Blockchain Revolutionizing in Emergency Medicine: A Scoping Review of Patient Journey through the ED
Abstract
:1. Introduction
2. Background
2.1. Blockchain
2.2. The Structure of a Blockchain
2.3. Layered Architecture of Blockchain
Consensus Algorithm | Strength | Weakness | Ref. |
---|---|---|---|
Proof of Work (PoW) | 1. Well-established 2. Highly secure 3. Decentralized | 1. Highly energy-intensive 2. Slow, requires time 3. Be vulnerable to centralization | [1,7,8,13,19] |
Proof of Stake (PoS) | 1. Less energy-intensive 2. Require less computational power 3. Faster (than PoW) | 1. Less secure 2. Be vulnerable to centralization 3. Not tested in production environments | |
Delegated Proof of Stake (DPoS) | 1. Faster (than PoW, PoS) 2. More scalable 3. More decentralized (than PoW, PoS) | 1. Less secure 2. Requires active voter 3. Limited scalability | |
Proof of Authority (PoA) | 1. Faster processing 2. Lower energy consumption 3. Ideal for private blockchains | 1. Less decentralized, centralized | |
Practical Byzantine Fault Tolerance (PBFT) | 1. High speed and efficiency 2. Suitable for permissioned blockchain 3. Tolerates a certain number of faulty nodes | 1. Less secure 2. Vulnerable to attacks 3. Limited scalability |
2.4. Types of Blockchains
2.5. Blockchain Platform
2.6. The Features of Blockchain
2.7. State-of-the-Art Application and Reviews of Blockchain for Healthcare
2.8. Research Questions
- What is the level of adoption of blockchain in the field of emergency healthcare, and what are the current applications?
- From the perspective of the emergency department journey, what are the trends in the application of blockchain in emergency healthcare?
- What are the specific elements of blockchain technology utilized in publications related to emergency medicine?
3. Methodology
3.1. Research Protocol
3.2. Eligibility Criteria
- (Blockchain OR “block chain”) AND (Emergency medicine OR acute medicine OR acute care OR ED)
- (Blockchain OR “block chain”) AND (pre-hospital)
- (Blockchain OR “block chain”) AND (triage)
- (Blockchain OR “block chain”) AND (inter-hospital transfers OR hospital transfers)
- (Blockchain OR “block chain”) AND (disposition OR discharge disposition OR post discharge)
3.3. Selection of Studies
- Original research studies.
- Publications related to blockchain technology in the acute medical care sector.
- Publications related to blockchain technology are used in the journey of emergency medicine.
- Papers without full-text availability.
- Papers with a focus other than the use of blockchain in the acute medical care sector.
- Duplicate papers.
- Editorials, prefaces, paper summaries, summaries of tutorials, correspondences, discussions, comments, readers’ letters, workshops, panels, and poster sessions in the search results.
4. Results
5. Discussion
5.1. Pre-Hospital
5.2. ED Triage
5.3. Documentation and Data Exchange
5.4. Treatment
5.4.1. Drugs and Medical Devices
5.4.2. Consent
5.5. Disposition
5.6. Home
5.6.1. IOT
5.6.2. AI
5.6.3. Telemedicine
6. Challenges and Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, R.; Arjunaditya; Singh, D.; Srinivasan, K.; Hu, Y.-C. AI-Powered Blockchain Technology for Public Health: A Contemporary Review, Open Challenges, and Future Research Directions. Healthcare 2023, 11, 81. [Google Scholar] [CrossRef]
- Kumar, K.; Kumar, P.; Deb, D.; Unguresan, M.-L.; Muresan, V. Artificial intelligence and machine learning based intervention in medical infrastructure: A review and future trends. Healthcare 2023, 11, 207. [Google Scholar] [PubMed]
- Khanna, D.; Jindal, N.; Singh, H.; Rana, P.S. Applications and Challenges in Healthcare Big Data: A Strategic Review. Curr. Med. Imaging 2023, 19, 27–36. [Google Scholar]
- Abouelmehdi, K.; Beni-Hessane, A.; Khaloufi, H. Big healthcare data: Preserving security and privacy. J. Big Data 2018, 5, 1–18. [Google Scholar]
- Chen, H.S.; Jarrell, J.T.; Carpenter, K.A.; Cohen, D.S.; Huang, X. Blockchain in healthcare: A patient-centered model. Biomed. J. Sci. Tech. Res. 2019, 20, 15017. [Google Scholar]
- The HIPAA Journal. Largest Healthcare Data Breaches of 2018. 2018. Available online: https://www.hipaajournal.com/largest-healthcare-data-breaches-of-2018/ (accessed on 15 June 2023).
- Hasavari, S.; Song, Y.T. A secure and scalable data source for emergency medical care using blockchain technology. In Proceedings of the 2019 IEEE 17th International Conference on Software Engineering Research, Management and Applications (SERA), Honolulu, HI, USA, 29–31 May 2019; pp. 71–75. [Google Scholar]
- Hasselgren, A.; Kralevska, K.; Gligoroski, D.; Pedersen, S.A.; Faxvaag, A. Blockchain in healthcare and health sciences—A scoping review. Int. J. Med. Inform. 2020, 134, 104040. [Google Scholar] [CrossRef]
- Krichen, M.; Ammi, M.; Mihoub, A.; Almutiq, M. Blockchain for Modern Applications: A Survey. Sensors 2022, 22, 5274. [Google Scholar] [CrossRef]
- Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decent. Bus. Rev. 2008. Available online: https://assets.pubpub.org/d8wct41f/31611263538139.pdf (accessed on 15 June 2023).
