Oral Arginine Supplementation in Healthy Individuals Performing Regular Resistance Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Profile of Study Participants
2.2. Ethical Considerations
2.3. Initial Assessment
2.4. Randomisation Process and Six-Month Evaluation
2.5. Statistical Data Analysis
3. Results
4. Discussion
5. Conclusions
6. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saini, R.; Badole, S.L.; Zanwar, A.A. Arginine Derived Nitric Oxide: Key to Healthy Skin. In Bioactive Dietary Factors and Plant Extracts in Dermatology; Watson, R.R., Zibadi, S., Eds.; Humana Press: Totowa, NJ, USA, 2013; pp. 73–82. ISBN 978-1-62703-166-0. [Google Scholar] [CrossRef]
- Drugs and Supplements Arginine. Available online: http://www.mayoclinic.org/ (accessed on 10 May 2022).
- Wu, G.; Jaeger, L.A.; Bazer, F.W.; Rhoads, J.M. Arginine deficiency in preterm infants: Biochemical mechanisms and nutritional implications. J. Nutr. Biochem. 2004, 15, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Levillain, O. Expression and function of arginine-producing and consuming-enzymes in the kidney. Amino Acids. 2012, 42, 1237–1252. [Google Scholar] [CrossRef] [PubMed]
- Schramm, L.; La, M.; Heidbreder, E.; Hecker, M.; Beckman, J.S.; Lopau, K.; Zimmermann, J.; Rendl, J.; Reiners, C.; Winderl, S.; et al. L-arginine deficiency and supplementation in experimental acute renal failure and in human kidney transplantation. Kidney Int. 2002, 61, 1423–1432. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Crenn, P.; Cynober, L. Effect of intestinal resections on arginine metabolism: Practical implications for nutrition support. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Moss, M.B.; Brunini, T.M.; de Moura, R.S.; Malagris, L.E.N.; Roberts, N.B.; Ellory, J.C.; Roberts, N.B.; Ellory, J.C.; Mann, G.E.; Ribeiro, A.C.M. Diminished L-arginine bioavailability in hypertension. Clin. Sci. 2004, 107, 391–397. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rashid, J.; Kumar, S.S.; Job, K.M.; Liu, X.; Fike, C.D.; Sherwin, C.M.T. Therapeutic Potential of Citrulline as an Arginine Supplement: A Clinical Pharmacology Review. Pediatr. Drugs 2020, 22, 279–293. [Google Scholar] [CrossRef]
- Schwedhelm, E.; Maas, R.; Freese, R.; Jung, D.; Lukacs, Z.; Jambrecina, A.; Spickler, W.; Schulze, F.; Böger, R.H. Pharmacokinetic and pharmacodynamic properties of oral L-citrulline and L-arginine: Impact on nitric oxide metabolism. Br. J. Clin. Pharmacol. 2008, 65, 51–59. [Google Scholar] [CrossRef][Green Version]
- Bode-Böger, S.M.; Böger, R.H.; Galland, A.; Tsikas, D.; Frölich, J.C. L-arginine-induced vasodilation in healthy humans: Pharmacokinetic-pharmacodynamic relationship. Br. J. Clin. Pharmacol. 1998, 46, 489–497. [Google Scholar] [CrossRef][Green Version]
- Morris, S.M. Enzymes of arginine metabolism. J. Nutr. 2004, 134 (Suppl. S10), 2743S–2747S. [Google Scholar] [CrossRef]
