School-Based TGfU Volleyball Intervention Improves Physical Fitness and Body Composition in Primary School Students: A Cluster-Randomized Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Procedures
2.3. Intervention Program
2.4. Measures
2.4.1. Body Composition
2.4.2. Physical Fitness
2.5. Statistical Analysis
3. Results
3.1. Body Composition
3.2. Physical Fitness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sport. Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed]
- Markovic, L.; Dordic, V.; Trajkovic, N.; Bozic, P.; Halasi, S.; Cvejic, D.; Ostojic, S.M. Childhood Obesity in Serbia on the Rise. Children 2021, 8, 409. [Google Scholar] [CrossRef]
- Gardašević, N.; Joksimović, M.; Martinović, M.; Gadžić, A.; Bjelica, B.; Aksović, N. Nutritional status and gender differences of adolescent students. J. Phys. Educ. Sport 2021, 21, 1354–1360. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Healthy People 2010; Department of Health and Human Services: Washington, DC, USA, 2000. [Google Scholar]
- Fairclough, S.J.; Stratton, G. A Review of Physical Activity Levels during Elementary School Physical Education. J. Teach. Phys. Educ. 2006, 25, 240–258. [Google Scholar] [CrossRef]
- Kirkham-King, M.; Brusseau, T.A.; Hannon, J.C.; Castelli, D.M.; Hilton, K.; Burns, R.D. Elementary physical education: A focus on fitness activities and smaller class sizes are associated with higher levels of physical activity. Prev. Med. Rep. 2017, 8, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Hollis, J.L.; Williams, A.J.; Sutherland, R.; Campbell, E.; Nathan, N.; Wolfenden, L.; Morgan, P.J.; Lubans, D.R.; Wiggers, J. A systematic review and meta-analysis of moderate-to-vigorous physical activity levels in elementary school physical education lessons. Prev. Med. 2016, 86, 34–54. [Google Scholar] [CrossRef] [PubMed]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J.; Sjostrom, M. Physical fitness in childhood and adolescence: A powerful marker of health. Int. J. Obes. 2008, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, J.R.; Castro-Pinero, J.; Artero, E.G.; Ortega, F.B.; Sjostrom, M.; Suni, J.; Castillo, M.J. Predictive validity of health-related fitness in youth: A systematic review. Br. J. Sport. Med. 2009, 43, 909–923. [Google Scholar] [CrossRef]
- Padulo, J.; Bragazzi, N.L.; De Giorgio, A.; Grgantov, Z.; Prato, S.; Ardigò, L.P. The Effect of Physical Activity on Cognitive Performance in an Italian Elementary School: Insights From a Pilot Study Using Structural Equation Modeling. Front. Physiol. 2019, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, T.; Niessner, C.; Oriwol, D.; Buchal, L.; Worth, A.; Bos, K. Secular Trends in Physical Fitness of Children and Adolescents: A Review of Large-Scale Epidemiological Studies Published after 2006. Int. J. Environ. Res. Public Health 2020, 17, 5671. [Google Scholar] [CrossRef]
- Hardman, K. Current Situation and Prospects for Physical Education in the European Union-Study; European Parliament: Brussels, Belgium, 2007; Available online: https://www.europarl.europa.eu/RegData/etudes/etudes/join/2007/369032/IPOL-CULT_ET(2007)369032_EN.pdf (accessed on 10 February 2023).
