Serum Anti-Spike Antibodies Are Not Affected by Immunosuppressants in SARS-CoV-2 Vaccinations Given to Brazilian Patients with Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Selection of Patients
2.2. Study Protocol and Procedures
2.3. Statistical Analysis
3. Results
3.1. Prior COVID-19 Infection and Vaccination Schemes
3.2. Comparison of Antibody Titers in the IBD and Control Groups
3.3. Potential Association between Pre- and Post-Vaccination Antibody Titers and Vaccination Schemes
3.4. Potential Association between Antibody Titers and Specific Features of Patients with IBD
3.5. Potential Association between Antibody Titers and the Therapeutic Regimen for IBD
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsang, H.F.; Chan, L.W.C.; Cho, W.C.S.; Yu, A.C.S.; Yim, A.K.Y.; Chan, A.K.C.; Ng, L.P.W.; Wong, Y.K.E.; Pei, X.M.; Li, M.J.W.; et al. An update on COVID-19 pandemic: The epidemiology, pathogenesis, prevention and treatment strategies. Expert. Rev. Anti Infect. Ther. 2021, 19, 877–988. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.; Montero, M.T.V.; Rowe, K.; Kirton, R.; Kunik, F., Jr. Epidemiology, pathogenesis, clinical presentations, diagnosis and treatment of COVID-19: A review of current evidence. Expert Rev. Clin. Pharmacol. 2021, 14, 601–621. [Google Scholar] [CrossRef]
- Brazil MoHo. Painel de Casos de Doença Pelo Coronavírus 2019 (COVID-19) no Brasil Pelo Ministério da Saúde. 2023. Available online: https://profsaude-abrasco.fiocruz.br/blogs/conteudista/painel-casos-doenca-coronavirus-2019-covid-19-brasil-ministerio-saude (accessed on 1 November 2022).
- Neurath, M.F. COVID-19 and immunomodulation in IBD. Gut 2020, 69, 1335–1342. [Google Scholar] [CrossRef]
- Hunt, R.H.; East, J.E.; Lanas, A.; Malfertheiner, P.; Satsangi, J.; Scarpignato, C.; Webb, G.J. COVID-19 and gastrointestinal disease: Implications for the gastroenterologist. Dig. Dis. 2021, 39, 119–139. [Google Scholar] [CrossRef] [PubMed]
- Buie, M.J.; Quan, J.; Windsor, J.W.; Coward, S.; Hansen, T.M.; King, J.A.; Kotze, P.G.; Gearry, R.B.; Ng, S.C.; Mak, J.W.Y.; et al. Global hospitalization trends for Crohn’s disease and ulcerative colitis in the 21st century: A systematic review with temporal analyses. Clin. Gastroenterol. Hepatol. 2023, 21, 2211–2221. [Google Scholar] [CrossRef] [PubMed]
- da Luz Moreira, A.; de Campos Lobato, L.F.; de Lima Moreira, J.P.; Luiz, R.R.; Elia, C.; Fiocchi, C.; de Souza, H.S.P. Geosocial features and loss of biodiversity underlie variable rates of inflammatory bowel disease in a large developing country: A population-based study. Inflamm. Bowel Dis. 2022, 28, 1696–1708. [Google Scholar] [CrossRef]
- Davies, J.M.; Abreu, M.T. The innate immune system and inflammatory bowel disease. Scand. J. Gastroenterol. 2015, 50, 24–33. [Google Scholar] [CrossRef]
- Parkes, M. The genetics universe of Crohn’s disease and ulcerative colitis. Dig. Dis. 2012, 30 (Suppl. S1), 78–81. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Bernstein, C.N.; Iliopoulos, D.; Macpherson, A.; Neurath, M.F.; Ali, R.A.R.; Vavricka, S.R.; Fiocchi, C. Environmental triggers in IBD: A review of progress and evidence. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 39–49. [Google Scholar] [CrossRef]