- Dallinger, S.; Sieder, A.; Strametz, J.; Bayerle-Eder, M.; Wolzt, M.; Schmetterer, L. Vasodilator effects of L-arginine are stereospecific and augmented by insulin in humans. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E1106–E1111. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Nakaki, T.; Hishikawa, K. The arginine paradox. Nihon Yakurigaku Zasshi 2002, 119, 7–14. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liang, M.; Wang, Z.; Li, H.; Cai, L.; Pan, J.; He, H.; Wu, Q.; Tang, Y.; Ma, J.; Yang, L. L-arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food Chem. Toxicol. 2018, 115, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, E.P., Jr.; Lambertucci, R.H. Effects of N-acetylcysteine and L-arginine in the antioxidant system of C2C12 cells. J. Sport. Med. Phys. Fit. 2015, 55, 691–699. [Google Scholar] [PubMed]
- Jabłecka, A.; Ast, J.; Bogdaski, P.; Drozdowski, M.; Pawlak-Lemaska, K.; Cielewicz, A.R.; Pupek-Musialik, D. Oral L-arginine supplementation in patients with mild arterial hypertension and its effect on plasma level of asymmetric dimethylarginine, L-citruline, L-arginine and antioxidant status. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1665–1674. [Google Scholar] [PubMed]
- Sitia, S.; Tomasoni, L.; Atzeni, F.; Ambrosio, G.; Cordiano, C.; Catapano, A.; Tramontana, S.; Perticone, F.; Naccarato, P.; Camici, P.; et al. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 2010, 9, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, D.; Krüger, M.; Wehland, M.; Infanger, M.; Grimm, D. The Effects of Oral L-arginine and l-Citrulline Supplementation on Blood Pressure. Nutrients 2019, 11, 1679. [Google Scholar] [CrossRef][Green Version]
- Palloshi, A.; Fragasso, G.; Piatti, P.; Monti, L.D.; Setola, E.; Valsecchi, G.; Galluccio, E.; Chierchia, S.L.; Margonato, A. Effect of oral L-arginine on blood pressure and symptoms and endothelial function in patients with systemic hypertension, positive exercise tests, and normal coronary arteries. Am. J. Cardiol. 2004, 93, 933–935. [Google Scholar] [CrossRef] [PubMed]
- Popoviciu, M.S.; Marin, V.N.; Vesa, C.M.; Stefan, S.D.; Stoica, R.A.; Serafinceanu, C.; Merlo, E.M.; Rizvi, A.A.; Rizzo, M.; Busnatu, S.; et al. Correlations between Diabetes Mellitus Self-Care Activities and Glycaemic Control in the Adult Population: A Cross-Sectional Study. Healthcare 2022, 10, 174. [Google Scholar] [CrossRef]
- Busnatu, S.-S.; Salmen, T.; Pana, M.-A.; Rizzo, M.; Stallone, T.; Papanas, N.; Popovic, D.; Tanasescu, D.; Serban, D.; Stoian, A.P. The Role of Fructose as a Cardiovascular Risk Factor: An Update. Metabolites 2022, 12, 67. [Google Scholar] [CrossRef]
- Onose, G.; Anghelescu, A.; Blendea, D.; Ciobanu, V.; Daia, C.; Firan, F.C.; Oprea, M.; Spinu, A.; Popescu, C.; Ionescu, A.; et al. Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int. J. Mol. Sci. 2022, 23, 907. [Google Scholar] [CrossRef]
- Liu, W.; Choi, B.R.; Bak, Y.O.; Zhang, L.T.; Zhou, L.X.; Huang, Y.R.; Zhao, C.; Park, J.K. Cavernosum smooth muscle relaxation induced by Schisandrol A via the NO-cGMP signalling pathway. Cell. Mol. Biol. 2016, 62, 115–119. [Google Scholar] [PubMed]
