Regional Differences in Self-Reported Health, Physical Activity and Physical Fitness of Urban Senior Citizens in Austria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Assessment of Self-Perceived General Health and Self-Reported HEPA
2.3. Assessment of Self-Reported Exercise Load and Non-Exercise Physical Activity Load
2.4. Objective Physical Fitness Assessment
2.5. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.-P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Aebi, N.J.; Bringolf-Isler, B.; Schaffner, E.; Caviezel, S.; Imboden, M.; Probst-Hensch, N. Patterns of cross-sectional and predictive physical activity in Swiss adults aged 52+: Results from the SAPALDIA cohort. Swiss Med. Wkly. 2020, 150, w20266. [Google Scholar] [CrossRef] [PubMed]
- Milanović, Z.; Pantelić, S.; Trajković, N.; Sporiš, G.; Kostić, R.; James, N. Age-related decrease in physical activity and functional fitness among elderly men and women. Clin. Interv. Aging 2013, 8, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F. Age-related decline in physical activity: A synthesis of human and animal studies. Med. Sci. Sports Exerc. 2000, 32, 1598–1600. [Google Scholar] [CrossRef]
- Gailey, N.; Lutz, W. Summary of ‘Demographic and human capital scenarios for the 21st century: 2018 assessment for 201 countries’. Vienna Yearb. Popul. Res. 2019, 1, 221–234. [Google Scholar] [CrossRef]
- Remón, Á.L.C.; Díaz-Benito, V.J.; Beatty, J.E.J.; Lozano, J.A.S. Levels of Physical Activity Among Older Adults in the European Union. J. Aging Phys. Act. 2021, 29, 242–249. [Google Scholar] [CrossRef]
- Pratt, M.; Norris, J.; Lobelo, F.; Roux, L.; Wang, G. The cost of physical inactivity: Moving into the 21st century. Br. J. Sports Med. 2014, 48, 171–173. [Google Scholar] [CrossRef]
- De Mello, R.G.B.; Dalla Corte, R.R.; Gioscia, J.; Moriguchi, E.H. Effects of physical exercise programs on sarcopenia management, dynapenia, and physical performance in the elderly: A systematic review of randomized clinical trials. J. Aging Res. 2019, 2019, 1959486. [Google Scholar] [CrossRef]
- Law, T.D.; Clark, L.A.; Clark, B.C. Resistance Exercise to Prevent and Manage Sarcopenia and Dynapenia. Annu. Rev. Gerontol. Geriatr. 2016, 36, 205–228. [Google Scholar] [CrossRef]
- Holland, G.J.; Tanaka, K.; Shigematsu, R.; Nakagaichi, M. Flexibility and Physical Functions of Older Adults: A Review. J. Aging Phys. Act. 2002, 10, 169–206. [Google Scholar] [CrossRef]
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T.; Lancet Physical Activity Series Working Group. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Arem, H.; Moore, S.C.; Patel, A.; Hartge, P.; De Gonzalez, A.B.; Visvanathan, K.; Campbell, P.T.; Freedman, M.; Weiderpass, E.; Adami, H.O.; et al. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 2015, 175, 959–967. [Google Scholar] [CrossRef]
- Rejeski, W.J.; Brawley, L.R. Functional Health: Innovations in Research on Physical Activity with Older Adults. Med. Sci. Sports Exerc. 2006, 38, 93–99. [Google Scholar] [CrossRef]
- Bouchard, C.; Blair, S.N.; Haskell, W.L. Physical Activity and Health; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Thivel, D.; Tremblay, A.; Genin, P.M.; Panahi, S.; Rivière, D.; Duclos, M. Physical Activity, Inactivity, and Sedentary Behaviors: Definitions and Implications in Occupational Health. Front. Public Health 2018, 6, 288. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Fedewa, M.V.; Hathaway, E.D.; Williams, T.D.; Schmidt, M.D. Effect of Exercise Training on Non-Exercise Physical Activity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Sports Med. 2017, 47, 1171–1182. [Google Scholar] [CrossRef]