- Di Francesco Maesa, D.; Mori, P. Blockchain 3.0 applications survey. J. Parallel Distrib. Comput. 2020, 138, 99–114. [Google Scholar] [CrossRef]
- Saranya, R.; Murugan, A. A systematic review of enabling blockchain in healthcare system: Analysis, current status, challenges and future direction. Mater. Today Proc. 2023, 80, 3010–3015. [Google Scholar] [CrossRef]
- Fahim, S.; Rahman, S.K.; Mahmood, S. Blockchain: A Comparative Study of Consensus Algorithms PoW, PoS, PoA, PoV. Int. J. Math. Sci. Comput. 2023, 3, 46–57. [Google Scholar]
- Samanta, S.; Mohanta, B.K.; Patnaik, D.; Patnaik, S. Introduction to Blockchain Evolution, Architecture and Application with Use Cases. In Blockchain Technology and Innovations in Business Processes; Patnaik, S., Wang, T.-S., Shen, T., Panigrahi, S.K., Eds.; Springer: Singapore, 2021; pp. 1–16. [Google Scholar]
- Xu, X.; Weber, I.; Staples, M. Architecture for Blockchain Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Ismail, L.; Materwala, H. A Review of Blockchain Architecture and Consensus Protocols: Use Cases, Challenges, and Solutions. Symmetry 2019, 11, 1198. [Google Scholar]
- Arya, J.; Kumar, A.; Singh, A.P.; Mishra, T.K.; Chong, P.H. Blockchain: Basics, Applications, Challenges and Opportunities. 2021. Available online: https://www.researchgate.net/profile/Akhilendra-Singh-4/publication/348307266_BLOCKCHAIN_BASICS_APPLICATIONS_CHALLENGES_AND_OPPORTUNITIES/links/5ff72e4992851c13fef7b8d6/BLOCKCHAIN-BASICS-APPLICATIONS-CHALLENGES-AND-OPPORTUNITIES.pdf (accessed on 15 June 2023).
- Lahamage, P.; Borhade, S.; Kasar, R.; Rao, P.; Vikhe, M.P. High Dimensional Health Care Privacy Approach using Blockchain Technology for Emergency Medicine Tracking System. New Arch.-Int. J. Contemp. Archit. 2021, 8, 1067–1076. [Google Scholar]
- Azbeg, K.; Ouchetto, O.; Andaloussi, S.J. BlockMedCare: A healthcare system based on IoT, Blockchain and IPFS for data management security. Egypt. Inform. J. 2022, 23, 329–343. [Google Scholar] [CrossRef]
- Buterin, V. A next-generation smart contract and decentralized application platform. White Pap. 2014, 3, 1–36. [Google Scholar]
- Zhu, C.; Li, J.; Zhong, Z.; Yue, C.; Zhang, M. A Survey on the Integration of Blockchains and Databases. Data Sci. Eng. 2023, 8, 196–219. [Google Scholar] [CrossRef]
- Azaria, A.; Ekblaw, A.; Vieira, T.; Lippman, A. Medrec: Using blockchain for medical data access and permission management. In Proceedings of the 2016 2nd International Conference on Open and Big Data (OBD), Vienna, Austria, 22–24 August 2016; pp. 25–30. [Google Scholar]
- Kuo, T.-T.; Ohno-Machado, L. Modelchain: Decentralized privacy-preserving healthcare predictive modeling framework on private blockchain networks. arXiv 2018, arXiv:1802.01746. [Google Scholar]
- Kuo, T.-T.; Zavaleta Rojas, H.; Ohno-Machado, L. Comparison of blockchain platforms: A systematic review and healthcare examples. J. Am. Med. Inform. Assoc. 2019, 26, 462–478. [Google Scholar]
- Farouk, A.; Alahmadi, A.; Ghose, S.; Mashatan, A. Blockchain platform for industrial healthcare: Vision and future opportunities. Comput. Commun. 2020, 154, 223–235. [Google Scholar] [CrossRef]
- Hölbl, M.; Kompara, M.; Kamišalić, A.; Nemec Zlatolas, L. A systematic review of the use of blockchain in healthcare. Symmetry 2018, 10, 470. [Google Scholar] [CrossRef]
- Agbo, C.C.; Mahmoud, Q.H.; Eklund, J.M. Blockchain technology in healthcare: A systematic review. Healthcare 2019, 7, 56. [Google Scholar] [CrossRef]
- Alzoubi, Y.I.; Gill, A.; Mishra, A. A systematic review of the purposes of Blockchain and fog computing integration: Classification and open issues. J. Cloud Comput. 2022, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Almalki, J. State-of-the-Art Research in Blockchain of Things for HealthCare. Arab. J. Sci. Eng. 2023, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Sivasankari, B.; Varalakshmi, P. Blockchain and IoT Technology in Healthcare: A Review. Stud. Health Technol. Inf. 2022, 294, 277–278. [Google Scholar] [CrossRef]
- Durneva, P.; Cousins, K.; Chen, M. The Current State of Research, Challenges, and Future Research Directions of Blockchain Technology in Patient Care: Systematic Review. J. Med. Internet Res. 2020, 22, e18619. [Google Scholar] [CrossRef]
- Mayer, A.H.; da Costa, C.A.; Righi, R.D.R. Electronic health records in a Blockchain: A systematic review. Health Inform. J 2020, 26, 1273–1288. [Google Scholar] [CrossRef]
- Fang, H.S.A.; Tan, T.H.; Tan, Y.F.C.; Tan, C.J.M. Blockchain Personal Health Records: Systematic Review. J. Med. Internet Res. 2021, 23, e25094. [Google Scholar] [CrossRef]
- Schmeelk, S.; Kanabar, M.; Peterson, K.; Pathak, J. Electronic health records and blockchain interoperability requirements: A scoping review. JAMIA Open 2022, 5, ooac068. [Google Scholar] [CrossRef]
- Mokhamed, T.; Talib, M.A.; Moufti, M.A.; Abbas, S.; Khan, F. The Potential of Blockchain Technology in Dental Healthcare: A Literature Review. Sensors 2023, 23, 3277. [Google Scholar] [CrossRef]
- Dubovitskaya, A.; Novotny, P.; Xu, Z.; Wang, F. Applications of Blockchain Technology for Data-Sharing in Oncology: Results from a Systematic Literature Review. Oncology 2020, 98, 403–411. [Google Scholar] [CrossRef]
- Thomson, C.; Beale, R. Is blockchain ready for orthopaedics? A systematic review. J. Clin. Orthop. Trauma 2021, 23, 101615. [Google Scholar] [CrossRef]
