Relationship between Body Mass Index and Diagnosis of Overweight or Obesity in Veterans Administration Population
Abstract
:1. Introduction
2. Methods
- Overweight identified using E66.3, Z68.25, Z68.26, Z68.27, Z68.28, Z68.29, and Z68.
- Obesity identified using E66.9, E66.09, E66.1, E66.8, Z68.3, and Z68.54
- Morbid obesity identified using E66.01, E66.2, Z68.4, and Z68.54
3. Results
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gardner, G.; Halweil, B.; Peterson, J.A. Underfed and Overfed: The Global Epidemic of Malnutrition; Worldwatch Institute: Washington, DC, USA, 2000. [Google Scholar]
- Caballero, B. The global epidemic of obesity: An overview. Epidemiol. Rev. 2007, 29, 1–5. [Google Scholar] [CrossRef]
- Betancourt, J.A.; Stigler Granados, P.; Pacheco, G.J.; Shanmugam, R.; Kruse, C.S.; Fulton, L.V. Obesity and Morbidity Risk in the U.S. Veteran. Healthcare 2020, 8, 191. [Google Scholar] [CrossRef] [PubMed]
- Ogden, C.L.; Carroll, M.D.; Fryar, C.D.; Flegal, K.M. Prevalence of Obesity among Adults and Youth: United States, 2011–2014; CDC: Atlanta, GA, USA, 2015. [Google Scholar]
- Kim, J.; Lee, S.; Ramos, W. Investigating the Relationship Between Accessibility of Green Space and Adult Obesity Rates: A Secondary Data Analysis in the United States. J. Prev. Med. Public Health 2021, 54, 208. [Google Scholar] [CrossRef] [PubMed]
- Vimalananda, V.G.; Foster-Schubert, K. Geographic variation in obesity, behavioral treatment, and bariatric surgery for veterans. Obesity 2019, 27, 12. [Google Scholar] [CrossRef]
- Breland, J.Y.; Phibbs, C.S.; Hoggatt, K.J.; Washington, D.L.; Lee, J.; Haskell, S.; Uchendu, U.S.; Saechao, F.S.; Zephyrin, L.C.; Frayne, S.M. The obesity epidemic in the Veterans Health Administration: Prevalence among key populations of women and men veterans. J. Gen. Intern. Med. 2017, 32, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Dorflinger, L.M.; Masheb, R.M. PTSD is associated with emotional eating among veterans seeking treatment for overweight/obesity. Eat. Behav. 2018, 31, 8–11. [Google Scholar] [CrossRef]
- Atkins, D. Improving weight management among veterans. J. Gen. Intern. Med. 2017, 32, 1–3. [Google Scholar] [CrossRef]
- El-Atat, F.; Aneja, A.; Mcfarlane, S.; Sowers, J. Obesity and hypertension. Endocrinol. Metab. Clin. 2003, 32, 823–854. [Google Scholar] [CrossRef]
- Kleine, C.-E.; Moradi, H.; Streja, E.; Kalantar-Zadeh, K. Racial and ethnic disparities in the obesity paradox. Am. J. Kidney Dis. 2018, 72, S26–S32. [Google Scholar] [CrossRef]
- Scherrer, J.F.; Salas, J.; Lustman, P.J.; Van Den Berk-Clark, C.; Schnurr, P.P.; Tuerk, P.; Cohen, B.E.; Friedman, M.J.; Norman, S.B.; Schneider, F.D. The role of obesity in the association between posttraumatic stress disorder and incident diabetes. JAMA Psychiatry 2018, 75, 1189–1198. [Google Scholar] [CrossRef]