- Yavuz, B.B.; Yavuz, B.; Sener, D.D.; Cankurtaran, M.; Halil, M.; Ulger, Z.; Nazli, N.; Kabakci, G.; Aytemir, K.; Tokgozoglu, L.; et al. Advanced age is associated with endothelial dysfunction in healthy elderly subjects. Gerontology 2008, 54, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Welsch, M.A.; Dobrosielski, D.A.; Arce-Esquivel, A.A.; Wood, R.H.; Ravussin, E.; Rowley, C.A.; Jazwinski, S.M. The association between flow-mediated dilation and physical function in older men. Med. Sci. Sport. Exerc. 2008, 40, 1237–1243. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Carbone, S.; Kirkman, D.L.; Garten, R.S.; Rodriguez-Miguelez, P.; Artero, E.G.; Lee, D.C.; Lavie, C.J. Muscular Strength and Cardiovascular Disease: An updated state-of-the-art narrative review. J. Cardiopulm. Rehabil. Prev. 2020, 40, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Delp, M.D.; Behnke, B.J.; Spier, S.A.; Wu, G.; Muller-Delp, J.M. Ageing diminishes endothelium-dependent vasodilatation and tetrahydrobiopterin content in rat skeletal muscle arterioles. J. Physiol. 2008, 586, 1161–1168. [Google Scholar] [CrossRef]
- Jalaludeen, N.; Bull, S.J.; Taylor, K.A.; Wiles, J.D.; Coleman, D.A.; Howland, L.; Mukhtar, O.; Cheriyan, J.; Wilkinson, I.B.; Sharma, R.; et al. Left atrial mechanics and aortic stiffness following high intensity interval training: A randomised controlled study. Eur. J. Appl. Physiol. 2020, 120, 1855–1864. [Google Scholar] [CrossRef]
- O’Driscoll, J.M.; Wright, S.M.; Taylor, K.A.; Coleman, D.A.; Sharma, R.; Wiles, J.D. Cardiac autonomic and left ventricular mechanics following high intensity interval training: A randomised crossover controlled study. J. Appl. Physiol. 2018, 125, 1030–1040. [Google Scholar] [CrossRef][Green Version]
- Fahs, C.A.; Heffernan, K.S.; Ranadive, S.; Jae, S.Y.; Fernhall, B. Muscular Strength is Inversely Associated with Aortic Stiffness in Young Men. Med. Sci. Sports Exerc. 2010, 42, 1619–1624. [Google Scholar] [CrossRef]
- Lekakis, J.P.; Papathanassiou, S.; Papaioannou, T.G.; Papamichael, C.M.; Zakopoulos, N.; Kotsis, V.; Dagre, A.G.; Stamatelopoulos, K.; Protogerou, A.; Stamatelopoulos, S.F. Oral L-arginine improves endothelial dysfunction in patients with essential hypertension. Int. J. Cardiol. 2002, 86, 317–323. [Google Scholar] [CrossRef]
- McNeal, C.J.; Meininger, C.J.; Wilborn, C.D.; Tekwe, C.D.; Wu, G. Safety of dietary supplementation with arginine in adult humans. Amino Acids 2018, 50, 1215–1229. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.Y.; Qin, L.Q.; Zhang, Z.; Zhao, Y.; Wang, J.; Arigoni, F.; Zhang, W. Effect of oral L-arginine supplementation on blood pressure: A meta-analysis of randomised, double-blind, placebo-controlled trials. Am. Heart J. 2011, 162, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Guttman, H.; Zimlichman, R.; Boaz, M.; Matas, Z.; Shargorodsky, M. Effect of long-term L-arginine supplementation on arterial compliance and metabolic parameters in patients with multiple cardiovascular risk factors: Randomised, placebo-controlled study. J. Cardiovasc. Pharmacol. 2010. Epub ahead of printing. [Google Scholar] [CrossRef] [PubMed]
- Puga, G.M.; Novais, I.D.P.; Katsanos, C.S.; Zanesco, A. Combined effects of aerobic exercise and l-arginine ingestion on blood pressure in normotensive postmenopausal women: A crossover study. Life Sci. 2016, 151, 323–329. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Andrade, W.B.; Jacinto, J.L.; da Silva, D.K.; Roveratti, M.C.; Estoche, J.M.; Oliveira, D.B.; Balvedi, M.C.W.; da Silva, R.A.; Aguiar, A.F. L-arginine supplementation does not improve muscle function during recovery from resistance exercise. Appl. Physiol. Nutr. Metab. 2018, 43, 928–936. [Google Scholar] [CrossRef]