- Leite, S.; Ribeiro, J.M.; Lima, S.C.; Barroso, S.; Cotter, J. Azathioprine in inflammatory bowel disease. Acta Med. Port. 2009, 22, 33–40. [Google Scholar]
- Liu, Y.; Sawalha, A.H.; Lu, Q. COVID-19 and autoimmune diseases. Curr. Opin. Rheumatol. 2021, 33, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Neurath, M.F. COVID-19: Biologic and immunosuppressive therapy in gastroenterology and hepatology. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Dinleyici, E.C.; Borrow, R.; Safadi, M.A.P.; van Damme, P.; Munoz, F.M. Vaccines and routine immunization strategies during the COVID-19 pandemic. Hum. Vaccines Immunother. 2021, 17, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Giubilini, A. Vaccination ethics. Br. Med. Bull. 2021, 137, 4–12. [Google Scholar] [CrossRef]
- Goldshtein, I.; Nevo, D.; Steinberg, D.M.; Rotem, R.S.; Gorfine, M.; Chodick, G.; Segal, Y. Association between BNT162b2 vaccination and incidence of SARS-CoV-2 infection in pregnant women. JAMA 2021, 326, 728–735. [Google Scholar] [CrossRef]
- Thompson, M.G.; Burgess, J.L.; Naleway, A.L.; Tyner, H.; Yoon, S.K.; Meece, J.; Olsho, L.E.W.; Caban-Martinez, A.J.; Fowlkes, A.L.; Lutrick, K.; et al. Prevention and attenuation of COVID-19 with the BNT162b2 and mRNA-1273 vaccines. N. Engl. J. Med. 2021, 385, 320–329. [Google Scholar] [CrossRef]
- Weaver, K.N.; Zhang, X.; Dai, X.; Watkins, R.; Adler, J.; Dubinsky, M.C.; Kastl, A.; Bousvaros, A.; Strople, J.A.; Cross, R.K.; et al. Impact of SARS-CoV-2 vaccination on inflammatory bowel disease activity and development of vaccine-related adverse events: Results from PREVENT-COVID. Inflamm. Bowel Dis. 2022, 28, 1497–1505. [Google Scholar] [CrossRef]
- Botwin, G.J.; Li, D.; Figueiredo, J.; Cheng, S.; Braun, J.; McGovern, D.P.B.; Melmed, G.Y. Adverse events after SARS-CoV-2 mRNA vaccination among patients with inflammatory bowel disease. Am. J. Gastroenterol. 2021, 116, 1746–1751. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, D.; Xu, A.T.; Shen, J.; Ran, Z.H. Effects of immunosuppressants on immune response to vaccine in inflammatory bowel disease. Chin. Med. J. 2015, 128, 835–838. [Google Scholar] [CrossRef]
- Hagihara, Y.; Ohfuji, S.; Watanabe, K.; Yamagami, H.; Fukushima, W.; Maeda, K.; Kamata, N.; Sogawa, M.; Shiba, M.; Tanigawa, T.; et al. Infliximab and/or immunomodulators inhibit immune responses to trivalent influenza vaccination in adults with inflammatory bowel disease. J. Crohn’s Colitis 2014, 8, 223–233. [Google Scholar] [CrossRef]
- Andrade, P.; Santos-Antunes, J.; Rodrigues, S.; Lopes, S.; Macedo, G. Treatment with infliximab or azathioprine negatively impact the efficacy of hepatitis B vaccine in inflammatory bowel disease patients. J. Gastroenterol. Hepatol. 2015, 30, 1591–1595. [Google Scholar] [CrossRef]