- Biener, A.; Cawley, J.; Meyerhoefer, C. The high and rising costs of obesity to the US health care system. J. Gen. Intern. Med. 2017, 32, 6–8. [Google Scholar] [CrossRef]
- Koh, K.; Grady, S.C.; Darden, J.T.; Vojnovic, I. Adult obesity prevalence at the county level in the United States, 2000–2010: Downscaling public health survey data using a spatial microsimulation approach. Spat. Spatio-Temporal Epidemiol. 2018, 26, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Beauvais, A.; Forbes, W.L.; Beckman, D.; Estes, J.; Martinez, C.; Wardian, J. Relationship Between Body Mass Index and Diagnosis of Obesity in the Military Health System Active Duty Population. Mil. Med. 2021, 187, e948–e954. [Google Scholar] [CrossRef]
- Moyer, V.A.; US Preventive Services Task Force. Screening for and management of obesity in adults: US Preventive Services Task Force recommendation statement. Ann. Intern. Med. 2012, 157, 373–378. [Google Scholar] [CrossRef] [PubMed]
- American Medical Association. Recognition of Obesity as a Disease. Resolution 420,(A-13). In American Medical Association House of Delegates; American Medical Association: Chicago, IL, USA, 2013. [Google Scholar]
- Fitzpatrick, S.L.; Stevens, V.J. Adult obesity management in primary care, 2008–2013. Prev. Med. 2017, 99, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.L.; Taubman, S.B. Update: Diagnoses of overweight and obesity, active component, US Armed Forces, 2011–2015. MSMR 2016, 23, 9–13. [Google Scholar] [PubMed]
- Adab, P.; Pallan, M.; Whincup, P.H. Is BMI the best measure of obesity? BMJ 2018, 360, k1274. [Google Scholar] [CrossRef] [PubMed]
- Pantalone, K.M.; Hobbs, T.M.; Chagin, K.M.; Kong, S.X.; Wells, B.J.; Kattan, M.W.; Bouchard, J.; Sakurada, B.; Milinovich, A.; Weng, W. Prevalence and recognition of obesity and its associated comorbidities: Cross-sectional analysis of electronic health record data from a large US integrated health system. BMJ Open 2017, 7, e017583. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, L.M.; Golden, A.; Jinnett, K.; Kolotkin, R.L.; Kyle, T.K.; Look, M.; Nadglowski, J.; O’Neil, P.M.; Parry, T.; Tomaszewski, K.J. Perceptions of barriers to effective obesity care: Results from the national ACTION study. Obesity 2018, 26, 61–69. [Google Scholar] [CrossRef]
- Mattar, A.; Carlston, D.; Sariol, G.; Yu, T.; Almustafa, A.; Melton, G.B.; Ahmed, A. The prevalence of obesity documentation in primary care electronic medical records. Appl. Clin. Inform. 2017, 26, 67–79. [Google Scholar] [CrossRef]
- Kapoor, A.; Kim, J.; Zeng, X.; Harris, S.T.; Anderson, A. Weighing the odds: Assessing underdiagnosis of adult obesity via electronic medical record problem list omissions. Digit. Health 2020, 6, 2055207620918715. [Google Scholar] [CrossRef] [PubMed]