- Silva, M.N.; Silva, C.S.; Palmeira, A.L. Exercise psychology meets public health: Avenues on health enhancing physical activity. Int. J. Sport Psychol. 2020, 51, 597–612. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines on Physical Activity and Sedentary Behaviour; World Health Organization: Geneva, Switzerland, 2020; pp. 1–582. [Google Scholar]
- Martin, B.W.; Kahlmeier, S.; Racioppi, F.; Berggren, F.; Miettinen, M.; Oppert, J.-M.; Rutter, H.; Šlachta, R.; Van Poppel, M.; Zakotnik, J.M.; et al. Evidence-based physical activity promotion—HEPA Europe, the European Network for the Promotion of Health-Enhancing Physical Activity. J. Public Health 2006, 14, 53–57. [Google Scholar] [CrossRef]
- Klimont, J.; Prammer-Waldhör, M. Soziodemographische und Sozioökonomische Determinanten von Gesundheit; Auswertungen der Daten der Österreichischen Gesundheitsbefragung Vienna: Vienna, Austria, 2022. [Google Scholar]
- Mayer, S.; Felder-Puig, R.; Gollner, E.; Dorner, T.E. Exercise Behavior, Costs of Physical Inactivity, and Physical Activity Promotion in Austria. Gesundheitswesen 2020, 82, S196–S206. [Google Scholar]
- Haider, S.; Smith, L.; Markovic, L.; Schuch, F.B.; Sadarangani, K.P.; Lopez Sanchez, G.F.; Lopez-Bueno, P.; Gil-Salmerón, A.; Rieder, A.; Tully, M.A.; et al. Associations between physical activity, sitting time, and time spent outdoors with mental health during the first COVID-19 lock down in Austria. Int. J. Environ. Res. Public Health 2021, 18, 9168. [Google Scholar] [CrossRef]
- StatistikAustria. Lebenserwartung in Gesundheit. Available online: https://www.statistik.at/statistiken/bevoelkerung-und-soziales/gesundheit/gesundheitszustand/lebenserwartung-in-gesundheit (accessed on 16 March 2023).
- Van Leeuwen, K.M.; Van Loon, M.S.; Van Nes, F.A.; Bosmans, J.E.; De Vet, H.C.; Ket, J.C.; Widdershoven, G.A.M.; Ostelo, R.W.J.G. What does quality of life mean to older adults? A thematic synthesis. PLoS ONE 2019, 14, e0213263. [Google Scholar]
- Cunningham, C.; O’Sullivan, R.; Caserotti, P.; Tully, M.A. Consequences of physical inactivity in older adults: A systematic review of reviews and meta-analyses. Scand. J. Med. Sci. Sports 2020, 30, 816–827. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, L.d.S.S.C.B.; Souza, E.C.; Rodrigues, R.A.S.; Fett, C.A.; Piva, A.B. The effects of physical activity on anxiety, depression, and quality of life in elderly people living in the community. Trends Psychiatry Psychother. 2019, 41, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Llamas, A.; García-Mayor, J.; De la Cruz-Sánchez, E. How Europeans move: A moderate-to-vigorous physical activity and sitting time paradox in the European Union. Public Health 2022, 203, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef]
- Althoff, T.; Sosič, R.; Hicks, J.L.; King, A.C.; Delp, S.L.; Leskovec, J. Large-scale physical activity data reveal worldwide activity inequality. Nature 2017, 547, 336–339. [Google Scholar] [CrossRef]
- Szabo, B.; Gollner, E.; Schnabel, F. Topographic conditions and physical activity behaviour of young adults in Austria. J. Hum. Sport Exerc. 2014, 9, S210–S221. [Google Scholar] [CrossRef]