- Tagliafico, A.S.; Campi, C.; Bianca, B.; Bortolotto, C.; Buccicardi, D.; Francesca, C.; Prost, R.; Rengo, M.; Faggioni, L. Blockchain in radiology research and clinical practice: Current trends and future directions. Radiol. Med. 2022, 127, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Hort, J.; Vališ, M.; Zhang, B.; Kuča, K.; Angelucci, F. An overview of existing publications and most relevant projects/platforms on the use of blockchain in medicine and neurology. Front. Blockchain 2021, 4, 580227. [Google Scholar] [CrossRef]
- Khezr, S.; Moniruzzaman, M.; Yassine, A.; Benlamri, R. Blockchain technology in healthcare: A comprehensive review and directions for future research. Appl. Sci. 2019, 9, 1736. [Google Scholar] [CrossRef]
- McGhin, T.; Choo, K.-K.R.; Liu, C.Z.; He, D. Blockchain in healthcare applications: Research challenges and opportunities. J. Netw. Comput. Appl. 2019, 135, 62–75. [Google Scholar] [CrossRef]
- Zubaydi, H.D.; Chong, Y.-W.; Ko, K.; Hanshi, S.M.; Karuppayah, S. A Review on the Role of Blockchain Technology in the Healthcare Domain. Electronics 2019, 8, 679. [Google Scholar] [CrossRef]
- O’Donoghue, O.; Vazirani, A.A.; Brindley, D.; Meinert, E. Design Choices and Trade-Offs in Health Care Blockchain Implementations: Systematic Review. J. Med. Internet Res. 2019, 21, e12426. [Google Scholar] [CrossRef]
- Tandon, A.; Dhir, A.; Islam, A.K.M.N.; Mäntymäki, M. Blockchain in healthcare: A systematic literature review, synthesizing framework and future research agenda. Comput. Ind. 2020, 122, 103290. [Google Scholar] [CrossRef]
- Abu-Elezz, I.; Hassan, A.; Nazeemudeen, A.; Househ, M.; Abd-Alrazaq, A. The benefits and threats of blockchain technology in healthcare: A scoping review. Int. J. Med. Inf. 2020, 142, 104246. [Google Scholar] [CrossRef]
- Ng, W.Y.; Tan, T.-E.; Movva, P.V.H.; Fang, A.H.S.; Yeo, K.-K.; Ho, D.; Foo, F.S.S.; Xiao, Z.; Sun, K.; Wong, T.Y.; et al. Blockchain applications in health care for COVID-19 and beyond: A systematic review. Lancet Digit. Health 2021, 3, e819–e829. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Wang, H.; Liu, P.; Liu, S.; Huo, T.; Duan, Y.-Y.; Dong, Z.; Lu, L.; Ye, Z. Applications of Blockchain in the Medical Field: Narrative Review. J. Med. Internet Res. 2021, 23, e28613. [Google Scholar] [CrossRef]
- Ahmad, R.W.; Salah, K.; Jayaraman, R.; Yaqoob, I.; Ellahham, S.; Omar, M. The role of blockchain technology in telehealth and telemedicine. Int. J. Med. Inf. 2021, 148, 104399. [Google Scholar] [CrossRef] [PubMed]
- Ali Abdu, N.A.; Wang, Z. Blockchain for Healthcare Sector-Analytical Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1110, 012001. [Google Scholar] [CrossRef]
- Anik, F.I.; Sakib, N.; Shahriar, H.; Xie, Y.; Nahiyan, H.A.; Ahamed, S.I. Unraveling a blockchain-based framework towards patient empowerment: A scoping review envisioning future smart health technologies. Smart Health 2023, 29, 100401. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Chakraborty, A.; Hasan, M.; Rashid, K.; Siddique, A.H. Blockchain Application in Healthcare Systems: A Review. Systems 2023, 11, 38. [Google Scholar] [CrossRef]
- Hiwale, M.; Walambe, R.; Potdar, V.; Kotecha, K. A systematic review of privacy-preserving methods deployed with blockchain and federated learning for the telemedicine. Healthc. Anal. 2023, 3, 100192. [Google Scholar] [CrossRef] [PubMed]
- Hussien, H.M.; Yasin, S.M.; Udzir, S.N.I.; Zaidan, A.A.; Zaidan, B.B. A Systematic Review for Enabling of Develop a Blockchain Technology in Healthcare Application: Taxonomy, Substantially Analysis, Motivations, Challenges, Recommendations and Future Direction. J. Med. Syst. 2019, 43, 320. [Google Scholar] [CrossRef]
- Zubaydi, H.D.; Varga, P.; Molnár, S. Leveraging Blockchain Technology for Ensuring Security and Privacy Aspects in Internet of Things: A Systematic Literature Review. Sensors 2023, 23, 788. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Lo, Y.S.; Yang, C.Y.; Chien, H.F.; Chang, S.S.; Lu, C.Y.; Chen, R.J. Blockchain-Enabled iWellChain Framework Integration With the National Medical Referral System: Development and Usability Study. J. Med. Internet Res. 2019, 21, e13563. [Google Scholar] [CrossRef]
- Aggarwal, S.; Kumar, N.; Alhussein, M.; Muhammad, G. Blockchain-Based UAV Path Planning for Healthcare 4.0: Current Challenges and the Way Ahead. IEEE Netw. 2021, 35, 20–29. [Google Scholar] [CrossRef]
- Xing, R.; Su, Z.; Luan, T.H.; Xu, Q.; Wang, Y.; Li, R. UAVs-Aided Delay-Tolerant Blockchain Secure Offline Transactions in Post-Disaster Vehicular Networks. IEEE Trans. Veh. Technol. 2022, 71, 12030–12043. [Google Scholar] [CrossRef]
- Bhawana; Kumar, S.; Rathore, R.S.; Mahmud, M.; Kaiwartya, O.; Lloret, J. BES—Blockchain-Enabled Secure and Trusted Public Emergency Services for Smart Cities Environment. Sensors 2022, 22, 5733. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, W.; Shi, Y.; Lv, D.; Yang, Z. Reliable and efficient emergency rescue networks: A blockchain and fireworks algorithm-based approach. Comput. Commun. 2023, 206, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Ksibi, A.; Mhamdi, H.; Ayadi, M.; Almuqren, L.; Alqahtani, M.S.; Ansari, M.D.; Sharma, A.; Hedi, S. Secure and Fast Emergency Road Healthcare Service Based on Blockchain Technology for Smart Cities. Sustainability 2023, 15, 5748. [Google Scholar] [CrossRef]
- Hawig, D.; Zhou, C.; Fuhrhop, S.; Fialho, A.S.; Ramachandran, N. Designing a Distributed Ledger Technology System for Interoperable and General Data Protection Regulation-Compliant Health Data Exchange: A Use Case in Blood Glucose Data. J. Med. Internet Res. 2019, 21, e13665. [Google Scholar] [CrossRef]
