11 | 0.92 | −0.27 | 0.3 |
MM R-arm, kg | 2.02 | 0.46 | 1.88 | 0.54 | 1.09 | 0.28 | −0.12 | 0.4 |
MM upper limb, kg | 4.02 | 0.9 | 3.87 | 1.11 | 0.59 | 0.56 | −0.37 | 0.68 |
MM L-leg, kg | 7.49 | 1.26 | 7.01 | 1.75 | 1.2 | 0.24 | −0.32 | 1.26 |
MM R-leg, kg | 7.55 | 1.27 | 6.99 | 1.7 | 1.43 | 0.16 | −0.22 | 1.33 |
MM lower limb, kg | 15.04 | 2.52 | 14.01 | 3.4 | 1.33 | 0.19 | −0.52 | 2.57 |
MM trunk, kg | 21.48 | 3.48 | 21.63 | 4.42 | −0.14 | 0.89 | −2.21 | 1.91 |
TMM, kg | 40.54 | 6.72 | 39.51 | 8.67 | 0.52 | 0.61 | −2.98 | 5.04 |
LGS, kg | 29.16 | 9.07 | 18.53 | 8.38 | 4.71 | <0.001 | 6.12 | 15.15 |
RGS, kg | 30.05 | 7.98 | 21.26 | 10.92 | 3.56 | <0.001 | 3.83 | 13.74 |
SMI, kg/m2 | 7.26 | 0.82 | 6.94 | 1.18 | 1.21 | 0.23 | −0.21 | 0.84 |
Group | Healthy | Schizophrenia | Analysis Results | ||
---|---|---|---|---|---|
Normal | Frequency | 26 | 8 | Fisher’s exact test, p < 0.0001, OR = 17.88, 95% CI [4.74, 67.43] | |
AR | 4.7 | −4.7 | |||
Dynapenia * | Frequency | 4 | 22 | ||
AR | −4.7 | 4.7 | |||
Body Water | Normal | Below Standard | Pearson’s chi-square test = 4.413, p = 0.04, OR = 3.42, 95% CI [1.06, 11.09] | ||
Normal | Frequency | 28 | 6 | ||
AR | 2.1 | −2.1 | |||
Dynapenia * | Frequency | 15 | 11 | ||
AR | −2.1 | 2.1 | |||
Visceral Fat Level Score | Normal | Above Standard | Pearson’s chi-square test = 0.184, p = 0.67, OR = 1.27, 95% CI [0.43, 3.80] | ||
Normal | Frequency | 24 | 10 | ||
AR | 0.4 | −0.4 | |||
Dynapenia * | Frequency | 17 | 9 | ||
AR | −0.4 | 0.4 | |||
Body Fat | Decreased | Normal | Increased | Analysis Results | |
Normal | Frequency | 6 | 20 | 8 | Fisher’s exact test, p = 0.159 |
AR | 0.2 | 1.6 | −1.8 | ||
Dynapenia * | Frequency | 4 | 10 | 12 | |
AR | −0.2 | −1.6 | 1.8 | ||
BMI Level | Decreased | Normal | Increased | Analysis Results | |
Normal | Frequency | 2 | 24 | 8 | Fisher’s exact test, p = 0.774 |
AR | −0.8 | 0.7 | −0.3 | ||
Dynapenia * | Frequency | 3 | 16 | 7 | |
AR | 0.8 | −0.7 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanioka, R.; Osaka, K.; Ito, H.; Zhao, Y.; Tomotake, M.; Takase, K.; Tanioka, T. Examining Factors Associated with Dynapenia/Sarcopenia in Patients with Schizophrenia: A Pilot Case-Control Study. Healthcare 2023, 11, 684. https://doi.org/10.3390/healthcare11050684
Tanioka R, Osaka K, Ito H, Zhao Y, Tomotake M, Takase K, Tanioka T. Examining Factors Associated with Dynapenia/Sarcopenia in Patients with Schizophrenia: A Pilot Case-Control Study. Healthcare. 2023; 11(5):684. https://doi.org/10.3390/healthcare11050684
Chicago/Turabian StyleTanioka, Ryuichi, Kyoko Osaka, Hirokazu Ito, Yueren Zhao, Masahito Tomotake, Kensaku Takase, and Tetsuya Tanioka. 2023. "Examining Factors Associated with Dynapenia/Sarcopenia in Patients with Schizophrenia: A Pilot Case-Control Study" Healthcare 11, no. 5: 684. https://doi.org/10.3390/healthcare11050684
APA StyleTanioka, R., Osaka, K., Ito, H., Zhao, Y., Tomotake, M., Takase, K., & Tanioka, T. (2023). Examining Factors Associated with Dynapenia/Sarcopenia in Patients with Schizophrenia: A Pilot Case-Control Study. Healthcare, 11(5), 684. https://doi.org/10.3390/healthcare11050684