The Impact of Intraocular Treatment on Visual Acuity of Patients Diagnosed with Branch Retinal Vein Occlusions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. BCVA Assessment
3.2. Macular Edema Evaluation
3.3. Effects on Intraocular Pressure
3.4. Statistical Analysis of the Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogers, S.; McIntosh, R.L.; Cheung, N.; Lim, L.; Wang, J.J.; Mitchell, P.; Kowalski, J.W.; Nguyen, H.; Wong, T.Y. The prevalence of retinal vein occlusion: Pooled data from population studies from the United States, Europe, Asia, and Australia. Ophthalmology 2010, 117, 313–319. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Hu, Q.; Li, H.; Xu, W.; Du, Y.; Ma, C. Comparison between Ozurdex and intravitreal anti-vascular endothelial growth factor treatment for retinal vein occlusion–related macular edema: A systematic review and meta-analysis of randomized controlled trials. Indian J. Ophthalmol. 2019, 67, 1800–1809. [Google Scholar] [CrossRef] [PubMed]
- Grzybowski, A.; Told, R.; Sacu, S.; Bandello, F.; Moisseiev, E.; Loewenstein, A.; Schmidt-Erfurth, U.; On behalf of the Euretina Board. 2018 update on intravitreal injections: Euretina expert consensus recommendations. Ophthalmologica 2018, 239, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Branch Vein Occlusion Study Group. Argon laser scatter photocoagulation for prevention of neovascularization and hemorrhage in branch vein occlusion. Arch. Ophthalmol. 1986, 104, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Mitry, D.; Bunce, C.; Charteris, D. Anti-vascular endothelial growth factor for macular edema secondary to branch retinal vein occlusion. Cochrane Database Syst. Rev. 2013, 1, CD009510. [Google Scholar] [CrossRef]
- Braithwaite, T.; Nanji, A.A.; Lindsley, K.; Greenberg, P.B. Anti-vascular endothelial growth factor for macular edema secondary to central retinal vein occlusion. Cochrane Database Syst. Rev. 2014, 5, CD007325. [Google Scholar] [CrossRef]
- Laouri, M.; Chen, E.; Looman, M.; Gallagher, M. The burden of disease of retinal vein occlusion: Review of the literature. Eye 2011, 25, 981–988. [Google Scholar] [CrossRef]
- Rehak, J.; Rehak, M. Branch Retinal Vein Occlusion: Pathogenesis, Visual Prognosis, and Treatment Modalities. Curr. Eye Res. 2008, 33, 111–131. [Google Scholar] [CrossRef]
- Noma, H.; Yasuda, K.; Shimura, M. Cytokines and Pathogenesis of Central Retinal Vein Occlusion. J. Clin. Med. 2020, 9, 3457. [Google Scholar] [CrossRef]
- Jaulim, A.; Ahmed, B.; Khanam, T.; Chatziralli, I.P. Branch retinal vein occlusion: Epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina 2013, 33, 901–910. [Google Scholar] [CrossRef]
- Jefferies, P.; Clemett, R.; Day, T. An anatomical study of retinal arteriovenous crossings and their role in the pathogenesis of retinal branch vein occlusions. Aust. N. Z. J. Ophthalmol. 1993, 21, 213–217. [Google Scholar] [CrossRef]
- Seitz, R. The Retinal Vessels: Comparative Ophthalmoscopic and Histologic Studies on Healthy and Diseased Eyes; CV Mosby: St. Louis, MO, USA, 1964; p. 28. [Google Scholar]
- Christoffersen, N.L.; Larsen, M. Pathophysiology and hemodynamics of branch retinal vein occlusion. Ophthalmology 1999, 106, 2054–2062. [Google Scholar] [CrossRef]
- Trope, G.E.; Lowe, G.D.; McArdle, B.M.; Douglas, J.T.; Forbes, C.D.; Prentice, C.M.; Foulds, W.S. Abnormal blood viscosity and haemostasis in long-standing retinal vein occlusion. Br. J. Ophthalmol. 1983, 67, 137–142. [Google Scholar] [CrossRef]