- Tith, D.; Lee, J.S.; Suzuki, H.; Wijesundara, W.; Taira, N.; Obi, T.; Ohyama, N. Application of Blockchain to Maintaining Patient Records in Electronic Health Record for Enhanced Privacy, Scalability, and Availability. Healthc. Inf. Res. 2020, 26, 3–12. [Google Scholar] [CrossRef]
- Fatoum, H.A.; Kuzmeskas, K.; Halamka, J.D.; Hashmi, S.K. Harnessing the Power of Blockchains and Machine Learning to End the COVID-19 Pandemic. Blockchain Healthc. Today 2020, 3. [Google Scholar] [CrossRef]
- Dubovitskaya, A.; Baig, F.; Xu, Z.; Shukla, R.; Zambani, P.S.; Swaminathan, A.; Jahangir, M.M.; Chowdhry, K.; Lachhani, R.; Idnani, N.; et al. ACTION-EHR: Patient-Centric Blockchain-Based Electronic Health Record Data Management for Cancer Care. J. Med. Internet Res. 2020, 22, e13598. [Google Scholar] [CrossRef]
- Abdellatif, A.A.; Samara, L.; Mohamed, A.; Erbad, A.; Chiasserini, C.F.; Guizani, M.; O’Connor, M.D.; Laughton, J. MEdge-Chain: Leveraging Edge Computing and Blockchain for Efficient Medical Data Exchange. IEEE Internet Things J. 2021, 8, 15762–15775. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Kwon, H.; Kim, E. Design and Implementation of a Personal Health Record Platform Based on Patient-consent Blockchain Technology. Ksii Trans. Internet Inf. Syst. 2021, 15, 4400–4419. [Google Scholar] [CrossRef]
- Tseng, C.H.; Chen, R.J.; Tsai, S.Y.; Wu, T.R.; Tsaur, W.J.; Chiu, H.W.; Yang, C.Y.; Lo, Y.S. Exploring the COVID-19 Pandemic as a Catalyst for Behavior Change Among Patient Health Record App Users in Taiwan: Development and Usability Study. J. Med. Internet Res. 2022, 24, e33399. [Google Scholar] [CrossRef] [PubMed]
- Batchu, S.; Patel, K.; Henry, O.S.; Mohamed, A.; Agarwal, A.A.; Hundal, H.; Joshi, A.; Thoota, S.; Patel, U.K. Using Ethereum Smart Contracts to Store and Share COVID-19 Patient Data. Cureus 2022, 14, e21378. [Google Scholar] [CrossRef] [PubMed]
- George, M.; Chacko, A.M. MediTrans-Patient-centric interoperability through blockchain. Int. J. Netw. Manag. 2022, 32, e2187. [Google Scholar] [CrossRef]
- Alkatheiri, M.S.; Alghamdi, A.S. Blockchain-Assisted Cybersecurity for the Internet of Medical Things in the Healthcare Industry. Electronics 2023, 12, 1801. [Google Scholar] [CrossRef]
- Bhan, R.; Pamula, R.; Faruki, P.; Gajrani, J. Blockchain-enabled secure and efficient data sharing scheme for trust management in healthcare smartphone network. J Supercomput. 2023, 79, 16233–16274. [Google Scholar] [CrossRef]
- Ramirez Lopez, L.J.; Cárdenas Babativa, J.M.; Rojas Reales, W.M. Blockchain apply to the supply chain of essential medicines for the treatment of COVID-19 in Colombia. Inf. Med. Unlocked 2022, 33, 101100. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, H.; Yan, H.B.; Wang, H.W.; Shi, Y.J.; Gao, F.; Wen, Q.Y. A Secure Online Treatment Blockchain Service. Wirel. Pers. Commun. 2021, 117, 1773–1795. [Google Scholar] [CrossRef]
- Bhaskar, S.; Tan, J.; Bogers, M.; Minssen, T.; Badaruddin, H.; Israeli-Korn, S.; Chesbrough, H. At the Epicenter of COVID-19-the Tragic Failure of the Global Supply Chain for Medical Supplies. Front. Public Health 2020, 8, 9. [Google Scholar] [CrossRef]
- Li, H.; Li, J.; Su, P.; Zhang, J.; Ma, D. A Clinical Study on the Brain Protection Effect of Propofol Anesthesia on Patients Undergoing Acute Craniocerebral Trauma Surgery Based on Blockchain. J. Healthc. Eng. 2022, 2022, 6111543. [Google Scholar] [CrossRef]
- Yang, Y.; Song, A.; Chang, Q.; Zhao, H.; Kong, W.; Xue, Q.; Xue, Q. Improving the Use of Blockchain Technology in Stroke Care Information Management Systems. Comput. Math. Methods Med. 2022, 2022, 2642841. [Google Scholar] [CrossRef]
- Heidari, A.; Toumaj, S.; Navimipour, N.J.; Unal, M. A privacy-aware method for COVID-19 detection in chest CT images using lightweight deep conventional neural network and blockchain. Comput. Biol. Med. 2022, 145, 105461. [Google Scholar] [CrossRef]
- Mani, V.; Ghonge, M.M.; Chaitanya, N.K.; Pal, O.; Sharma, M.; Mohan, S.; Ahmadian, A. A new blockchain and fog computing model for blood pressure medical sensor data storage. Comput. Electr. Eng. 2022, 102, 108202. [Google Scholar] [CrossRef]
- Nanda, S.K.; Panda, S.K.; Dash, M. Medical supply chain integrated with blockchain and IoT to track the logistics of medical products. Multimed. Tools Appl. 2023, 82, 32917–32939. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-A.; Kung, H.-H.; Lee, Y.-J.; Chao, J.C.J.; Udayasankaran, J.G.; Fan, H.-C.; Ng, K.-K.; Chang, Y.-K.; Kijsanayotin, B.; Marcelo, A.B.; et al. Global Infectious Disease Surveillance and Case Tracking System for COVID-19: Development Study. JMIR Med. Inf. 2020, 8, e20567. [Google Scholar] [CrossRef] [PubMed]
- Shin, Y.; Kim, S.; Chung, J.M.; Chung, H.S.; Han, S.G.; Cho, J. Emergency Department Return Prediction System Using Blood Samples With LightGBM for Smart Health Care Services. IEEE Consum. Electron. Mag. 2021, 10, 42–48. [Google Scholar] [CrossRef]
- Vangipuram, S.L.T.; Mohanty, S.P.; Kougianos, E. CoviChain: A Blockchain Based Framework for Nonrepudiable Contact Tracing in Healthcare Cyber-Physical Systems During Pandemic Outbreaks. SN Comput. Sci. 2021, 2, 346. [Google Scholar] [CrossRef]
- Mehbodniya, A.; Neware, R.; Vyas, S.; Kumar, M.R.; Ngulube, P.; Ray, S. Blockchain and IPFS Integrated Framework in Bilevel Fog-Cloud Network for Security and Privacy of IoMT Devices. Comput. Math. Methods Med. 2021, 2021, 7727685. [Google Scholar] [CrossRef]
- Elhoseny, M.; Haseeb, K.; Shah, A.A.; Ahmad, I.; Jan, Z.; Alghamdi, M.I. IoT Solution for AI-Enabled PRIVACY-PREServing with Big Data Transferring: An Application for Healthcare Using Blockchain. Energies 2021, 14, 5364. [Google Scholar] [CrossRef]