- Bailey, R.; Armour, K.; Kirk, D.; Jess, M.; Pickup, I.; Sandford, R.; Education, B.P. The educational benefits claimed for physical education and school sport: An academic review. Res. Pap. Educ. 2009, 24, 1–27. [Google Scholar] [CrossRef]
- Pate, R.R.; Davis, M.G.; Robinson, T.N.; Stone, E.J.; McKenzie, T.L.; Young, J.C. Promoting physical activity in children and youth. Circulation 2006, 114, 1214–1224. [Google Scholar] [CrossRef]
- Martins Coutinho, D.A.; Nunes Reis, S.G.; Varanda Gonçalves, B.S.; Pereira e Silva, A.M.; da Eira Sampaio, A.J.; Correia Leite, N.M. Manipulating the number of players and targets in team sports. Small-sided games during physical education classes. Rev. Psicol. Deporte 2016, 25, 169–177. [Google Scholar]
- Evangelio, C.; Sierra-Díaz, M.J.; González-Víllora, S.; Clemente, F.M. ‘Four goals for three players’: Using 3 vs. 3 small-sided games at school. Hum. Mov. 2019, 20, 68–78. [Google Scholar] [CrossRef]
- Wang, M.; Wang, L. Teaching Games for Understanding Intervention to Promote Physical Activity among Secondary School Students. BioMed Res. Int. 2018, 2018, 3737595. [Google Scholar] [CrossRef] [PubMed]
- Orntoft, C.; Fuller, C.W.; Larsen, M.N.; Bangsbo, J.; Dvorak, J.; Krustrup, P. ‘FIFA 11 for Health’ for Europe. II: Effect on health markers and physical fitness in Danish schoolchildren aged 10-12 years. Br. J. Sport. Med. 2016, 50, 1394–1399. [Google Scholar] [CrossRef]
- Cocca, A.; Carbajal Baca, J.E.; Hernández Cruz, G.; Cocca, M. Does A Multiple-Sport Intervention Based on the TGfU Pedagogical Model for Physical Education Increase Physical Fitness in Primary School Children? Int. J. Environ. Res. Public Health 2020, 17, 5532. [Google Scholar] [CrossRef]
- Trajkovic, N.; Madic, D.M.; Milanovic, Z.; Macak, D.; Padulo, J.; Krustrup, P.; Chamari, K. Eight months of school-based soccer improves physical fitness and reduces aggression in high-school children. Biol. Sport 2020, 37, 185–193. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, S.; Han, X.; Li, Z.; Liu, B.; Chen, J.; Li, X. School-Based Comprehensive Strength Training Interventions to Improve Muscular Fitness and Perceived Physical Competence in Chinese Male Adolescents. Biomed Res. Int. 2022, 2022, 7464815. [Google Scholar] [CrossRef]
- Stojanović, N.; Stupar, D.; Marković, M.; Trajković, N.; Aleksić, D.; Pašić, G.; Koničanin, A.; Zadražnik, M.; Stojanović, T. School-Based Circuit Training Intervention Improves Local Muscular Endurance in Primary School Students: A Randomized Controlled Trial. Children 2023, 10, 726. [Google Scholar] [CrossRef]
- Bunker, D.; Thorpe, R. A model for the teaching of games in secondary schools. Bull. Phys. Educ. 1982, 18, 5–8. [Google Scholar]
- Barba-Martín, R.A.; Bores-García, D.; Hortigüela-Alcalá, D.; González-Calvo, G. The Application of the Teaching Games for Understanding in Physical Education. Systematic Review of the Last Six Years. Int. J. Environ. Res. Public Health 2020, 17, 3330. [Google Scholar] [CrossRef]
- de Oliveira Castro, H.; Laporta, L.; Lima, R.F.; Clemente, F.M.; Afonso, J.; da Silva Aguiar, S.; de Araujo Ribeiro, A.L.; De Conti Teixeira Costa, G. Small-sided games in volleyball: A systematic review of the state of the art. Biol. Sport 2022, 39, 995–1010. [Google Scholar] [CrossRef]