- Muñoz, P.; Zwick, S.; Mirzabaev, A. The impact of urbanization on Austria’s carbon footprint. J. Clean. Prod. 2020, 263, 121326. [Google Scholar] [CrossRef]
- Sánchez-Lastra, M.A.; Varela, S.; Martínez-Aldao, D.; Ayán, C. Questionnaires for assessing self-perceived physical fitness: A systematic review. Exp. Gerontol. 2021, 152, 111463. [Google Scholar] [CrossRef]
- Amesberger, G.; Finkenzeller, T.; Würth, S.; Müller, E. Physical self-concept and physical fitness in elderly individuals. Scand. J. Med. Sci. Sports 2011, 21, 83–90. [Google Scholar] [CrossRef]
- Trukeschitz, B.; Blüher, M.; Schneider, C.; Jungreitmayr, S.; Eisenberg, S. “Fit-mit-ILSE” Feldtest: Design, Rekrutierung und Übersicht über die TeilnehmerInnen zu Beginn des Feldtests; WU Vienna University of Economics and Business, Research Institute for Economics of Aging: Vienna, Austria, 2019. [Google Scholar]
- Khomenko, S.; Nieuwenhuijsen, M.; Ambròs, A.; Wegener, S.; Mueller, N. Is a liveable city a healthy city? Health impacts of urban and transport planning in Vienna. Austria. Environ. Res. 2020, 183, 109238. [Google Scholar] [CrossRef]
- Gropper, H.; John, J.M.; Sudeck, G.; Thiel, A. The impact of life events and transitions on physical activity: A scoping review. PLoS ONE 2020, 15, e0234794. [Google Scholar] [CrossRef]
- Hintzpeter, B.; Finger, J.D.; Allen, J.; Kuhnert, R.; Seeling, S.; Thelen, J.; Lange, C. European health interview survey (EHIS) 2–background and study methodology. J. Health Monit. 2019, 4, 66. [Google Scholar]
- Milton, K.; Bull, F.C.; Bauman, A. Reliability and validity testing of a single-item physical activity measure. Br. J. Sports Med. 2010, 45, 203–208. [Google Scholar] [CrossRef]
- Milton, K.; Clemes, S.; Bull, F. Can a single question provide an accurate measure of physical activity? Br. J. Sport. Med. 2013, 47, 44–48. [Google Scholar] [CrossRef]
- O’halloran, P.; Kingsley, M.; Nicholson, M.; Staley, K.; Randle, E.; Wright, A.; Bauman, A. Responsiveness of the single item measure to detect change in physical activity. PLoS ONE 2020, 15, e0234420. [Google Scholar] [CrossRef]
- Wanner, M.; Probst-Hensch, N.; Kriemler, S.; Meier, F.; Bauman, A.; Martin, B.W. What physical activity surveillance needs: Validity of a single-item questionnaire. Br. J. Sports Med. 2014, 48, 1570–1576. [Google Scholar] [CrossRef]
- Rosenbaum, S.; Ward, P.B. The Simple Physical Activity Questionnaire. Lancet Psychiatry 2016, 3, e1. [Google Scholar] [CrossRef]
- WHO. WHO STEPS Surveillance Manual: The WHO STEPwise Approach to Chronic Disease Risk Factor Surveillance; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
- StatistikAustria, Österreichische Gesundheitsbefragung. Hauptergebnisse des Austrian Health Interview Survey (ATHIS) und methodische Dokumentation; Statistics Austria: Vienna, Austria, 2014. [Google Scholar]