- Finkelstein, D. Argon Laser Photocoagulation for Macular Edema in Branch Vein Occlusion. Ophthalmology 1986, 93, 975–977. [Google Scholar] [CrossRef]
- Parodi, M.B.; Saviano, S.; Ravalico, G. Grid laser treatment in macular branch retinal vein occlusion. Graefe’s Arch. Clin. Exp. Ophthalmol. 1999, 237, 1024–1027. [Google Scholar] [CrossRef]
- The Central Retinal Vein Occlusion Group. A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion: The Central Vein Occlusion Study Group N report. Ophthalmology 1995, 102, 1434–1444. [Google Scholar] [CrossRef]
- Kriechbaum, K.; Michels, S.; Prager, F.; Georgopoulos, M.; Funk, M.; Geitzenauer, W.; Schmidt-Erfurth, U. Intravitreal Avastin for macular edema secondary to retinal vein occlusion: A prospective study. Br. J. Ophthalmol. 2008, 92, 518–522. [Google Scholar] [CrossRef]
- Heier, J.S.; Campochiaro, P.A.; Yau, L.; Li, Z.; Saroj, N.; Rubio, R.G.; Lai, P. Ranibizumab for macular edema due to retinal vein occlusions: Long-term follow-up in the HORIZON trial. Ophthalmology 2012, 119, 802–809. [Google Scholar] [CrossRef]
- Brown, D.M.; Heier, J.S.; Clark, W.L.; Boyer, D.S.; Vitti, R.; Berliner, A.J.; Zeitz, O.; Sandbrink, R.; Zhu, X.; Haller, J.A. Intravitreal Aflibercept Injection for Macular Edema Secondary to Central Retinal Vein Occlusion: 1-Year Results From the Phase 3 COPERNICUS Study. Am. J. Ophthalmol. 2013, 155, 429–437. [Google Scholar] [CrossRef]
- Brown, D.M.; Campochiaro, P.A.; Bhisitkul, R.B.; Ho, A.C.; Gray, S.; Saroj, N.; Adamis, A.P.; Rubio, R.G.; Murahashi, W.Y. Sustained Benefits from Ranibizumab for Macular Edema Following Branch Retinal Vein Occlusion: 12-Month Outcomes of a Phase III Study. Ophthalmology 2011, 118, 1594–1602. [Google Scholar] [CrossRef]
- Matsumoto, Y.; Freund, K.B.; Peiretti, E.; Cooney, M.J.; Ferrara, D.C.A.C.; Yannuzzi, L.A. Rebound macular edema following bevacizumab (avastin) therapy for retinal venous occlusive disease. Retina 2007, 27, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Turello, M.; Pasca, S.; Daminato, R.; Russo, P.D.; Giacomello, R.; Venturelli, U.; Barillari, G. Retinal vein occlusion: Evaluation of “classic” and “emerging” risk factors and treatment. J. Thromb. Thrombolysis 2009, 29, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Pieramici, D.J.; Rabena, M.D. Anti-VEGF therapy: Comparison of current and future agents. Eye 2008, 22, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Jermak, C.M.; Dellacroce, J.T.; Heffez, J.; Peyman, G.A. Triamcinolone Acetonide in Ocular Therapeutics. Surv. Ophthalmol. 2007, 52, 503–522. [Google Scholar] [CrossRef]
- Eadie, B.D.; Etminan, M.; Carleton, B.; Maberley, D.A.; Mikelberg, F.S. Association of Repeated Intravitreous Bevacizumab Injections With Risk for Glaucoma Surgery. JAMA Ophthalmol 2017, 135, 363–368. [Google Scholar] [CrossRef]
- Goñi, F.J.; Stalmans, I.; Denis, P.; Nordmann, J.-P.; Taylor, S.; Diestelhorst, M.; Figueiredo, A.R.; Garway-Heath, D.F. Elevated Intraocular Pressure After Intravitreal Steroid Injection in Diabetic Macular Edema: Monitoring and Management. Ophthalmol. Ther. 2016, 5, 47–61. [Google Scholar] [CrossRef]
- Scott, I.U.; VanVeldhuisen, P.C.; Oden, N.L.; Ip, M.S.; Blodi, B.A.; Hartnett, M.E.; Cohen, G. Baseline predictors of visual acuity and retinal thickness outcomes in patients with retinal vein occlusion: Standard Care versus Corticosteroid for Retinal Vein Occlusion Study report. Ophthalmology 2011, 118, 345–352. [Google Scholar] [CrossRef]
- Chan, A.; Duker, J.S.; Ko, T.H.; Fujimoto, J.G.; Schuman, J.S. Normal Macular Thickness Measurements in Healthy Eyes Using Stratus Optical Coherence Tomography. Arch. Ophthalmol. 2006, 124, 193–198. [Google Scholar] [CrossRef]