- Bardia, A.; Holtan, S.G.; Slezak, J.M.; Thompson, W.G. Diagnosis of obesity by primary care physicians and impact on obesity management. Mayo Clin. Proc. 2007, 82, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Abulmeaty, M.M.; Almajwal, A.M.; Almadani, N.K.; Aldosari, M.S.; Alnajim, A.A.; Ali, S.B.; Hassan, H.M.; Elkatawy, H.A. Anthropometric and central obesity indices as predictors of long-term cardiometabolic risk among Saudi young and middle-aged men and women. Saudi Med. J. 2017, 38, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Motamed, N.; Perumal, D.; Zamani, F.; Ashrafi, H.; Haghjoo, M.; Saeedian, F.; Maadi, M.; Akhavan-Niaki, H.; Rabiee, B.; Asouri, M. Conicity index and waist-to-hip ratio are superior obesity indices in predicting 10-year cardiovascular risk among men and women. Clin. Cardiol. 2015, 38, 527–534. [Google Scholar] [CrossRef]
- Okorodudu, D.O.; Jumean, M.; Montori, V.M.; Romero-Corral, A.; Somers, V.K.; Erwin, P.J.; Lopez-Jimenez, F. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: A systematic review and meta-analysis. Int. J. Obes. 2010, 34, 791–799. [Google Scholar] [CrossRef]
- Rothman, K.J. BMI-related errors in the measurement of obesity. Int. J. Obes. 2008, 32, S56–S59. [Google Scholar] [CrossRef]
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef]
Overweight (BMI > 25 to 29 | Obesity (BMI ≥ 30 to 39) | Morbid Obesity (BMI ≥ 40) | |
---|---|---|---|
BMI measurement | 1,274,692 | 1,014,330 | 154,246 |
ICD-10 codes | 58,781 | 329,638 | 68,380 |
Total population | 1,333,473 | 1,343,968 | 222,626 |
Overweight by BMI (N = 1,274,692) | Overweight by ICD 10 Code (N = 58,781) | pValue | Obese by BMI (N = 1,014,330) | Obese by ICD 10 Code (N = 329,638) | pValue | Morbidly Obese by BMI (N = 154,246) | Morbidly Obese by ICD 10 Code (N = 68,380) | pValue | |||||||
N/Mean | %/Std | N/Mean | %/Std | N/Mean | %/Std | N/Mean | %/Std | N/Mean | %/Std | N/Mean | %/Std | ||||
Age (years) | 63.98 | 15.71 | 61.22 | 14.58 | <0.0001 | 61.63 | 14.61 | 59.45 | 13.64 | <0.0001 | 59.00 | 13.19 | 59.22 | 11.90 | 0.0001 |
18–45 | 182,464 | 14.31% | 9284 | 15.79% | <0.0001 | 157,969 | 15.57% | 56,166 | 17.04% | <0.0001 | 26,084 | 16.91% | 9588 | 14.02% | <0.0001 |
46–54 | 117,419 | 9.21% | 7154 | 12.17% | <0.0001 | 124,346 | 12.26% | 49,427 | 14.99% | <0.0001 | 25,027 | 16.23% | 11,562 | 16.91% | 0.0001 |
55–64 | 231,203 | 18.14% | 12,692 | 21.59% | <0.0001 | 204,899 | 20.20% | 76,813 | 23.30% | <0.0001 | 37,871 | 24.55% | 19,296 | 28.22% | <0.0001 |
65+ | 743,606 | 58.34% | 29,651 | 50.44% | <0.0001 | 527,116 | 51.97% | 147,232 | 44.66% | <0.0001 | 65,264 | 42.31% | 27,934 | 40.85% | <0.0001 |
Gender | |||||||||||||||
Male | 1,192,292 | 93.54% | 52,305 | 88.98% | <0.0001 | 940,225 | 92.69% | 295,498 | 89.64% | <0.0001 | 136,790 | 88.68% | 61,763 | 90.32% | <0.0001 |