- WHO. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Sirico, F.; Fernando, F.; Di Paolo, F.; Adami, P.E.; Signorello, M.G.; Sannino, G.; Bianco, A.; Cerrone, A.; Baioccato, V.; Filippi, N.; et al. Exercise stress test in apparently healthy individuals—Where to place the finish line? The Ferrari corporate wellness programme experience. Eur. J. Prev. Cardiol. 2019, 26, 731–738. [Google Scholar] [CrossRef]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Morishita, S.; Tsubaki, A.; Nakamura, M.; Nashimoto, S.; Fu, J.B.; Onishi, H. Rating of perceived exertion on resistance training in elderly subjects. Expert Rev. Cardiovasc. Ther. 2019, 17, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker for Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A Short Physical Performance Battery Assessing Lower Extremity Function: Association with Self-Reported Disability and Prediction of Mortality and Nursing Home Admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.J.; Rikli, R.E.; Beam, W.C. A 30-s Chair-Stand Test as a Measure of Lower Body Strength in Community-Residing Older Adults. Res. Q. Exerc. Sport 1999, 70, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Zander, A. Kraftmessgerät micro FET 2—Objektiv die Kraft messen. Physiopraxis 2018, 16, 34–35. [Google Scholar] [CrossRef]
- Buckinx, F.; Croisier, J.-L.; Reginster, J.-Y.; Dardenne, N.; Beaudart, C.; Slomian, J.; Leonard, S.; Bruyere, O. Reliability of muscle strength measures obtained with a hand-held dynamometer in an elderly population. Clin. Physiol. Funct. Imaging 2017, 37, 332–340. [Google Scholar] [CrossRef]
- Mentiplay, B.F.; Perraton, L.G.; Bower, K.J.; Adair, B.; Pua, Y.-H.; Williams, G.P.; McGaw, R.; Clark, R.A. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study. PLoS ONE 2015, 10, e0140822. [Google Scholar] [CrossRef]
- Springer, B.A.; Marin, R.; Cyhan, T.; Roberts, H.; Gill, N.W. Normative Values for the Unipedal Stance Test with Eyes Open and Closed. J. Geriatr. Phys. Ther. 2007, 30, 8–15. [Google Scholar] [CrossRef]
- Granacher, U.; Muehlbauer, T.; Gschwind, Y.J.; Pfenninger, B.; Kressig, R. W Assessment and training of strength and balance for fall prevention in the elderly: Recommendations of an interdisciplinary expert panel. Z. Gerontol. Geriatr. 2014, 47, 513–526. [Google Scholar] [CrossRef]
- Marshall, P.W.; Cashman, A.; Cheema, B.S. A randomized controlled trial for the effect of passive stretching on measures of hamstring extensibility, passive stiffness, strength, and stretch tolerance. J. Sci. Med. Sport 2011, 14, 535–540. [Google Scholar] [CrossRef]
- Ayala, F.; de Baranda, P.S.; Croix, M.D.S.; Santonja, F. Reproducibility and Concurrent Validity of Hip Joint Angle Test for Estimating Hamstring Flexibility in Recreationally Active Young Men. J. Strength Cond. Res. 2012, 26, 2372–2382. [Google Scholar] [CrossRef]
- Bartrow, K. Untersuchen und Befunden in der Physiotherapie; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Sabari, J.S.; Maltzev, I.; Lubarsky, D.; Liszkay, E.; Homel, P. Goniometric assessment of shoulder range of motion: Comparison of testing in supine and sitting positions. Arch. Phys. Med. Rehabil. 1998, 79, 647–651. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Abingdon, UK, 1988. [Google Scholar]
- Chen, H.-T.; Lin, C.-H.; Yu, L.-H. Normative Physical Fitness Scores for Community-Dwelling Older Adults. J. Nurs. Res. 2009, 17, 30–41. [Google Scholar] [CrossRef]
- Staartjes, V.E.; Schröder, M.L. The five-repetition sit-to-stand test: Evaluation of a simple and objective tool for the assessment of degenerative pathologies of the lumbar spine. J. Neurosurg. Spine 2018, 29, 380–387. [Google Scholar] [CrossRef]
- Bohannon, R.W. Reference values for the five-repetition sit-to-stand test: A descriptive meta-analysis of data from elders. Percept. Mot. Ski. 2006, 103, 215–222. [Google Scholar] [CrossRef]