- Batez, M.; Petrušič, T.; Bogataj, Š.; Trajković, N. Effects of Teaching Program Based on Teaching Games for Understanding Model on Volleyball Skills and Enjoyment in Secondary School Students. Sustainability 2021, 13, 606. [Google Scholar] [CrossRef]
- Gabbett, T.J. Do skill-based conditioning games offer a specific training stimulus for junior elite volleyball players? J. Strength Cond. Res. 2008, 22, 509–517. [Google Scholar] [CrossRef]
- Póvoas, S.; Randers, M.B.; Krustrup, P.; Larsen, M.N.; Pereira, R.; Castagna, C. Heart Rate and Perceived Experience Differ Markedly for Children in Same- versus Mixed-Gender Soccer Played as Small- and Large-Sided Games. Biomed Res. Int. 2018, 2018, 7804642. [Google Scholar] [CrossRef]
- Bendiksen, M.; Williams, C.A.; Hornstrup, T.; Clausen, H.; Kloppenborg, J.; Shumikhin, D.; Brito, J.; Horton, J.; Barene, S.; Jackman, S.R.; et al. Heart rate response and fitness effects of various types of physical education for 8- to 9-year-old schoolchildren. Eur. J. Sport Sci. 2014, 14, 861–869. [Google Scholar] [CrossRef]
- Eston, R.; Reilly, T. Kinanthropometry and Exercise Physiology Laboratory Manual. Tests, Procedures and Data: Volume 1: Anthropometry, 3rd ed.; Routledge: London, UK, 2009; pp. 32–35. [Google Scholar]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Manuel Gomez, J.; Lilienthal Heitmann, B.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis-part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef]
- Council of Europe. EUROFIT: Handbook for the EUROFIT Tests of Physical Fitness, 2nd ed.; Sports Division Strasbourg, Council of Europe Publishing and Documentation Service: Strasbourg, France, 1993. [Google Scholar]
- Russo, L.; Montagnani, E.; Pietrantuono, D.; D’Angona, F.; Fratini, T.; Di Giminiani, R.; Palermi, S.; Ceccarini, F.; Migliaccio, G.M.; Lupu, E.; et al. Self-Myofascial Release of the Foot Plantar Surface: The Effects of a Single Exercise Session on the Posterior Muscular Chain Flexibility after One Hour. Int. J. Environ. Res. Public Health 2023, 20, 974. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef]
- Dello Iacono, A.; Ardigò, L.P.; Meckel, Y.; Padulo, J. Effect of Small-Sided Games and Repeated Shuffle Sprint Training on Physical Performance in Elite Handball Players. J. Strength Cond. Res. 2016, 30, 830–840. [Google Scholar] [CrossRef]
- Semenick, D. Tests and Measurements: The T-test. Strength Cond. J. 1990, 12, 36–37. [Google Scholar] [CrossRef]
- Pauole, K.; Madole, K.; Garhammer, J.; Lacourse, M.; Rozenek, R. Reliability and Validity of the T-Test as a Measure of Agility, Leg Power, and Leg Speed in College-Aged Men and Women. J. Strength Cond. Res. 2000, 14, 443–450. [Google Scholar] [CrossRef]
- Ahmaidi, S.; Collomp, K.; Caillaud, C.; Préfaut, C. Maximal and functional aerobic capacity as assessed by two graduated field methods in comparison to laboratory exercise testing in moderately trained subjects. Int. J. Sport. Med. 1992, 13, 243–248. [Google Scholar] [CrossRef]