- Morais, S.R.L.; Brito, V.G.B.; Mello, W.G.; Oliveira, S.H.P. L-arginine modulates inflammation and muscle regulatory genes after a single session of resistance exercise in rats. Scand. J. Med. Sci. Sports. 2018, 28, 425–435. [Google Scholar] [CrossRef]
- Viribay, A.; Burgos, J.; Fernández-Landa, J.; Seco-Calvo, J.; Mielgo-Ayuso, J. Effects of Arginine Supplementation on Athletic Performance Based on Energy Metabolism: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 1300. [Google Scholar] [CrossRef]
- Dons, B.; Bollerup, K.; Bonde-Petersen, F.; Hancke, S. The effect of weight-lifting exercise related to muscle fiber composition and muscle cross-sectional area in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1979, 40, 95–106. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.L.; Etlinger, J.D.; Goldspink, D.F.; Jablecki, C. Mechanism of work-induced hypertrophy of skeletal muscle. Med. Sci. Sports 1975, 7, 185–198. [Google Scholar] [PubMed]
- Sale, D.G.; MacDougall, J.D.; Always, S.E.; Sutton, J.R. Voluntary strength and muscle characteristics in untrained men and women and male bodybuilders. J. Appl. Physiol. 1987, 62, 1786–1793. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.A.; Haskell, W.L.; Ades, P.A.; Amsterdam, E.A.; Bittner, V.; Franklin, B.A.; Gulanick, M.; Laing, S.T.; Stewart, K.J. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: A scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2007, 116, 572–584. [Google Scholar] [CrossRef] [PubMed][Green Version]
- American College of Sports Medicine. Position Stand: The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med. Sci. Sports Exerc. 1998, 30, 975–991. [Google Scholar] [CrossRef] [PubMed]
All (Mean ± SD, Min.–Max.) n = 70 | NAG (Mean ± SD, Min.–Max.) n = 35 | AG (Mean ± SD, Min.–Max.) n = 35 | |
---|---|---|---|
Age (years) | 36.6 ± 5.00 (26–46) | 34.42 ± 4.92 (26–44) | 38.77 ± 4.11 (31–46) |
Weight (kg) | 80.00 ± 7.61 (67–99) | 82.02 ± 9.34 (67–99) | 77.97 ± 4.66 (71–91) |
Height (cm) | 178.44 ± 6.75 (163–193) | 177.28 ± 6.39 (163–185) | 179.60 ± 6.43 (170–193) |
TotalFat (%) | 21.87 ± 4.08 (12.8–32.3) | 22.46 ± 4.65 (12.8–32.3) | 21.28 ± 3.39 (13–26) |
Muscle mass (%) | 39.44 ± 2.99 (32,4–45,6) | 38.42 ± 3.29 (32.4–44.6) | 40.45 ± 2.28 (36.4–44.6) |
BMI | 24.92 ± 2.36 (19–33) | 26.05 ± 2.31 (22–33) | 23.80 ± 1.82 (19–28) |
SysBP (mmHg) | 13.92 ± 11.81 (110–156) | 133.31 ± 11.82 (111–156) | 128.54 ± 11.48 (110–152) |
DiastBP (mmHg) | 74.42 ± 5.93 (63–84) | 75.57 ± 6.27 (63–84) | 73.28 ± 5.43 (67–83) |
HR (b/min) | 65.88 ± 6.21 (50–77) | 67.00 ± 6.20 (50–77) | 64.77 ± 6.11 (50–71) |
PWV (m/s) | 6.60 ± 0.40 (5.8–7.3) | 6.69 ± 0.30 (5.9–7.3) | 6.50 ± 0.46 (5.8–7.3) |
Descriptive | |||||
---|---|---|---|---|---|
N | Mean | SD | SE | Coefficient of Variation | |
Weight baseline | 35 | 82.029 | 9.348 | 1.580 | 0.114 |
Weight 6 months | 35 | 82.371 | 7.897 | 1.335 | 0.096 |