- McCarthy, E.K.; Horvat, M.A.; Holtsberg, P.A.; Wisenbaker, J.M. Repeated Chair Stands as a Measure of Lower Limb Strength in Sexagenarian Women. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2004, 59, 1207–1212. [Google Scholar] [CrossRef]
- Ng, S.M.S. Balance Ability, Not Muscle Strength and Exercise Endurance, Determines the Performance of Hemiparetic Subjects on the Timed-Sit-to-Stand Test. Am. J. Phys. Med. Rehabil. 2010, 89, 497–504. [Google Scholar] [CrossRef]
- Lord, S.R.; Murray, S.M.; Chapman, K.; Munro, B.; Tiedemann, A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2002, 57, M539–M543. [Google Scholar] [CrossRef]
- Bohannon, R.W. Measurement of Sit-to-Stand Among Older Adults. Top. Geriatr. Rehabil. 2012, 28, 11–16. [Google Scholar] [CrossRef]
- Dall, P.M.; Kerr, A. Frequency of the sit to stand task: An observational study of free-living adults. Appl. Ergon. 2010, 41, 58–61. [Google Scholar] [CrossRef]
- Nyayapati, P.; Booker, J.; Wu, P.I.-K.; Theologis, A.; Dziesinski, L.; O’neill, C.; Zheng, P.; Lotz, J.C.; Matthew, R.P.; Bailey, J.F. Compensatory biomechanics and spinal loading during dynamic maneuvers in patients with chronic low back pain. Eur. Spine J. 2022, 31, 1889–1896. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Simpson, K.J.; Ferrara, M.S.; Chamnongkich, S.; Kinsey, T.; Mahoney, O.M. Biomechanical Differences Exhibited During Sit-To-Stand Between Total Knee Arthroplasty Designs of Varying Radii. J. Arthroplast. 2006, 21, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Sibella, F.; Galli, M.; Romei, M.; Montesano, A.; Crivellini, M. Biomechanical analysis of sit-to-stand movement in normal and obese subjects. Clin. Biomech. 2003, 18, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Hellmers, S.; Fudickar, S.; Lau, S.; Elgert, L.; Diekmann, R.; Bauer, J.M.; Hein, A. Measurement of the Chair Rise Performance of Older People Based on Force Plates and IMUs. Sensors 2019, 19, 1370. [Google Scholar] [CrossRef] [PubMed]
- Massy-Westropp, N.M.; Gill, T.K.; Taylor, A.W.; Bohannon, R.W.; Hill, C.L. Hand Grip Strength: Age and gender stratified normative data in a population-based study. BMC Res. Notes 2011, 4, 127. [Google Scholar] [CrossRef]
- Sallinen, J.; Stenholm, S.; Rantanen, T.; Heliövaara, M.; Sainio, P.; Koskinen, S. Hand-Grip Strength Cut Points to Screen Older Persons at Risk for Mobility Limitation. J. Am. Geriatr. Soc. 2010, 58, 1721–1726. [Google Scholar] [CrossRef]
- Bardo, A.; Kivell, T.L.; Town, K.; Donati, G.; Ballieux, H.; Stamate, C.; Edginton, T.; Forrester, G.S. Get a Grip: Variation in Human Hand Grip Strength and Implications for Human Evolution. Symmetry 2021, 13, 1142. [Google Scholar] [CrossRef]
- Simonsick, E.M.; Newman, A.B.; Nevitt, M.C.; Kritchevsky, S.B.; Ferrucci, L.; Guralnik, J.M.; Harris, T.; For the Health ABC Study Group. Measuring Higher Level Physical Function in Well-Functioning Older Adults: Expanding Familiar Approaches in the Health ABC Study. J. Gerontol. Ser. A 2001, 56, M644–M649. [Google Scholar] [CrossRef]
- Hurvitz, E.A.; Richardson, J.K.; Werner, R.A.; Ruhl, A.M.; Dixon, M.R. Unipedal stance testing as an indicator of fall risk among older outpatients. Arch. Phys. Med. Rehabil. 2000, 81, 587–591. [Google Scholar] [CrossRef]