- Ramsbottom, R.; Brewer, J.; Williams, C. A progressive shuttle run test to estimate maximal oxygen uptake. Br. J. Sport. Med. 1988, 22, 141–144. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; L. Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sport. Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Baquet, G.; Berthoin, S.; Van Praagh, E. Are intensified physical education sessions able to elicit heart rate at a sufficient level to promote aerobic fitness in adolescents? Res. Q. Exerc. Sport 2002, 73, 282–288. [Google Scholar] [CrossRef]
- Kremer, M.M.; Reichert, F.F.; Hallal, P.C. Intensity and duration of physical efforts in Physical Education classes. Rev. Saude Publica 2012, 46, 320–326. [Google Scholar] [CrossRef]
- Carrasco Beltrán, H.; Reigal Garrido, R.E.; Ulloa Díaz, D.; Chirosa Ríos, I.J.; Chirosa Ríos, L.J. Effects of small-sided exercises on body composition and maximal oxygen uptake in adolescents. Rev. Med. Chil. 2015, 143, 744–750. [Google Scholar] [CrossRef]
- Sierra-Ríos, J.V.; Clemente, F.M.; Rey, E.; González-Víllora, S. Effects of 6 Weeks Direct Instruction and Teaching Games for Understanding Programs on Physical Activity and Tactical Behaviour in U-12 Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 5008. [Google Scholar] [CrossRef]
- Stojanović, D.; Branković, N.; Stojanović, T.; Momčilović, Z. The Effects of Skill-Based Exercises and a Small-Sided Games Program on the Body Composition of Adolescents. FU Phys. Ed. Sport 2020, 18, 145–157. [Google Scholar] [CrossRef]
- Trajkovic, N.; Lazic, A.; Trkulja-Petkovic, D.; Barisic, V.; Milic, V.; Nikolic, S.; Sporis, G. Effects of After-School Volleyball Program on Body Composition in Overweight Adolescent Girls. Children 2021, 9, 21. [Google Scholar] [CrossRef]
- Owen, A.; Twist, C.; Ford, P. Small-sided games: The physiological and technical effect of altering pitch size and player numbers. Insight 2004, 7, 50–53. [Google Scholar]
- Lazaar, N.; Aucouturier, J.; Ratel, S.; Rance, M.; Meyer, M.; Duché, P. Effect of physical activity intervention on body composition in young children: Influence of body mass index status and gender. Acta Paediatr. 2007, 96, 1315–1320. [Google Scholar] [CrossRef]
- Farias, E.S.; Paula, F.; Carvalho, W.R.; Gonçalves, E.M.; Baldin, A.D.; Guerra-Júnior, G. Influence of programmed physical activity on body composition among adolescent students. J. Pediatr. 2009, 85, 28–34. [Google Scholar] [CrossRef]
- Regaieg, S.; Charfi, N.; Kamoun, M.; Ghroubi, S.; Rebai, H.; Elleuch, H.; Feki, M.M.; Abid, M. The effects of an exercise training program on body composition and aerobic capacity parameters in Tunisian obese children. Indian J. Endocrinol. Metab. 2013, 17, 1040–1045. [Google Scholar] [CrossRef]
- Viru, A.; Loko, J.; Harro, M.; Volver, A.; Laaneots, L.; Viru, M. Critical Periods in the Development of Performance Capacity During Childhood and Adolescence. Eur. J. Phys. Educ. 1999, 4, 75–119. [Google Scholar] [CrossRef]
- Tanner, J.M.; Whitehouse, R.H.; Marubini, E.; Resele, L.F. The adolescent growth spurt of boys and girls of the Harpenden growth study. Ann. Hum. Biol. 1976, 3, 109–126. [Google Scholar] [CrossRef]