- Caldera, F.; Hillman, L.; Saha, S.; Wald, A.; Grimes, I.; Zhang, Y.; Sharpe, A.R.; Reichelderfer, M.; Hayney, M.S. Immunogenicity of high dose influenza vaccine for patients with inflammatory bowel disease on anti-TNF monotherapy: A randomized clinical trial. Inflamm. Bowel Dis. 2020, 26, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Mattiuzzi, C.; Lippi, G. Primary COVID-19 vaccine cycle and booster doses efficacy: Analysis of Italian nationwide vaccination campaign. Eur. J. Public Health 2022, 32, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Lev-Tzion, R.; Focht, G.; Lujan, R.; Mendelovici, A.; Friss, C.; Greenfeld, S.; Kariv, R.; Ben-Tov, A.; Matz, E.; Nevo, D.; et al. COVID-19 vaccine is effective in inflammatory bowel disease patients and is not associated with disease exacerbation. Clin. Gastroenterol. Hepatol. 2022, 20, e1263–e1282. [Google Scholar] [CrossRef] [PubMed]
- Lipsitch, M.; Krammer, F.; Regev-Yochay, G.; Lustig, Y.; Balicer, R.D. SARS-CoV-2 breakthrough infections in vaccinated individuals: Measurement, causes and impact. Nat. Rev. Immunol. 2022, 22, 57–65. [Google Scholar] [CrossRef]
- Levin, E.G.; Lustig, Y.; Cohen, C.; Fluss, R.; Indenbaum, V.; Amit, S.; Doolman, R.; Asraf, K.; Mendelson, E.; Ziv, A.; et al. Waning immune humoral response to BNT162b2 COVID-19 vaccine over 6 months. N. Engl. J. Med. 2021, 385, e84. [Google Scholar] [CrossRef]
- Kennedy, N.A.; Lin, S.; Goodhand, J.R.; Chanchlani, N.; Hamilton, B.; Bewshea, C.; Nice, R.; Chee, D.; Cummings, J.F.; Fraser, A.; et al. Infliximab is associated with attenuated immunogenicity to BNT162b2 and ChAdOx1 nCoV-19 SARS-CoV-2 vaccines in patients with IBD. Gut 2021, 70, 1884–1893. [Google Scholar] [CrossRef]
- Charilaou, P.; Tricarico, C.; Battat, R.; Scherl, E.J.; Longman, R.S.; Lukin, D.J. Impact of inflammatory bowel disease therapies on durability of humoral response to SARS-CoV-2 vaccination. Clin. Gastroenterol. Hepatol. 2022, 20, e1493–e1499. [Google Scholar] [CrossRef]
- Alexander, J.L.; Kennedy, N.A.; Ibraheim, H.; Anandabaskaran, S.; Saifuddin, A.; Castro Seoane, R.; Liu, Z.; Nice, R.; Bewshea, C.; D’Mello, A.; et al. COVID-19 vaccine-induced antibody responses in immunosuppressed patients with inflammatory bowel disease (VIP): A multicentre, prospective, case-control study. Lancet Gastroenterol. Hepatol. 2022, 7, 342–352. [Google Scholar] [CrossRef]
- Kappelman, M.D.; Weaver, K.N.; Boccieri, M.; Firestine, A.; Zhang, X.; Long, M.D.; PREVENT-COVID Study Group. Humoral immune response to messenger RNA COVID-19 vaccines among patients with inflammatory bowel disease. Gastroenterology 2021, 161, 1340–1343.e2. [Google Scholar] [CrossRef]
- Melmed, G.Y.; Botwin, G.J.; Sobhani, K.; Li, D.; Prostko, J.; Figueiredo, J.; Cheng, S.; Braun, J.; McGovern, D.P.B. Antibody responses after SARS-CoV-2 mRNA vaccination in adults with inflammatory bowel disease. Ann. Intern. Med. 2021, 174, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Collier, D.A.; Ferreira, I.; Kotagiri, P.; Datir, R.P.; Lim, E.Y.; Touizer, E.; Meng, B.; Abdullahi, A.; CITIID-NIHR BioResource COVID-19 Collaboration; Elmer, A.; et al. Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2. Nature 2021, 596, 417–422. [Google Scholar] [CrossRef]