Female | 82,400 | 6.46% | 6476 | 11.02% | <0.0001 | 74,105 | 7.31% | 34,140 | 10.36% | <0.0001 | 17,456 | 11.32% | 6617 | 9.68% | <0.0001 |
Race | |||||||||||||||
White | 909,577 | 71.36% | 40,698 | 69.24% | <0.0001 | 718,767 | 70.86% | 226,780 | 68.80% | <0.0001 | 106,017 | 68.73% | 48,398 | 70.78% | <0.0001 |
Black | 202,654 | 15.90% | 10,787 | 18.35% | <0.0001 | 173,197 | 17.08% | 65,461 | 19.86% | <0.0001 | 30,538 | 19.80% | 13,296 | 19.44% | 0.0527 |
Other | 41,125 | 3.23% | 2152 | 3.66% | <0.0001 | 30,437 | 3.00% | 9895 | 3.00% | 0.9749 | 4828 | 3.13% | 1839 | 2.69% | <0.0001 |
Unknown | 121,336 | 9.52% | 5144 | 8.75% | <0.0001 | 91,929 | 9.06% | 27,502 | 8.34% | <0.0001 | 12,863 | 8.34% | 4847 | 7.09% | <0.0001 |
Comorbidities | |||||||||||||||
Coronary artery disease | 90,816 | 7.12% | 4118 | 7.01% | 0.2731 | 71,596 | 7.06% | 24,801 | 7.52% | <0.0001 | 10,568 | 6.85% | 6286 | 9.19% | <0.0001 |
Hypertension | 520,865 | 40.86% | 25,425 | 43.25% | <0.0001 | 465,660 | 45.91% | 165,903 | 50.33% | <0.0001 | 81,292 | 52.70% | 42,291 | 61.85% | <0.0001 |
Hyperlipidemia | 370,845 | 29.09% | 20,380 | 34.67% | <0.0001 | 313,911 | 30.95% | 119,540 | 36.26% | <0.0001 | 49,843 | 32.31% | 26,675 | 39.01% | <0.0001 |
Diabetes | 263,984 | 20.71% | 14,133 | 24.04% | <0.0001 | 292,407 | 28.83% | 111,105 | 33.71% | <0.0001 | 61,012 | 39.55% | 33,530 | 49.03% | <0.0001 |
Sleep apnea | 88,179 | 6.92% | 6279 | 10.68% | <0.0001 | 142,258 | 14.02% | 72,405 | 21.97% | <0.0001 | 44,050 | 28.56% | 28,862 | 42.21% | <0.0001 |
Osteoarthritis | 146,090 | 11.46% | 7540 | 12.83% | <0.0001 | 137,617 | 13.57% | 52,730 | 16.00% | <0.0001 | 25,637 | 16.62% | 15,433 | 22.57% | <0.0001 |
Hyperuricemia | 10,649 | 0.84% | 714 | 1.21% | <0.0001 | 10,306 | 1.02% | 4901 | 1.49% | <0.0001 | 1932 | 1.25% | 1220 | 1.78% | <0.0001 |
Gallbladder disease | 756 | 0.06% | 45 | 0.08% | 0.0952 | 595 | 0.06% | 249 | 0.08% | 0.0008 | 88 | 0.06% | 60 | 0.09% | 0.0095 |
Mental disorders | 474,257 | 37.21% | 24,783 | 42.16% | <0.0001 | 385,534 | 38.01% | 140,849 | 42.73% | <0.0001 | 62,311 | 40.40% | 31,914 | 46.67% | <0.0001 |
None | 104,114 | 8.17% | 4187 | 7.12% | <0.0001 | 78,146 | 7.70% | 21,811 | 6.62% | <0.0001 | 9969 | 6.46% | 3218 | 4.71% | <0.0001 |
Overweight | Obese | Morbidly Obese | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Odds Ratio | Z-Value | 95% Confidence Limits | Odds Ratio | Z-Value | 95% Confidence Limits | Odds Ratio | Z-Value | 95% Confidence Limits | ||||
Lower | Upper | Lower | Upper | Lower | Upper | |||||||
Age (years) | ||||||||||||
46–54 | 0.8914 | 0.000 | 0.8632 | 0.9206 | 0.9908 | 0.212 | 0.9765 | 1.0053 | 0.9269 | 0.000 | 0.8967 | 0.9581 |
55–64 | 0.9973 | 0.856 | 0.9690 | 1.0265 | 1.0918 | 0.000 | 1.0772 | 1.1066 | 0.9196 | 0.000 | 0.8914 | 0.9487 |