- Malina, R.M. Physical activity and training: Effects on stature and the adolescent growth spurt. Med. Sci. Sport. Exerc. 1994, 26, 759–766. [Google Scholar] [CrossRef]
- Rogol, A.D.; Roemmich, J.N.; Clark, P.A. Growth at puberty. J. Adolesc. Health 2002, 31, 192–200. [Google Scholar] [CrossRef]
- Kabadayı, M.; Karadeniz, S.; Yılmaz, A.K.; Karaduman, E.; Bostancı, Ö.; Akyildiz, Z.; Clemente, F.M.; Silva, A.F. Effects of Core Training in Physical Fitness of Youth Karate Athletes: A Controlled Study Design. Int. J. Environ. Res. Public Health 2022, 19, 5816. [Google Scholar] [CrossRef]
- Trajković, N.; Pajek, M.; Sporiš, G.; Petrinović, L.; Bogataj, Š. Reducing Aggression and Improving Physical Fitness in Adolescents Through an After-School Volleyball Program. Front. Psychol. 2020, 11, 2081. [Google Scholar] [CrossRef]
- Petrusic, T.; Trajkovic, N.; Bogataj, S. Twelve-Week Game-Based School Intervention Improves Physical Fitness in 12-14-Year-Old Girls. Front. Public Health 2022, 10, 831424. [Google Scholar] [CrossRef]
- Hussein, A.J.; Alhayek, S.K. The Effect of Using Micro–Games of Volleyball in Improving Some Life, Movement, and Performance Skills for Sixth Grade Students. J. Educ. Psychol. Sci. 2012, 13, 41–65. [Google Scholar] [CrossRef]
- Selmanovic, A.; Milanovic, D.; Custonja, Z. Effects of an additional basketball and volleyball program on motor abilities of fifth grade elementary school students. Coll. Antropol. 2013, 37, 391–400. [Google Scholar]
- Toyoda, H. Volleyball for beginners. FIVB Coach. Man. 2011, 2, 29–69. [Google Scholar]
- Hammami, A.; Gabbett, T.J.; Slimani, M.; Bouhlel, E. Does small-sided games training improve physical fitness and team-sport-specific skills? A systematic review and meta-analysis. J. Sport. Med. Phys. Fit. 2018, 58, 1446–1455. [Google Scholar] [CrossRef]
- Young, W.; Rogers, N. Effects of small-sided game and change-of-direction training on reactive agility and change-of-direction speed. J. Sport. Sci. 2014, 32, 307–314. [Google Scholar] [CrossRef]
- Fuhner, T.; Kliegl, R.; Arntz, F.; Kriemler, S.; Granacher, U. An Update on Secular Trends in Physical Fitness of Children and Adolescents from 1972 to 2015: A Systematic Review. Sport. Med. 2021, 51, 303–320. [Google Scholar] [CrossRef] [PubMed]
- Mintjens, S.; Menting, M.D.; Daams, J.G.; van Poppel, M.N.M.; Roseboom, T.J.; Gemke, R. Cardiorespiratory Fitness in Childhood and Adolescence Affects Future Cardiovascular Risk Factors: A Systematic Review of Longitudinal Studies. Sport. Med. 2018, 48, 2577–2605. [Google Scholar] [CrossRef] [PubMed]
- Pion, J.; Segers, V.; Fransen, J.; Debuyck, G.; Deprez, D.; Haerens, L.; Vaeyens, R.; Philippaerts, R.; Lenoir, M. Generic anthropometric and performance characteristics among elite adolescent boys in nine different sports. Eur. J. Sport Sci. 2015, 15, 357–366. [Google Scholar] [CrossRef] [PubMed]
- García-González, L.; Abós, Á.; Diloy-Peña, S.; Gil-Arias, A.; Sevil-Serrano, J. Can a Hybrid Sport Education/Teaching Games for Understanding Volleyball Unit Be More Effective in Less Motivated Students? An Examination into a Set of Motivation-Related Variables. Sustainability 2020, 12, 6170. [Google Scholar] [CrossRef]