- Bird, M.-L.; Hill, K.; Ball, M.; Williams, A.D. Effects of Resistance- and Flexibility-Exercise Interventions on Balance and Related Measures in Older Adults. J. Aging Phys. Act. 2009, 17, 444–454. [Google Scholar] [CrossRef]
- Fatouros, I.G.; Taxildaris, K.; Tokmakidis, S.P.; Kalapotharakos, V.; Aggelousis, N.; Athanasopoulos, S.; Zeeris, I.; Katrabasas, I. The Effects of Strength Training, Cardiovascular Training and Their Combination on Flexibility of Inactive Older Adults. Int. J. Sports Med. 2002, 23, 112–119. [Google Scholar] [CrossRef]
- Monteiro, W.D.; Simão, R.; Polito, M.D.; Santana, C.A.; Chaves, R.B.; Bezerra, E.; Fleck, S.J. Influence of Strength Training on Adult Women’s Flexibility. J. Strength Cond. Res. 2008, 22, 672–677. [Google Scholar] [CrossRef]
- Morton, S.K.; Whitehead, J.R.; Brinkert, R.H.; Caine, D.J. Resistance Training vs. Static Stretching: Effects on Flexibility and Strength. J. Strength Cond. Res. 2011, 25, 3391–3398. [Google Scholar] [CrossRef]
Item | Group | n | Modus | Mean Rank | Sum Ranks | U | Z | p | |
---|---|---|---|---|---|---|---|---|---|
Exercise Frequency n: 210 | Total | 210 | 3 | 105.5 | 22,155.0 | ||||
Region | Salzburg | 90 | 4 | 130.8 | 11,773.0 | 3122.0 | −5.385 | <0.001 | |
Vienna | 120 | 3 | 86.5 | 10,382.0 | |||||
Gender | Men | 43 | 4 | 111.2 | 4780.5 | 3346.5 | −0.707 | 0.479 | |
Women | 167 | 3 | 104.0 | 17,374.5 | |||||
Exercise Intensity n: 203 | Total | 203 | 5 | 102.0 | 20,706.0 | ||||
Region | Salzburg | 88 | 5 | 123.6 | 10,872.0 | 3164.0 | −4.630 | <0.001 | |
Vienna | 115 | 1 | 85.5 | 9834.0 | |||||
Gender | Men | 42 | 6 | 105.7 | 4438.5 | 3226.5 | −0.462 | 0.644 | |
Women | 161 | 5 | 101.0 | 16,267.5 | |||||
Exercise Duration n: 202 | Total | 202 | 3 | 101.5 | 20,503.0 | ||||
Region | Salzburg | 88 | 3 | 132.9 | 11,696.0 | 2252.0 | −7.017 | <0.001 | |
Vienna | 114 | 2 | 77.3 | 8807.0 | |||||
Gender | Men | 41 | 3 | 121.0 | 4961.0 | 2501.0 | −2.502 | 0.012 | |
Women | 161 | 3 | 96.5 | 15,542.0 | |||||
NEPA Frequency n: 210 | Total | 210 | 1 | 105.5 | 22,155.0 | ||||
Region | Salzburg | 90 | 3 | 137.9 | 12,411.0 | 2484.0 | −7.410 | <0.001 | |
Vienna | 120 | 1 | 81.2 | 9744.0 | |||||
Gender | Men | 43 | 1 | 92.5 | 3978.0 | 3032.0 | −1.549 | 0.082 | |
Women | 167 | 1 | 108.8 | 18,177.0 | |||||
NEPA Intensity n: 206 | Total | 206 | 1 | 103.5 | 21,321.0 | ||||
Region | Salzburg | 87 | 1 | 136.4 | 11,870.5 | 2310.5 | −7.514 | <0.001 | |
Vienna | 119 | 1 | 79.4 | 9450.5 | |||||
Gender | Men | 43 | 1 | 92.2 | 3964.5 | 3018.5 | −1.549 | 0.121 | |
Women | 163 | 1 | 106.5 | 17,356.5 | |||||
NEPA Duration n: 204 | Total | 204 | 1 | 102.5 | 20,910.0 | ||||
Region | Salzburg | 84 | 1 | 128.9 | 10,831.0 | 2819.0 | −6.136 | <0.001 | |
Vienna | 120 | 1 | 84.0 | 10,079.0 | |||||
Gender | Men | 43 | 1 | 91.0 | 3913.5 | 2967.5 | −1.647 | 0.100 | |
Women | 161 | 1 | 105.6 | 16,996.5 |
Salzburg n = 90 w, n = 72, m, n = 18 | Vienna n = 120 w, n = 95, m, n = 25 | Welch’s t-Test | 95% CI of the Differences | |||||||
---|---|---|---|---|---|---|---|---|---|---|
M | SD | M | SD | t(df) | p | Cohen’s d | Lower | Upper | ||
Grip (kg) | Total | 30.0 | 8.1 | 28.9 | 8.5 | 0.911 (196.337) | 0.363 | 0.126 | −1.2 | 3.3 |
Women | 26.8 | 4.1 | 25.7 | 6.1 | 1.501 (164.229) | 0.135 | 0.228 | −0.3 | 2.5 | |
Men | 42.7 | 7.5 | 41.1 | 7.8 | 0.686 (367.404) | 0.497 | 0.211 | −3.2 | 6.4 | |