- Sim, S.H.; Jeong, Y.S. Multi-Blockchain-Based IoT Data Processing Techniques to Ensure the Integrity of IoT Data in AIoT Edge Computing Environments. Sensors 2021, 21, 3515. [Google Scholar] [CrossRef]
- Funk, E.; Riddell, J.; Ankel, F.; Cabrera, D. Blockchain Technology: A Data Framework to Improve Validity, Trust, and Accountability of Information Exchange in Health Professions Education. Acad. Med. 2018, 93, 1791–1794. [Google Scholar] [CrossRef]
- Osipenko, L. Blockchain’s potential to improve clinical trials—An essay by Leeza Osipenko. BMJ Br. Med. J. 2019, 367, l5561. [Google Scholar] [CrossRef] [PubMed]
- Aringhieri, R.; Bruni, M.E.; Khodaparasti, S.; van Essen, J.T. Emergency medical services and beyond: Addressing new challenges through a wide literature review. Comput. Oper. Res. 2017, 78, 349–368. [Google Scholar] [CrossRef]
- Yu, S.H.; Shih, H.M.; Chang, S.S.; Chen, W.K.; Li, C.Y. Social media communication shorten door-to-balloon time in patients with ST-elevation myocardial infarction. Medicine 2019, 98, e14791. [Google Scholar] [CrossRef]
- Scholz, M.L.; Collatz-Christensen, H.; Blomberg, S.N.F.; Boebel, S.; Verhoeven, J.; Krafft, T. Artificial intelligence in Emergency Medical Services dispatching: Assessing the potential impact of an automatic speech recognition software on stroke detection taking the Capital Region of Denmark as case in point. Scand. J. Trauma Resusc. Emerg. Med. 2022, 30, 36. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, S.N.; Folke, F.; Ersbøll, A.K.; Christensen, H.C.; Torp-Pedersen, C.; Sayre, M.R.; Counts, C.R.; Lippert, F.K. Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation 2019, 138, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.-W.; Fu, W.-J.; Feng, R.; Ni, H.-T.; Cao, Y.; Ye, C.-J.; Gu, Y.; Ge, X.-L.; Zhang, F.; Jiang, L.-Q. Newborn emergency transport based on the fifth-generation wireless networks and blockchain. World J. Pediatr. 2022, 18, 520–524. [Google Scholar] [CrossRef]
- Assareh, H.; Achat, H.M.; Levesque, J.-F. Accuracy of inter-hospital transfer information in Australian hospital administrative databases. Health Inform. J. 2017, 25, 960–972. [Google Scholar] [CrossRef]
- Leigh, R.W.; Jonathan, C.; Sonal, A.; Ara, D. Improving data sharing between acute hospitals in England: An overview of health record system distribution and retrospective observational analysis of inter-hospital transitions of care. BMJ Open 2019, 9, e031637. [Google Scholar] [CrossRef]
- Wang, J.-Y.; Ho, H.-Y.; Chen, J.-D.; Chai, S.; Tai, C.-J.; Chen, Y.-F. Attitudes toward inter-hospital electronic patient record exchange: Discrepancies among physicians, medical record staff, and patients. BMC Health Serv. Res. 2015, 15, 264. [Google Scholar] [CrossRef]
- Gerard, F.; George, A.J.; Deborah, S.; Marie Frances, G. Emergency department triage revisited. Emerg. Med. J. 2010, 27, 86. [Google Scholar] [CrossRef]
- Lai, L.; Wittbold, K.A.; Dadabhoy, F.Z.; Sato, R.; Landman, A.B.; Schwamm, L.H.; He, S.H.; Patel, R.; Wei, N.; Zuccotti, G.; et al. Digital triage: Novel strategies for population health management in response to the COVID-19 pandemic. Healthc.-J. Deliv. Sci. Innov. 2020, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Chong, H.A.; Gan, K.B. Development of automated triage system for emergency medical service. In Proceedings of the 2016 International Conference on Advances in Electrical, Electronic and Systems Engineering (ICAEES), Putrajaya, Malaysia, 14–16 November 2016; pp. 642–645. [Google Scholar]
- Fernandes, M.; Vieira, S.M.; Leite, F.; Palos, C.; Finkelstein, S.; Sousa, J.M.C. Clinical Decision Support Systems for Triage in the Emergency Department using Intelligent Systems: A Review. Artif. Intell. Med. 2020, 102, 101762. [Google Scholar] [CrossRef] [PubMed]
- Kockx, A. Development and Evaluation of a Diagnosis and Triage Healthcare Chatbot. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2021. [Google Scholar]
- Farahmand, S.; Shabestari, O.; Pakrah, M.; Hossein-Nejad, H.; Arbab, M.; Bagheri-Hariri, S. Artificial Intelligence-Based Triage for Patients with Acute Abdominal Pain in Emergency Department; a Diagnostic Accuracy Study. Adv. J. Emerg. Med. 2017, 1, e5. [Google Scholar] [CrossRef]
- McBee, M.P.; Wilcox, C. Blockchain Technology: Principles and Applications in Medical Imaging. J. Digit. Imaging 2020, 33, 726–734. [Google Scholar] [CrossRef]
- Crampton, N.H. Ambient virtual scribes: Mutuo Health’s AutoScribe as a case study of artificial intelligence-based technology. Healthc. Manag. Forum 2020, 33, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Siyal, A.A.; Junejo, A.Z.; Zawish, M.; Ahmed, K.; Khalil, A.; Soursou, G. Applications of Blockchain Technology in Medicine and Healthcare: Challenges and Future Perspectives. Cryptography 2019, 3, 3. [Google Scholar] [CrossRef]
- Reegu, F.A.; Daud, S.M.; Alam, S.; Shuaib, M. Blockchain-Based Electronic Health Record System for Efficient COVID-19 Pandemic Management. 2021. Available online: https://d1wqtxts1xzle7.cloudfront.net/67322950/19_preprints202104.0771.v1_2_-libre.pdf?1621013130=&response-content-disposition=inline%3B+filename%3DBlockchain_based_Electronic_Health_Recor.pdf&Expires=1694058185&Signature=Dlebr0jDrejzD4XdpEbTfcYqskYATdaPNGg7isSnxSKPzJtfRqyVfHghZFKpe8gbZVVrBH9GiSAcuCHr0VGOdqeL6Eyny22YIqnkfpvusfbgNyQkuOjmDBbGJ7k-26~wMnc4vGkPxZ5yXC3YeF707YDCxijXlNSfgmDa~Z86MiTCqTIsI6ouDpXv8pvv3hnkFON0ZOEV5haYNe36BTpKjPkBARcXnaNJcEhcbuG7KFsSPuSOG8NLJpHQcNCwbW9ajT8pdOVYFuviRo5H9s~C8p2ZkEWUDZAkqOL4nCHkDYRePgQwBIc3CQXLXZ-Sc549DbjdIsFnulRpYU44QxF0yw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 15 June 2023).