- Shiga, H.; Kakuta, Y.; An, K.; Abe, Y.; Fujimaki, S.; Shimoyama, Y.; Naito, T.; Moroi, R.; Kuroha, M.; Khor, S.S.; et al. Response to COVID-19 vaccine is reduced in patients with inflammatory bowel disease, but improved with additional dose. J. Gastroenterol. Hepatol. 2023, 38, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Le, K.; Zhou, X.; Alexander, J.L.; Lin, S.; Bewshea, C.; Chanchlani, N.; Nice, R.; McDonald, T.J.; Lamb, C.A.; et al. Neutralising antibody potency against SARS-CoV-2 wild-type and omicron BA.1 and BA.4/5 variants in patients with inflammatory bowel disease treated with infliximab and vedolizumab after three doses of COVID-19 vaccine (CLARITY IBD): An analysis of a prospective multicentre cohort study. Lancet Gastroenterol. Hepatol. 2023, 8, 145–156. [Google Scholar] [CrossRef]
- Agudelo, M.; Muecksch, F.; Schaefer-Babajew, D.; Cho, A.; DaSilva, J.; Bednarski, E.; Ramos, V.; Oliveira, T.Y.; Cipolla, M.; Gazumyan, A.; et al. Plasma and memory antibody responses to gamma SARS-CoV-2 provide limited cross-protection to other variants. J. Exp. Med. 2022, 219, e20220367. [Google Scholar] [CrossRef]
- Bults, M.; Beaujean, D.J.; Richardus, J.H.; Voeten, H.A. Perceptions and behavioral responses of the general public during the 2009 influenza A (H1N1) pandemic: A systematic review. Disaster Med. Public Health Prep. 2015, 9, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, J.V.; Wyka, K.; White, T.M.; Picchio, C.A.; Gostin, L.O.; Larson, H.J.; Rabin, K.; Ratzan, S.C.; Kamarulzaman, A.; El-Mohandes, A. A survey of COVID-19 vaccine acceptance across 23 countries in 2022. Nat. Med. 2023, 29, 366–375. [Google Scholar] [CrossRef]
- Ong, D.S.Y.; Fragkou, P.C.; Schweitzer, V.A.; Chemaly, R.F.; Moschopoulos, C.D.; Skevaki, C.; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV). How to interpret and use COVID-19 serology and immunology tests. Clin. Microbiol. Infect. 2021, 27, 981–986. [Google Scholar] [CrossRef]
- Loubet, P.; Laureillard, D.; Martin, A.; Larcher, R.; Sotto, A. Why promoting a COVID-19 vaccine booster dose? Anaesth. Crit. Care Pain Med. 2021, 40, 100967. [Google Scholar] [CrossRef]
IBD (n = 42) | Control (n = 89) | |
---|---|---|
Sociodemographic features | ||
Age in years (mean (range)) | 34.6 (16–60) | 36.3 (15–71) |
Female/male (%) | 59.5/40.5 | 64.0/36.0 |
White/nonwhite (%) | 64.3/35.7 | 65.1/34.9 |
Smoking (%) | 9.5 | 1.1 |
Vaccine (%) | ||
AstraZeneca | 47.6 | 64.0 |
CoronaVac | 19.0 | 19.2 |
BioNTech Pfizer | 33.4 | 16.8 |
Previous coronavirus infection (%) | 21.4 | 16.8 |
Asymptomatic/mild symptoms (%) | 100 | 100 |
CD (%) | 73.8 | - |
UC (%) | 26.2 | - |
CD Localization (%) | ||
L1 (terminal ileum) | 29.0 | - |
L2 (colon) | 25.8 | - |
L3 (ileocolon) | 42.0 | - |
L4 (upper GI tract) | 3.2 | - |
UC Extension (%) | ||
E1 (Proctosigmoiditis) | 18.2 | - |
E2 (Left colitis) | 18.2 | - |
E3 (Pancolitis) | 63.6 | - |
CD Behavior (%) | ||
B1 (nonstricturing nonpenetrating) | 61.3 | - |
B2 (stricturing) | 29.0 | - |
B3 (penetrating) | 9.7 | - |
P (perianal) | 25.8 | - |
Therapy (%) | ||
Salicylate/none | 19.0 | - |
Biologic only | 16.7 | - |
Thiopurine only | 31.0 | - |
Combotherapy | 33.3 | - |
Vaccine Scheme | Descriptive Statistics | Control | IBD | ||||
---|---|---|---|---|---|---|---|
Pre-Vaccination | One Month after 2nd Dose | p | Pre-Vaccination | One Month after 2nd Dose | p | ||
CV | N | 17 | 17 | <0.0001 | 8 | 8 | 0.0078 |