Variables | Volleyball Group | Control Group | |||
---|---|---|---|---|---|
Pre-Test | Post-Test | Pre-Test | Post-Test | ||
Body Height (cm) | M | 164.3 ± 7.4 | 166.6 ± 7.6 | 166.3 ± 9.9 | 168.8 ± 10.1 |
F | 160.7 ± 6.0 | 162.3 ± 6.1 | 159.1 ± 5.9 | 160.5 ± 6.0 | |
Total | 162.6 ± 6.9 | 164.5 ± 7.2 | 162.8 ± 8.9 | 164.7 ± 9.2 | |
Body Weight (kg) | M | 56.4 ± 10.1 | 57.7 ± 11.4 | 56.8 ± 10.8 | 57.8 ± 11.6 |
F | 55.3 ± 12.4 | 55.8 ± 11.8 | 48.0 ± 7.2 | 49.4 ± 7.3 | |
Total | 55.9 ± 11.2 | 56.8 ± 11.5 | 52.5 ± 10.1 | 53.7 ± 10.5 | |
BMI (kg·m−2) | M | 20.8 ± 2.9 | 20.7 ± 3.3 | 20.4 ± 2.6 | 20.2 ± 2.9 |
F | 21.3 ± 4.2 | 21.1 ± 3.9 | 18.9 ± 2.1 | 19.1 ± 2.2 | |
Total | 21.1 ± 3.6 | 20.9 ± 3.6 | 19.7 ± 2.5 | 19.6 ± 2.6 |
Session/ Week | VG; TGfU Volleyball Intervention | CG; PE—Selected Sports Class | ||
---|---|---|---|---|
Unit | Content | Unit | Content | |
1 | Movement with and without a ball | Footwork drills with the low–mid–high stance | Technical drills | Forearm pass, overhand receive |
2 | SSG | Various tactical drills 2 vs. 2 | Passing and receiving in pairs | |
3 | Mini-Volleyball | 3 vs. 3 with overhand pass only | Passing and receiving in pairs | |
4 | SSG | Various tactical drills 2 vs. 2 | Overhand pass and spike parallel | |
5 | Mini-Volleyball | 3 vs. 3 with forearm pass only | Overhand pass and spike diagonal | |
6 | Volleyball-specific skills—jumping | One- or two-footed jumps, line hops, jacks, rope jumps | Overhand pass and spike parallel and diagonal | |
7 | SSG | Various tactical drills 3 vs. 3 | Overhand pass and spike parallel and diagonal | |
8 | Mini-Volleyball | 3 vs. 3 with overhand and forearm pass only | Overhand pass and spike parallel and diagonal | |
9 | SSG | Various tactical drills 3 vs. 3 | Blocking | |
10 | Mini-Volleyball | 3 vs. 3 with overhand, forearm pass, and spike | Blocking | |
11 | SSG | Various tactical drills 4 vs. 4 | Blocking | |
12 | Volleyball-specific skills—agility | Accelerations, shuttles, change of direction drills | Mini-Volleyball | 2 vs. 2, 3 vs. 3 |
13 | Mini-Volleyball | 3 vs. 3 with overhand, forearm pass, spike, and block | Mini-Volleyball | 2 vs. 2, 3 vs. 3 |
14 | SSG | Various tactical drills 2 vs. 2 (9 × 3 m court size per side) | Full court competitive | 6 vs. 6 with 6–0 rotation |
15 | Mini-Volleyball | 4 vs. 4 with overhand, forearm pass, spike, block, and serve | Full court competitive | 6 vs. 6 with 6–0 rotation |
16 | Full court competitive | 6 vs. 6 with 4–2 rotation | Full court competitive | 6 vs. 6 with 4–2 rotation |
Variables | Pre-Test | Post-Test | % | 2 × 2 ANOVA | ES (ŋp2) | |
---|---|---|---|---|---|---|
Body Composition | ||||||
Weight (kg) | VG | 55.9 ± 11.2 | 56.8 ± 11.5 | +1.61 | group: NS | |
CG | 52.5 ± 10.1 | 53.7 ± 10.5 | +2.29 | time: F = 31.432; p < 0.0005 | 0.268 | |
group × time: NS | ||||||
BMI (kg·m−2) | VG | 21.1 ± 3.6 | 20.9 ± 3.6 | −0.95 | group: F = 4.238; p = 0.043 | 0.047 |
CG | 19.7 ± 2.5 * | 19.6 ± 2.6 | −0.51 | time: NS | ||
group × time: NS | ||||||
Sum of skinfolds (mm) | VG | 65.0 ± 19.8 | 61.6 ± 17.8 | −5.23 | group: F = 4.995; p = 0.028, | 0.055 |