- Son, H.X.; Le, T.H.; Quynh, N.T.T.; Huy, H.N.D.; Duong-Trung, N.; Luong, H.H. Toward a blockchain-based technology in dealing with emergencies in patient-centered healthcare systems. In Proceedings of the Mobile, Secure, and Programmable Networking: 6th International Conference, MSPN 2020, Paris, France, 28–29 October 2020; Revised Selected Papers 6, 2021. pp. 44–56. [Google Scholar]
- Oueida, S.; Kotb, Y. A Petrinet-Based Framework for Healthcare Blockchain Systems. In Proceedings of the Future Technologies Conference (FTC) 2021, Vancouver, BC, Canada, 28–29 October 2021; Springer: Cham, Switzerland, 2022; Volume 2, pp. 573–587. [Google Scholar]
- Kim, J.W.; Ryu, B.; Cho, S.; Heo, E.; Kim, Y.; Lee, J.; Jung, S.Y.; Yoo, S. Impact of Personal Health Records and Wearables on Health Outcomes and Patient Response: Three-Arm Randomized Controlled Trial. JMIR Mhealth Uhealth 2019, 7, e12070. [Google Scholar] [CrossRef]
- Abbas, K.; Afaq, M.; Ahmed Khan, T.; Song, W.-C. A blockchain and machine learning-based drug supply chain management and recommendation system for smart pharmaceutical industry. Electronics 2020, 9, 852. [Google Scholar] [CrossRef]
- Jamil, F.; Hang, L.; Kim, K.; Kim, D. A Novel Medical Blockchain Model for Drug Supply Chain Integrity Management in a Smart Hospital. Electronics 2019, 8, 505. [Google Scholar] [CrossRef]
- Bocek, T.; Rodrigues, B.B.; Strasser, T.; Stiller, B. Blockchains everywhere-a use-case of blockchains in the pharma supply-chain. In Proceedings of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM), Lisbon, Portugal, 8–12 May 2017; pp. 772–777. [Google Scholar]
- Pane, J.; Verhamme, K.M.C.; Shrum, L.; Rebollo, I.; Sturkenboom, M. Blockchain technology applications to postmarket surveillance of medical devices. Expert Rev. Med. Devices 2020, 17, 1123–1132. [Google Scholar] [CrossRef]
- Zhao, Y. Design of Optimal Scheduling Model for Emergency Medical Supplies by Blockchain Technology. J. Healthc. Eng. 2022, 2022, 4608761. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Fu, X. Research on Medical Equipment Supply Chain Management Method Based on Blockchain Technology. In Proceedings of the 2020 International Conference on Service Science (ICSS), Xining, China, 24–26 August 2020; pp. 143–148. [Google Scholar]
- Zhang, P.; White, J.; Schmidt, D.C.; Lenz, G.; Rosenbloom, S.T. FHIRChain: Applying Blockchain to Securely and Scalably Share Clinical Data. Comput. Struct. Biotechnol. J. 2018, 16, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Prokofieva, M.; Miah, S.J. Blockchain in healthcare. Australas. J. Inf. Syst. 2019, 23. [Google Scholar] [CrossRef]
- Kakarlapudi, P.V.; Mahmoud, Q.H. A Systematic Review of Blockchain for Consent Management. Healthcare 2021, 9, 137. [Google Scholar] [CrossRef]
- Saldamli, G.; Reddy, V.; Bojja, K.S.; Gururaja, M.K.; Doddaveerappa, Y.; Tawalbeh, L. Health Care Insurance Fraud Detection Using Blockchain. In Proceedings of the 2020 Seventh International Conference on Software Defined Systems (SDS), Paris, France, 20–23 April 2020; pp. 145–152. [Google Scholar]
- Hernández, C.; Aibar, J.; Seijas, N.; Puig, I.; Alonso, A.; Garcia-Aymerich, J.; Roca, J. Implementation of Home Hospitalization and Early Discharge as an Integrated Care Service: A Ten Years Pragmatic Assessment. Int. J. Integr. Care 2018, 18, 12. [Google Scholar] [CrossRef]
- Ray, P.P.; Dash, D.; Salah, K.; Kumar, N. Blockchain for IoT-Based Healthcare: Background, Consensus, Platforms, and Use Cases. IEEE Syst. J. 2021, 15, 85–94. [Google Scholar] [CrossRef]
- Simić, M.; Sladić, G.; Milosavljević, B. A case study IoT and blockchain powered healthcare. In Proceedings of the ICET International Conference on Engineering and Technology, Novi Sad, Serbia, 8–10 June 2017; pp. 1–4. [Google Scholar]
- Shuaib, K.; Saleous, H.; Shuaib, K.; Zaki, N. Blockchains for Secure Digitized Medicine. J. Pers. Med. 2019, 9, 35. [Google Scholar] [CrossRef]
- Hussien, H.M.; Yasin, S.M.; Udzir, N.I.; Ninggal, M.I.H.; Salman, S. Blockchain technology in the healthcare industry: Trends and opportunities. J. Ind. Inf. Integr. 2021, 22, 100217. [Google Scholar] [CrossRef]
- Baker, S.; Xiang, W. Artificial Intelligence of Things for Smarter Healthcare: A Survey of Advancements, Challenges, and Opportunities. IEEE Commun. Surv. Tutor. 2023, 25, 1261–1293. [Google Scholar] [CrossRef]
- Pise, A.A.; Almusaini, K.K.; Ahanger, T.A.; Farouk, A.; Pareek, P.K.; Nuagah, S.J. Enabling artificial intelligence of things (AIoT) healthcare architectures and listing security issues. Comput. Intell. Neurosci. 2022, 2022, 8421434. [Google Scholar] [CrossRef]
- Eustache, J.; El-Kefraoui, C.; Ekmekjian, T.; Latimer, E.; Lee, L. Do postoperative telemedicine interventions with a communication feature reduce emergency department visits and readmissions?—A systematic review and meta-analysis. Surg. Endosc. 2021, 35, 5889–5904. [Google Scholar] [CrossRef] [PubMed]
- Abugabah, A.; Nizamuddin, N.; Alzubi, A.A. Decentralized telemedicine framework for a smart healthcare ecosystem. IEEE Access 2020, 8, 166575–166588. [Google Scholar] [CrossRef]
- Sayeed, S.; Marco-Gisbert, H. Assessing Blockchain Consensus and Security Mechanisms against the 51% Attack. Appl. Sci. 2019, 9, 1788. [Google Scholar] [CrossRef]
Platform | Strength | Weakness | Ref. |
---|---|---|---|