- Song, W.-T.; Xia, X.-B. Ranibizumab for macular edema secondary to retinal vein occlusion: A meta-analysis of dose effects and comparison with no anti-VEGF treatment. BMC Ophthalmol. 2015, 15, 31. [Google Scholar] [CrossRef]
- Lu, Y.; Su, L.; Xu, X. Bevacizumab for Macular Edema Secondary to Retinal Vein Occlusion: A Systematic Review and Meta-Analysis. J. Ocul. Pharmacol. Ther. 2013, 29, 702–708. [Google Scholar] [CrossRef]
- Winegarner, A.; Wakabayashi, T.; Fukushima, Y.; Sato, T.; Hara-Ueno, C.; Busch, C.; Nishiyama, I.; Shiraki, N.; Sayanagi, K.; Nishida, K.; et al. Changes in retinal microvasculature and visual acuity after antivascular endothelial growth factor therapy in retinal vein occlusion. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2708–2716. [Google Scholar] [CrossRef]
- Garay-Aramburu, G.; Gómez-Moreno, A. A 5-Year Follow-Up Study of the Treatment of Macular Edema Due to Retinal Vein Occlusion Using Dexamethasone Intravitreal Implants. J. Ocul. Pharmacol. Ther. 2018, 34, 436–441. [Google Scholar] [CrossRef]
- Horner, F.; Lip, P.L.; Mushtaq, B.; Chavan, R.; Mohammed, B.; Mitra, A. Combination Therapy for Macular edema in Retinal Vein Occlusions: 3-Year Results from a Real-World Clinical Practice. Clin. Ophthalmol. 2020, 14, 955–965. [Google Scholar] [CrossRef]
- Lip, P.L.; Cikatricis, P.; Sarmad, A.; Damato, E.M.; Chavan, R.; Mitra, A.; Elsherbiny, S.; Yang, Y.; Mushtaq, B. Efficacy and timing of adjunctive therapy in the anti-VEGF treatment regimen for macular edema in retinal vein occlusion: 12-month real-world result. Eye 2018, 32, 537–545. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Lin, C.-J.; Chen, H.-S.; Tien, P.-T.; Lai, C.-T.; Hsia, N.-Y.; Lin, J.-M.; Chen, W.-L. Risk factors for repeated dexamethasone intravitreal implant therapy for macular edema due to treatment-naïve branch retinal vein occlusion. BMC Ophthalmol. 2021, 21, 142. [Google Scholar] [CrossRef]
- Capone, A., Jr.; Singer, M.A.; Dodwell, D.G.; Dreyer, R.F.; Oh, K.T.; Roth, D.B.; Walt, J.G.; Scott, L.C.; Hollander, D.A. Efficacy and safety of two or more dexamethasone intravitreal implant injections for treatment of macular edema related to retinal vein occlusion (Shasta study). Retina 2014, 34, 342–351. [Google Scholar] [CrossRef]
- Sheu, S.-J.; Wu, T.-T.; Horng, Y.-H. Efficacy and Safety of Dexamethasone Intravitreal Implant for Treatment of Refractory Macular Edema Secondary to Retinal Vein Occlusion in Taiwan. J. Ocul. Pharmacol. Ther. 2015, 31, 461–467. [Google Scholar] [CrossRef]
- Elbay, A.; Ozdemir, H.; Koytak, A.; Melikov, A. Intravitreal Dexamethasone Implant for Treatment of Serous Macular Detachment in Central Retinal Vein Occlusion. J. Ocul. Pharmacol. Ther. 2017, 33, 473–479. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Liang, X.; Xu, G.; Li, X.-Y.; Jiao, J.; Lou, J.; Hashad, Y.; China Ozurdex in RVO Study Group. Safety and efficacy of dexamethasone intravitreal implant for treatment of macular edema secondary to retinal vein occlusion in Chinese patients: Randomized, sham-controlled, multicenter study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 59–69. [Google Scholar] [CrossRef]
- Yoon, Y.H.; Kim, J.W.; Lee, J.Y.; Kim, I.T.; Kang, S.W.; Yu, H.G.; Koh, H.J.; Kim, S.S.; Chang, D.-J.; Simonyi, S. Dexamethasone Intravitreal Implant for Early Treatment and Retreatment of Macular Edema Related to Branch Retinal Vein Occlusion: The Multicenter COBALT Study. Ophthalmologica 2018, 240, 81–89. [Google Scholar] [CrossRef]