UPS (sec) | Total | 53.5 | 14.3 | 45.4 | 18.4 | 3.561 (207.750) | <0.001 * | 0.479 | 3.6 | 12.5 |
Women | 53.6 | 14.3 | 46.7 | 18.2 | 2.768 (164.823) | 0.006 * | 0.418 | 2.0 | 11.9 | |
Men | 52.9 | 14.9 | 40.8 | 18.9 | 2.357 (40.594) | 0.023 * | 0.701 | 1.7 | 22.6 | |
5CR (sec) | Total | 11.2 | 3.1 | 10.6 | 2.4 | 1.430 (162.914) | 0.155 | 0.207 | −0.2 | 1.3 |
Women | 11.2 | 2.8 | 10.6 | 2.3 | 1.453 (134.399) | 0.149 | 0.234 | −0.2 | 1.4 | |
Men | 11.1 | 4.0 | 10.6 | 2.7 | 0.384 (28.267) | 0.704 | 0.126 | −1.8 | 2.6 | |
30CR (cts) | Total | 15.7 | 3.8 | 16.8 | 3.8 | −2.157 (193.275) | 0.032 * | 0.300 | −2.2 | −0.1 |
Women | 15.2 | 3.3 | 16.9 | 3.8 | −2.980 (161.354) | 0.003 * | 0.457 | −2.7 | −0.6 | |
Men | 17.6 | 4.8 | 16.8 | 4.0 | 0.637 (32.613) | 0.529 | 0.203 | −1.9 | 3.7 | |
ShoulderF (kg) | Total | 13.5 | 3.5 | 11.6 | 3.6 | 3.693 (195.829) | <0.001 * | 0.512 | 0.9 | 2.8 |
Women | 12.3 | 2.2 | 10.5 | 2.3 | 5.072 (156.127) | <0.001 * | 0.788 | 1. 1 | 2.5 | |
Men | 18.3 | 3.5 | 16.1 | 4.3 | 1.866 (40.371) | 0.069 | 0.557 | −0.2 | 4.7 | |
HipExtF (kg) | Total | 18.2 | 3.6 | 14.7 | 3.4 | 6.936 (186.582) | <0.001 * | 0.974 | 2.4 | 4.4 |
Women | 17.3 | 2.9 | 14.1 | 2.9 | 7.051 (151.263) | <0.001 * | 1.105 | 2.3 | 4.1 | |
Men | 21.7 | 4.0 | 17.3 | 4.2 | 3.497 (37.900) | 0.001 * | 1.072 | 1.8 | 6.9 | |
HipAbdF (kg) | Total | 12.1 | 2.5 | 10.7 | 2.4 | 4.143 (185.998) | <0.001 * | 0.582 | 0.7 | 2.1 |
Women | 11.4 | 1.9 | 10.2 | 2.1 | 3.950 (161.178) | <0.001 * | 0.607 | 0.6 | 1.9 | |
Men | 14.8 | 3.1 | 12.4 | 2.5 | 2.622 (32.289) | 0.013 * | 0.836 | 0.5 | 4.1 | |
BicF (kg) | Total | 17.6 | 3.5 | 15.8 | 3.6 | 3.560 (193.421) | <0.001 * | 0.495 | 0.8 | 2.8 |
Women | 16.4 | 2.6 | 14.7 | 2.6 | 4.319 (153.552) | <0.001 * | 0.674 | 0.9 | 2.5 | |
Men | 22.4 | 2.8 | 20.3 | 3.5 | 2.227 (40.573) | 0.032 * | 0.663 | 0.2 | 4.1 | |
ShoulderMob (deg) | Total | 166.1 | 7.2 | 169.2 | 9.2 | −2.764 (207.483) | 0.008 * | 0.373 | −5.4 | −0.9 |
Women | 167.1 | 6.9 | 170.4 | 8.3 | −2.862 (163.730) | 0.005 * | 0.434 | −5.7 | −1.0 | |
Men | 162.2 | 7.5 | 164.6 | 10.9 | −0.866 (40.943) | 0.392 | 0.252 | −8.1 | 3.2 | |
LegMob (deg) | Total | 99.8 | 13.0 | 88.3 | 11.4 | 6.671 (177.248) | <0.001 * | 0.948 | 8.1 | 14.8 |
Women | 101.7 | 12.4 | 89.9 | 11.3 | 6.283 (145.150) | <0.001 * | 0.994 | 8.1 | 15.5 | |
Men | 92.2 | 12.6 | 82.3 | 9.5 | 2.808 (30.224) | 0.009 * | 0.909 | 2.7 | 17.1 |
B | 95% CI for B | SE B | Β | R2 | ΔR2 | ||
---|---|---|---|---|---|---|---|
LL | UL | ||||||
Grip strength Model | 0.604 | 0.596 | |||||
Constant | 85.655 *** | 50.638 | 120.673 | 17.76 | |||
Exercise Index | 1.250 ** | 0.464 | 2.037 | 0.399 | 0.144 | ||
NEPA Index | −0.356 | −1.056 | 0.343 | 0.355 | −0.046 | ||
Age | −0.425 | −0.894 | 0.044 | 0.238 | −0.117 | ||
Sex | −17.097 | −19.757 | −14.436 | 1.349 | −0.832 | ||
UPS Model | 0.126 | 0.109 | |||||
Constant | 147.078 ** | 51.844 | 242.312 | 48.303 | |||
Exercise Index | 5.310 *** | 2.890 | 7.731 | 1.228 | 0.296 | ||
NEPA Index | 0.187 | −1.967 | 2.340 | 1.092 | 0.012 | ||
Age | −1.700 * | −3.144 | −0.257 | 0.732 | −0.225 | ||
Sex | 2.514 | −5.760 | 10.699 | 4.151 | 0.059 | ||
5 CR Model | 0.016 | −0.003 | |||||
Constant | 3.066 | −12.771 | 18.903 | 8.033 | |||
Exercise Index | −0.279 | −0.682 | 0.124 | 0.204 | −0.099 | ||
NEPA Index | 0.149 | −0.209 | 0.507 | 0.182 | 0.060 | ||
Age | 0.126 | 0.303 | 0.807 | 0.122 | 0.303 | ||