Hyperledger | 1. Permissioned blockchain platform 2. Supports smart contracts 3. Highly scalable | 1. Less decentralized 2. Still being developed, smaller developer community 3. Complex to set up | [1,7,23,24,25,27] |
Ethereum | 1. Well-established 2. Supports smart contracts 3. Supports dApps 4. Highly decentralized | 1. Highly energy-intensive 2. Slow 3. Less scalable 4. High cost | |
MedRec | 1. Permissioned blockchain 2. Interoperability 3. Secure and decentralized platform for storing and sharing medical records | 1. Limited scalability 2. Compatibility 3. Challenges related to regulatory compliance 4. Data standardization | |
MultiChain | 1. Flexible 2. Customizable platform | 1. Smaller developer community 2. High technical expertise to set up and maintain |
Study | Year | Review Type | Context |
---|---|---|---|
[26] | 2018 | Systematic Review | Analysis of state-of-the-art blockchain research in the field of healthcare. |
[27] | 2019 | Systematic Review | Showcased the ongoing research into the application of blockchain technology in the healthcare sector. |
[40] | 2019 | Comprehensive Review | Conducting a review to analyze and map the research landscape of blockchain technologies, particularly their applications in healthcare. |
[41] | 2019 | Review | Presented the applications and challenges of blockchain technology faced by the healthcare industry. |
[42] | 2019 | Review | Examine the concept of blockchain technology and the challenges associated with its adoption, and a review of the recent implementations. |
[24] | 2019 | Systematic Review | Introduce healthcare and biomedical blockchain applications along with their underlying platforms and compare popular platforms. |
[43] | 2019 | Systematic Review | Focus on blockchain-based electronic medical record systems. |
[44] | 2020 | Systematic Literature Review | Current implications for the use of blockchain technology for improving healthcare processes. |
[8] | 2020 | Scoping Review | Provided a review of the utilization and proposal of blockchain to enhance processes and services within the healthcare sector. |
[31] | 2020 | Systematic Review | Evaluate blockchain technology research for patient care and propose a research agenda. |
[32] | 2020 | Systematic Review | Blockchain technology in electronic health records. |
[45] | 2020 | Scoping Review | Examine and classify the advantages and risks associated with implementing blockchain technology in healthcare systems. |
[36] | 2020 | Systematic Literature Review | Examine the motivations, advantages, limitations, and future challenges of implementing advanced distributed ledger technology in the field of oncology. |
[33] | 2021 | Systematic Review | Blockchain Personal Health Records |
[46] | 2021 | Systematic Review | The potential of blockchain technology in healthcare applications, including those related to COVID-19 and non-COVID-19 contexts. |
[37] | 2021 | Systematic Review | Blockchain technology in orthopedic healthcare. |
[47] | 2021 | Narrative Review | Summarizing current and future uses of blockchain in healthcare and upcoming research directions. |
[48] | 2021 | Review | Illustrate cases showcasing the practical application of blockchain technology in the domain of telehealth and telemedicine and delve into the associated challenges. |
[49] | 2021 | Analytical Review | To comprehend the full range of blockchain implementations and explore the potential of blockchain solutions in healthcare. |
[39] | 2021 | Review | Blockchain technology in medicine and neurology. |
[34] | 2022 | Scoping Review | Highlight the potential and obstacles of incorporating blockchain technology into EHR systems. |
[38] | 2022 | Review | Blockchain technology in radiology research and clinical practice. |
[50] | 2023 | Scoping Review | Explores the benefits, challenges, and patient empowerment gaps in integrating blockchain technology within the existing healthcare landscape, particularly in the patient-centric blockchain-based framework of the EHR paradigm. |
[51] | 2023 | Review | Examine the significance and constraints associated with the utilization of blockchain technologies for enhancing healthcare operations. |
[52] | 2023 | Systematic Review | Concentrate on privacy-enhancing techniques utilizing blockchain and federated learning in telemedicine. |
[53] | 2023 | Systematic Review | Summarizing existing studies on blockchain adoption in healthcare. |
[35] | 2023 | Literature Review | Blockchain technology in dental healthcare. |
[54] | 2023 | Systematic Literature Review | Approaches involving the integration of blockchain and IoT are specifically aimed at addressing certain security and privacy-related issues. |
Id, (Year), Reference | Journey of ED | Technic or Application | Main Challenge/Limitation | Consensus Algorithm/Smart Contracts | Types of Blockchains | Blockchain Platform |
---|---|---|---|---|---|---|
1. (2019) [56] | Pre-hospital (referral) | EMR, EHR (medical referral service) | Scalability | Proof of Authority (PoA) and PoET/Yes | Consortium blockchain | Go Ethereum |
2. (2021) [57] | Pre-hospital | UAV | Privacy, scalability, security/cost, and capacity | PoW/Yes | Public blockchain | Ethereum |
3. (2022) [58] | Pre-hospital | UAV | Security and effectiveness | Not defined/hashed time locked contract | Not defined | Not defined |
4. (2022) [59] | Pre-hospital | IoT | Trust and transparency | Not defined/Yes | Private blockchain | Hyperledger Fabric |