CG | 54.5 ± 13.9 * | 56.9 ± 13.7 | +4.40 | time: NS | ||
group × time: F = 17.384; p < 0.0005 | 0.168 | |||||
Body Fat (%) | VG | 23.1 ± 8.0 | 22.6 ± 8.1 | −2.16 | group: F = 7.372; p = 0.008 | 0.079 |
CG | 18.3 ± 6.6 * | 19.0 ± 6.3 | +3.82 | time: NS | ||
group × time: F = 21.509; p < 0.0005 | 0.200 | |||||
Muscle Mass (%) | VG | 35.3 ± 3.4 | 35.8 ± 3.4 | +1.42 | group: F = 4.056; p = 0.047 | 0.045 |
CG | 37.1 ± 3.2 * | 36.8 ± 3.1 | −0.81 | time: NS | ||
group × time: F = 28.244; p < 0.0005 | 0.247 | |||||
Physical Fitness | ||||||
Sit and Reach (cm) | VG | 19.6 ± 8.8 | 21.9 ± 8.3 | +11.73 | group: NS | |
CG | 18.0 ± 7.3 | 18.8 ± 7.1 | +4.44 | time: F = 20.018; p < 0.0005 | 0.189 | |
group × time: NS | ||||||
SJ (cm) | VG | 19.7 ± 4.7 | 21.5 ± 4.6 | +9.14 | group: NS | |
CG | 21.6 ± 4.0 * | 21.8 ± 4.3 | +0.93 | time: F = 13.827; p < 0.0005 | 0.139 | |
group × time: F = 9.838; p = 0.002 | 0.103 | |||||
CMJ (cm) | VG | 21.3 ± 4.3 | 23.4 ± 4.5 | +9.86 | group: NS | |
CG | 23.0 ± 4.2 | 23.2 ± 4.4 | +0.87 | time: F = 16.731; p < 0.0005 | 0.163 | |
group × time: F = 11.735; p = 0.001 | 0.120 | |||||
30 m Sprint (s) | VG | 5.9 ± 0.6 | 5.7 ± 0.6 | −3.39 | group: NS | |
CG | 5.7 ± 0.5 * | 5.6 ± 0.5 | −1.75 | time: F = 9.573; p = 0.003 | 0.100 | |
group × time: F = 5.733; p = 0.019 | 0.062 | |||||
Agility T-test (s) | VG | 14.5 ± 1.3 | 13.1 ± 1.1 | −9.65 | group: NS | |
CG | 13.9 ± 2.0 | 13.9 ± 1.8 | −0.01 | time: F = 22.199; p < 0.0005 | 0.276 | |
group × time: F = 26.927; p < 0.0005 | 0.238 | |||||
VO2max (mL·kg−1·min−1) | VG | 30.6 ± 6.6 | 31.1 ± 6.3 | +1.63 | group: NS | |
CG | 28.4 ± 6.1 | 28.2 ± 6.0 | −0.70 | time: F = 9.198; p = 0.003 | 0.097 | |
group × time: F = 29.081; p < 0.0005 | 0.253 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojanović, D.; Momčilović, V.; Zadražnik, M.; Ilić, I.; Koničanin, A.; Padulo, J.; Russo, L.; Stojanović, T. School-Based TGfU Volleyball Intervention Improves Physical Fitness and Body Composition in Primary School Students: A Cluster-Randomized Trial. Healthcare 2023, 11, 1600. https://doi.org/10.3390/healthcare11111600
Stojanović D, Momčilović V, Zadražnik M, Ilić I, Koničanin A, Padulo J, Russo L, Stojanović T. School-Based TGfU Volleyball Intervention Improves Physical Fitness and Body Composition in Primary School Students: A Cluster-Randomized Trial. Healthcare. 2023; 11(11):1600. https://doi.org/10.3390/healthcare11111600
Chicago/Turabian StyleStojanović, Darko, Vladimir Momčilović, Marko Zadražnik, Igor Ilić, Admira Koničanin, Johnny Padulo, Luca Russo, and Toplica Stojanović. 2023. "School-Based TGfU Volleyball Intervention Improves Physical Fitness and Body Composition in Primary School Students: A Cluster-Randomized Trial" Healthcare 11, no. 11: 1600. https://doi.org/10.3390/healthcare11111600
APA StyleStojanović, D., Momčilović, V., Zadražnik, M., Ilić, I., Koničanin, A., Padulo, J., Russo, L., & Stojanović, T. (2023). School-Based TGfU Volleyball Intervention Improves Physical Fitness and Body Composition in Primary School Students: A Cluster-Randomized Trial. Healthcare, 11(11), 1600. https://doi.org/10.3390/healthcare11111600