65+ | 1.3138 | 0.000 | 1.2787 | 1.3500 | 1.4359 | 0.000 | 1.4177 | 1.4544 | 1.1389 | 0.000 | 1.1042 | 1.1747 |
Gender | ||||||||||||
Male | 1.6534 | 0.000 | 1.6073 | 1.7008 | 1.4002 | 0.000 | 1.3806 | 1.4202 | 0.9211 | 0.000 | 0.8927 | 0.9504 |
Race | ||||||||||||
White | 1.0656 | 0.005 | 1.0189 | 1.1144 | 0.9505 | 0.000 | 0.9285 | 0.9731 | 0.8311 | 0.000 | 0.7861 | 0.8787 |
Black | 1.0355 | 0.152 | 0.9873 | 1.0862 | 0.9091 | 0.000 | 0.8869 | 0.9318 | 0.9096 | 0.001 | 0.8581 | 0.9643 |
Unknown | 1.1188 | 0.000 | 1.0624 | 1.1783 | 0.9904 | 0.480 | 0.9644 | 1.0172 | 0.9375 | 0.048 | 0.8794 | 0.9994 |
Comorbidities | ||||||||||||
Coronary artery disease | 1.0775 | 0.000 | 1.0417 | 1.1146 | 1.0126 | 0.120 | 0.9967 | 1.0287 | 0.9015 | 0.000 | 0.8710 | 0.9330 |
Hypertension | 0.9692 | 0.002 | 0.9500 | 0.9889 | 0.9166 | 0.000 | 0.9078 | 0.9254 | 0.8708 | 0.000 | 0.8517 | 0.8903 |
Hyperlipidemia | 0.7763 | 0.000 | 0.7612 | 0.7917 | 0.8484 | 0.000 | 0.8405 | 0.8564 | 0.9480 | 0.000 | 0.9282 | 0.9682 |
Diabetes | 0.8312 | 0.000 | 0.8136 | 0.8491 | 0.8099 | 0.000 | 0.8023 | 0.8177 | 0.7784 | 0.000 | 0.7622 | 0.7949 |
Sleep apnea | 0.6763 | 0.000 | 0.6578 | 0.6954 | 0.6252 | 0.000 | 0.6187 | 0.6317 | 0.6231 | 0.000 | 0.6108 | 0.6357 |
Osteoarthritis | 0.9379 | 0.000 | 0.9144 | 0.9621 | 0.8951 | 0.000 | 0.8850 | 0.9053 | 0.7834 | 0.000 | 0.7653 | 0.8019 |
Hyperuricemia | 0.7711 | 0.000 | 0.7142 | 0.8326 | 0.7760 | 0.000 | 0.7495 | 0.8035 | 0.8402 | 0.000 | 0.7806 | 0.9043 |
Gallbladder disease | 0.8745 | 0.384 | 0.6467 | 1.1826 | 0.8631 | 0.054 | 0.7430 | 1.0026 | 0.7685 | 0.121 | 0.5507 | 1.0724 |
Mental disorders | 0.9410 | 0.000 | 0.9242 | 0.9581 | 0.9729 | 0.000 | 0.9646 | 0.9813 | 0.9028 | 0.000 | 0.8854 | 0.9205 |
None | 0.9662 | 0.049 | 0.9336 | 0.9998 | 0.9156 | 0.000 | 0.9004 | 0.9310 | 0.8515 | 0.000 | 0.8149 | 0.8899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baser, O.; Baser, E.; Samayoa, G. Relationship between Body Mass Index and Diagnosis of Overweight or Obesity in Veterans Administration Population. Healthcare 2023, 11, 1529. https://doi.org/10.3390/healthcare11111529
Baser O, Baser E, Samayoa G. Relationship between Body Mass Index and Diagnosis of Overweight or Obesity in Veterans Administration Population. Healthcare. 2023; 11(11):1529. https://doi.org/10.3390/healthcare11111529
Chicago/Turabian StyleBaser, Onur, Erdem Baser, and Gabriela Samayoa. 2023. "Relationship between Body Mass Index and Diagnosis of Overweight or Obesity in Veterans Administration Population" Healthcare 11, no. 11: 1529. https://doi.org/10.3390/healthcare11111529
APA StyleBaser, O., Baser, E., & Samayoa, G. (2023). Relationship between Body Mass Index and Diagnosis of Overweight or Obesity in Veterans Administration Population. Healthcare, 11(11), 1529. https://doi.org/10.3390/healthcare11111529