Mean | 30.9 | 1397.3 | 86.8 | 1140.4 | |||
Median | 6.8 | 1255.5 | 48.6 | 1240.2 | |||
SD | 64.6 | 854.7 | 111.4 | 890.8 | |||
Min | 6.8 | 315.5 | 6.8 | 91.6 | |||
Max | 245.8 | 3742.5 | 327.8 | 2669.7 | |||
AZ | N | 57 | 57 | <0.0001 | 20 | 20 | <0.0001 |
Mean | 83.7 | 4498.3 | 147.3 | 4017.3 | |||
Median | 8.3 | 2224.9 | 7.6 | 1979.5 | |||
SD | 214.0 | 6085.2 | 255.5 | 5032.5 | |||
Min | 4.7 | 143.0 | 6.8 | 100.0 | |||
Max | 1229.4 | 32,767.2 | 938.9 | 21,387.0 | |||
Pfizer | N | 15 | 15 | <0.0001 | 14 | 14 | <0.0001 |
Mean | 200.8 | 25,648.1 | 1096.0 | 19,313.3 | |||
Median | 6.8 | 23,346.6 | 10.7 | 12,061.3 | |||
SD | 554.1 | 13,650.9 | 3594.7 | 17,537.2 | |||
Min | 6.8 | 10,493.3 | 0.1 | 433.0 | |||
Max | 2144.4 | 58,875.8 | 13521.5 | 57,196.8 |
Coefficients a | |||||||
---|---|---|---|---|---|---|---|
Variable | Non-Standardized Coefficient | Standardized Coefficient | t | p Value | Confidence Interval of 95.0% for B | ||
B | Standard Model | Beta | Lower Bound | Upper Bound | |||
(Constant) | 1099.12 | 4241.01 | 0.259 | 0.796 | −7289.42 | 9487.67 | |
Case–control | −2103.51 | 1719.57 | −0.089 | −1.223 | 0.223 | −550.47 | 1297.72 |
Vaccination scheme | 5986.88 | 1162.35 | 0.409 | 5.151 | 0.000 | 3687.80 | 8285.97 |
Previous COVID-19 | 5356.14 | 20,285.72 | 0.185 | 2.568 | 0.011 | 1230.67 | 9481.62 |
Age | −182.38 | 71.03 | −0.201 | −2.568 | 0.011 | −322.87 | −41.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.L.C.; Moreira, J.P.d.L.; Porto, L.C.; Souza, V.M.A.d.; Gonçalves, B.C.; Sampaio, A.d.B.; Moutela, M.F.; Farha, L.d.R.; Esberard, B.C.; Amorim, R.F.d.; et al. Serum Anti-Spike Antibodies Are Not Affected by Immunosuppressants in SARS-CoV-2 Vaccinations Given to Brazilian Patients with Inflammatory Bowel Disease. Healthcare 2023, 11, 2767. https://doi.org/10.3390/healthcare11202767
Pereira MLC, Moreira JPdL, Porto LC, Souza VMAd, Gonçalves BC, Sampaio AdB, Moutela MF, Farha LdR, Esberard BC, Amorim RFd, et al. Serum Anti-Spike Antibodies Are Not Affected by Immunosuppressants in SARS-CoV-2 Vaccinations Given to Brazilian Patients with Inflammatory Bowel Disease. Healthcare. 2023; 11(20):2767. https://doi.org/10.3390/healthcare11202767
Chicago/Turabian StylePereira, Magno Luís Costa, Jessica Pronestino de Lima Moreira, Luís Cristóvão Porto, Vania Maria Almeida de Souza, Beatriz Cunta Gonçalves, Amanda de Barros Sampaio, Matheus Figueiredo Moutela, Larissa dos Reis Farha, Bárbara Cathalá Esberard, Renata Fernandes de Amorim, and et al. 2023. "Serum Anti-Spike Antibodies Are Not Affected by Immunosuppressants in SARS-CoV-2 Vaccinations Given to Brazilian Patients with Inflammatory Bowel Disease" Healthcare 11, no. 20: 2767. https://doi.org/10.3390/healthcare11202767
APA StylePereira, M. L. C., Moreira, J. P. d. L., Porto, L. C., Souza, V. M. A. d., Gonçalves, B. C., Sampaio, A. d. B., Moutela, M. F., Farha, L. d. R., Esberard, B. C., Amorim, R. F. d., Souza, H. S. P. d., & Carvalho, A. T. P. (2023). Serum Anti-Spike Antibodies Are Not Affected by Immunosuppressants in SARS-CoV-2 Vaccinations Given to Brazilian Patients with Inflammatory Bowel Disease. Healthcare, 11(20), 2767. https://doi.org/10.3390/healthcare11202767