Muscle mass baseline | 35 | 38.429 | 3.295 | 0.557 | 0.086 |
Muscle mass 6 months | 35 | 38.734 | 3.241 | 0.548 | 0.084 |
TotalFat baseline | 35 | 22.466 | 4.655 | 0.787 | 0.207 |
TotalFat 6 months | 35 | 21.960 | 4.352 | 0.736 | 0.198 |
SysBP baseline | 35 | 133.314 | 11.822 | 1.998 | 0.089 |
SysBP 6 months | 35 | 133.086 | 11.289 | 1.908 | 0.085 |
DiastBP baseline | 35 | 75.571 | 6.270 | 1.060 | 0.083 |
DiastBP 6 months | 35 | 75.514 | 5.442 | 0.920 | 0.072 |
HR baseline | 35 | 67.000 | 6.202 | 1.048 | 0.093 |
HR 6 months | 35 | 65.486 | 5.501 | 0.930 | 0.084 |
PWV baseline | 35 | 6.697 | 0.303 | 0.051 | 0.045 |
PWV 6 months | 35 | 6.660 | 0.319 | 0.054 | 0.048 |
Measure Baseline | Measure 6 Months | t | df | p |
---|---|---|---|---|
Weight | Weight | −0.564 | 34 | 0.577 |
Muscle mass | Muscle mass | −8.917 | 34 | <0.001 |
TotalFat | TotalFat | 3.246 | 34 | 0.003 |
SysBP | SysBP | 0.397 | 34 | 0.694 |
DiastBP | DiastBP | 0.132 | 34 | 0.896 |
HR | HR | 4.920 | 34 | <0.001 |
PWV | PWV | 2.130 | 34 | 0.040 |
Descriptive | |||||
---|---|---|---|---|---|
N | Mean | SD | SE | Coefficient of Variation | |
Weight baseline | 35 | 77.971 | 4.662 | 0.788 | 0.060 |
Weight 6 months | 35 | 78.057 | 4.291 | 0.725 | 0.055 |
Muscle mass baseline | 35 | 40.454 | 2.286 | 0.386 | 0.057 |
Muscle mass 6 months | 35 | 41.080 | 2.195 | 0.371 | 0.053 |
TotalFat baseline | 35 | 21.286 | 3.392 | 0.573 | 0.159 |
TotalFat 6 months | 35 | 20.206 | 3.344 | 0.565 | 0.165 |
SysBP baseline | 35 | 128.543 | 11.480 | 1.940 | 0.089 |
SysBP 6 months | 35 | 122.914 | 9.559 | 1.616 | 0.078 |
DiastBP baseline | 35 | 73.286 | 5.437 | 0.919 | 0.074 |
DiastBP 6 months | 35 | 68.743 | 4.955 | 0.838 | 0.072 |
HR baseline | 35 | 64.771 | 6.112 | 1.033 | 0.094 |
HR 6 months | 35 | 63.257 | 5.420 | 0.916 | 0.086 |
PWV baseline | 35 | 6.509 | 0.465 | 0.079 | 0.072 |
PWV 6 months | 35 | 6.351 | 0.425 | 0.072 | 0.067 |
Paired Samples t-Test | ||||
---|---|---|---|---|
Measure Baseline | Measure 6 Months | t | df | p |
Weight | Weight | −0.119 | 34 | 0.906 |
Muscle mass | Muscle mass | −12.448 | 34 | <0.001 |
TotalFat | TotalFat | 6.707 | 34 | <0.001 |
SysBP | SysBP | 5.078 | 34 | <0.001 |
DiastBP | DiastBP | 14.034 | 34 | <0.001 |
HR | HR | 5.484 | 34 | <0.001 |
PWV | PWV | 6.644 | 34 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busnatu, Ș.-S.; Andronic, O.; Pană, M.-A.; Stoian, A.P.; Scafa-Udriște, A.; Păun, N.; Stanciu, S. Oral Arginine Supplementation in Healthy Individuals Performing Regular Resistance Training. Healthcare 2023, 11, 182. https://doi.org/10.3390/healthcare11020182
Busnatu Ș-S, Andronic O, Pană M-A, Stoian AP, Scafa-Udriște A, Păun N, Stanciu S. Oral Arginine Supplementation in Healthy Individuals Performing Regular Resistance Training. Healthcare. 2023; 11(2):182. https://doi.org/10.3390/healthcare11020182
Chicago/Turabian StyleBusnatu, Ștefan-Sebastian, Octavian Andronic, Maria-Alexandra Pană, Anca Pantea Stoian, Alexandru Scafa-Udriște, Nicolae Păun, and Silviu Stanciu. 2023. "Oral Arginine Supplementation in Healthy Individuals Performing Regular Resistance Training" Healthcare 11, no. 2: 182. https://doi.org/10.3390/healthcare11020182