Sex | −0.491 | −1.852 | 0.366 | 0.690 | −0.074 | ||
30 CR Model | 0.036 | 0.017 | |||||
Constant | 24.172 * | 2.009 | 46.336 | 11.242 | |||
Exercise Index | 0.523 | −0.041 | 1.086 | 0.286 | 0.131 | ||
NEPA Index | −0.417 | −0.918 | 0.084 | 0.254 | −0.118 | ||
Age | −0.131 | −0.467 | 0.205 | 0.170 | −0.078 | ||
Sex | 1.321 | −0.584 | 3.226 | 0.966 | 0.140 | ||
ShoulderF Model | 0.440 | 0.429 | |||||
Constant | 26.190 ** | 9.836 | 42.544 | 8.295 | |||
Exercise Index | 0.549 * | 0.133 | 0.964 | 0.211 | 0.143 | ||
NEPA Index | 0.103 | −0.267 | 0.473 | 0.188 | 0.030 | ||
Age | −0.253 * | −0.501 | −0.005 | 0.126 | −0.156 | ||
Sex | 6.793 *** | 5.388 | 8.198 | 0.716 | 0.744 | ||
HipExtF Model | 0.306 | 0.293 | |||||
Constant | 25.700 ** | 6.517 | 44.882 | 9.729 | |||
Exercise Index | 1.442 *** | 0.955 | 1.930 | 0.247 | 0.355 | ||
NEPA Index | 0.287 | −0.147 | 0.721 | 0.220 | 0.080 | ||
Age | −0.221 | −0.512 | 0.070 | 0.147 | −0.130 | ||
Sex | 4.451 *** | 2.802 | 6.099 | 0.836 | 0.462 | ||
HipAbdF Model | 0.256 | 0.241 | |||||
Constant | 16.970 * | 3.952 | 29.988 | 6.603 | |||
Exercise Index | 0.665 *** | 0.334 | 0.996 | 0.168 | 0.250 | ||
NEPA Index | 0.055 | −0.239 | 0.349 | 0.149 | 0.023 | ||
Age | −0.123 | −0.320 | 0.074 | 0.100 | −0.110 | ||
Sex | 3.112 *** | 1.993 | 4.231 | 0.567 | 0.493 | ||
BicF Model | 0.449 | 0.439 | |||||
Constant | 25.530 ** | 9.393 | 41.667 | 8.185 | |||
Exercise Index | 0.723 *** | 0.313 | 1.133 | 0.208 | 0.189 | ||
NEPA Index | 0.153 | −0.212 | 0.517 | 0.185 | 0.045 | ||
Age | −0.187 | −0.432 | 0.057 | 0.124 | −0.116 | ||
Sex | 6.451 *** | 5.064 | 7.383 | 0.703 | 0.710 | ||
ShoulderMob Model | 0.096 | 0.079 | |||||
Constant | 231.354 *** | 183.418 | 279.290 | 24.313 | |||
Exercise Index | 0.127 | −1.091 | 1.346 | 0.618 | 0.014 | ||
NEPA Index | −0.398 | −1.482 | 0.686 | 0.550 | −0.050 | ||
Age | −0.946 * | −1.673 | −0.219 | 0.369 | −0.253 | ||
Sex | −0.1561 | −5.680 | 2.559 | 2.089 | −0.747 | ||
LegMob Model | 0.171 | 0.155 | |||||
Constant | 112.367 ** | 40.617 | 184.118 | 36.392 | |||
Exercise Index | 3.499 *** | 1.675 | 5.323 | 0.925 | 0.252 | ||
NEPA Index | 1.641 * | 0.019 | 3.263 | 0.823 | 0.133 | ||
Age | −0.450 | −1.538 | 0.638 | 0.552 | −0.077 | ||
Sex | −6.736 * | −12.902 | −0.570 | 3.127 | −0.204 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jungreitmayr, S.; Venek, V.; Ring-Dimitriou, S. Regional Differences in Self-Reported Health, Physical Activity and Physical Fitness of Urban Senior Citizens in Austria. Healthcare 2023, 11, 1514. https://doi.org/10.3390/healthcare11101514
Jungreitmayr S, Venek V, Ring-Dimitriou S. Regional Differences in Self-Reported Health, Physical Activity and Physical Fitness of Urban Senior Citizens in Austria. Healthcare. 2023; 11(10):1514. https://doi.org/10.3390/healthcare11101514
Chicago/Turabian StyleJungreitmayr, Sonja, Verena Venek, and Susanne Ring-Dimitriou. 2023. "Regional Differences in Self-Reported Health, Physical Activity and Physical Fitness of Urban Senior Citizens in Austria" Healthcare 11, no. 10: 1514. https://doi.org/10.3390/healthcare11101514
APA StyleJungreitmayr, S., Venek, V., & Ring-Dimitriou, S. (2023). Regional Differences in Self-Reported Health, Physical Activity and Physical Fitness of Urban Senior Citizens in Austria. Healthcare, 11(10), 1514. https://doi.org/10.3390/healthcare11101514