5. (2023) [60] | Pre-hospital | Dispatch of emergency materials | Automated, reinforcement learning | PoS, DPos, authorization proof, PBFT/Yes | Public, consortium, and private blockchain | Hyperledger Fabric |
6. (2023) [61] | Pre-hospital | Internet of Vehicles (IoV) and IoMT | Data storage, confidentiality, and security | PoW/Yes | Public and consortium | Ethereum |
7. (2019) [62] | Documentation, data exchange | Personal Health Record (blood sugar) | Data privacy regulations | PoW/Yes | Hybrid blockchain | Not defined |
8. (2020) [63] | Documentation, data exchange | EHR | Privacy, scalability, and availability | Not defined/Yes | Consortium blockchain | Hyperledger Fabric |
9. (2020) [64] | Documentation, data exchange | COVID-19 data sharing, ML | Privacy, integrity, and scalability | Not defined/Yes | Public-permissioned blockchain | MedRec |
10. (2020) [65] | Documentation, data exchange | EHR | Secure, trustable data sharing | PoW and PBFT/Yes | Private blockchain | Hyperledger Fabric |
11. (2021) [66] | Documentation, data exchange | IoMT, edge computing, MEdge-Chain architecture | Efficient, secure connectivity | Proof of Stake (DPoS)/Yes | Permissioned blockchain | Not defined |
12. (2021) [67] | Documentation, data exchange | Personal Health Record | Data integration, data ownership, and privacy | Proof of elapsed time consensus algorithm/Yes | Private blockchain | Hyperledger Fabric |
13. (2022) [68] | Documentation, data exchange | Personal Health Record (PHR) | Retrieve cross-hospital medical data, low adoption rate | Proof of Authority (PoA)/Yes | Consortium blockchain | iWellChain Framework/Ethereum |
14. (2022) [69] | Documentation, data exchange | Patient data sharing and storage | Legal ramifications, delayed transactions, and costs | Proof of Authority (PoA)/Yes | Private blockchain | Ethereum |
15. (2022) [70] | Documentation, data exchange | Transfer from EHR to patient PHR | Performance and energy consumption | Proof of Authority (PoA)/Yes | Private blockchain | Ethereum |
16. (2023) [71] | Documentation, data exchange | IoMT, deep learning, AI | Data security | Not defined/Yes | Not defined | Not defined |
17. (2023) [72] | Documentation, data exchange | IoMT, healthcare smartphone | Security, reliability | PBFT/Yes | Consortium blockchain | Hyperledger Fabric |
18. (2022) [73] | Medical care | Supply chain of medicines | Solid, secure, decentralized, transparent | Not defined/Yes | Private/public blockchain | Hyperledger Fabric |
19. (2021) [74] | Medical care | Telemedicine | Scalable issue | Proof of work (PoW)/No | Not defined | Not defined |
20. (2020) [75] | Medical care | Supply chain for medical supplies | Transparency, improving efficiency | Not defined/No | Not defined | Not defined |
21. (2022) [76] | Medical care | Acute craniocerebral trauma anesthesia | Medical data sharing | Not defined/No | Not defined | Not defined |
22. (2022) [77] | Medical care | Stroke care information management | Decreasing wait times, secure | Not defined/No | Not defined | Not defined |
23. (2022) [78] | Medical care | CNN for COVID image detection | Data security | Proof of Work (PoW)/No | Permissioned blockchain | Not defined |
24. (2022) [79] | Medical care (blood pressure sensor) | Fog computing, IoMT | Packet error rate, reliability, and throughput | Proof of Work (PoW)/Yes | Private blockchain | Ethereum |
25. (2023) [80] | Medical care | Blockchain with IoT, supply chain management | Quality assurance, tracing, transparency, and security | Proof of Work (PoW)/Yes | Public blockchain | Ethereum |
26. (2020) [81] | Disposition | COVID surveillance and case tracking system | Standardization and interoperability | Proof of Authority (PoA)/No | Private blockchain | Ethereum |
27. (2021) [82] | Disposition | IoMT, machine learning | Limited information | Not defined/No | Not defined | Not defined |
28. (2021) [83] | Home | IoMT, transfer personal data to hospital system | Decreased time, precise, and cost-effective | Proof of Work (PoW)/Yes | Public/Private Blockchain | Ethereum |
29. (2021) [84] | Home | IoT, interplanetary file system (IPFS) | Security and privacy | Not defined/Yes | Hybrid blockchain | Not defined |
30. (2021) [85] | Home | AI, IoT | Privacy and security | Not defined/No | Not defined | Not defined |
31. (2021) [86] | Home | IoT data and AIoT | Cost | Not defined/No | Not defined | Not defined |
32. (2018) [87] | Others | Health Professions Education | Trust and transparency | Not defined/No | Not defined | Not defined |
33. (2019) [88] | Others | Clinical trials | Policy change | Not defined/No | Not defined | Not defined |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, T.-C.; Ho, C.-T.B. Blockchain Revolutionizing in Emergency Medicine: A Scoping Review of Patient Journey through the ED. Healthcare 2023, 11, 2497. https://doi.org/10.3390/healthcare11182497
Wu T-C, Ho C-TB. Blockchain Revolutionizing in Emergency Medicine: A Scoping Review of Patient Journey through the ED. Healthcare. 2023; 11(18):2497. https://doi.org/10.3390/healthcare11182497
Chicago/Turabian StyleWu, Tzu-Chi, and Chien-Ta Bruce Ho. 2023. "Blockchain Revolutionizing in Emergency Medicine: A Scoping Review of Patient Journey through the ED" Healthcare 11, no. 18: 2497. https://doi.org/10.3390/healthcare11182497