- Altunel, O.; Göktaş, A.; Duru, N.; Özköse, A.; Arifoğlu, H.B.; Ataş, M. The Effect of Age on Dexamethasone Intravitreal Implant (Ozurdex®) Response in Macular Edema Secondary to Branch Retinal Vein Occlusion. Semin. Ophthalmol. 2016, 33, 179184–179186. [Google Scholar] [CrossRef] [PubMed]
- Maturi, R.K.; Pollack, A.; Uy, H.S.; Varano, M.; Gomes, A.M.V.; Li, X.-Y.; Cui, H.; Lou, J.; Hashad, Y.; Whitcup, S.M. Intraocular pressure in patients with diabetic macular edema treated with dexamethasone intravitreal implant in the 3-year MEAD study. Retina 2016, 36, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Fleissig, E.; Loewenstein, A. Complications of Intravitreal Injections. Incidence is low, but caution is warranted. Retin. Physician 2022, 19, 27–29. [Google Scholar]
- Ramos, M.S.; Xu, L.T.; Singuri, S.; Tafur, J.C.C.; Arepalli, S.; Ehlers, J.P.; Kaiser, P.K.; Singh, R.P.; Rachitskaya, A.V.; Srivastava, S.K.; et al. Patient-Reported Complications after Intravitreal Injection and Their Predictive Factors. Ophthalmol. Retina 2021, 5, 625–632. [Google Scholar] [CrossRef]
- Arevalo, J.F.; Maia, M.; Flynn, H.W.; Saravia, M.; Avery, R.L.; Wu, L.; Farah, M.E.; Pieramici, D.J.; Berrocal, M.H.; Sanchez, J.G. Tractional retinal detachment following intravitreal bevacizumab (Avastin) in patients with severe proliferative diabetic retinopathy. Br. J. Ophthalmol. 2008, 92, 213–216. [Google Scholar] [CrossRef]
- Williams, P.D.; Chong, D.; Fuller, T.; Callanan, D. Noninfectious vitritis after intravitreal injection of anti-VEGF agents: Variations in rates and presentation by medication. Retina 2016, 36, 909–913. [Google Scholar] [CrossRef]
- Garweg, J.G.; Zandi, S. Retinal vein occlusion and the use of a dexamethasone intravitreal implant (Ozurdex®) in its treatment. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1257–1265. [Google Scholar] [CrossRef]
Parameter | Ozurdex Group | Cortisone + Anti-VEGF Group |
---|---|---|
Age (average ± SD, years) | 72 ± 4.86 | 67 ± 3.82 |
Female | 7 | 6 |
Male | 8 | 9 |
Right eye | 10 | 8 |
Left eye | 5 | 7 |
Mean BCVA baseline(LogMAR) | 0.833 | 0.947 |
IOP (average ± SD, mmHg) | 13.9 ± 2.63 | 15.4 ± 2.77 |
Central Retinal Thickness (mean ± SD, μm) | 427 ± 76.8 | 471 ± 48.8 |
Phakic | 3 | 6 |
Pseudophakic | 12 | 9 |
Visit | Treatment | N | Missing | Mean | Median | SD | Min | Max | |
---|---|---|---|---|---|---|---|---|---|
BCVA (LogMAR) | baseline | Ozurdex | 15 | 0 | 0.833 | 0.700 | 0.337 | 0.500 | 1.400 |
Cortisone + anti-VEGF | 15 | 0 | 0.947 | 1.000 | 0.307 | 0.500 | 1.700 | ||
4 months | Ozurdex | 15 | 0 | 0.540 | 0.400 | 0.247 | 0.200 | 1.000 | |
Cortisone + anti-VEGF | 15 | 0 | 0.413 | 0.400 | 0.119 | 0.200 | 0.700 | ||
6 months | Ozurdex | 15 | 0 | 0.473 | 0.400 | 0.266 | 0.200 | 1.000 | |
Cortisone + anti-VEGF | 15 | 0 | 0.367 | 0.300 | 0.206 | 0.200 | 1.000 |
Sum of Squares | df | Mean Square | F | p | |
---|---|---|---|---|---|
BCVA(LogMAR) | 0.00122 | 2 | 6.11 × 10−4 | 0.0240 | 0.976 |
BCVA(LogMAR)—Treatment | 0.26185 | 2 | 0.13092 | 5.1464 | 0.009 |
BCVA(LogMAR)—Age | 0.01735 | 2 | 0.00868 | 0.3410 | 0.713 |
Residual | 1.37376 | 54 | 0.02544 |
Sum of Squares | df | Mean Square | F | p | |
---|---|---|---|---|---|
Treatment | 2.07 × 10−4 | 1 | 2.07 × 10−4 | 0.00138 | 0.971 |
Age | 0.0881 | 1 | 0.0881 | 0.58488 | 0.451 |
Residual | 4.0674 | 27 | 0.1506 |
Comparison | ||||||
---|---|---|---|---|---|---|
Treatment | Treatment | Mean Difference | SE | df | t | Ptukey |
Ozurdex | Cortisone + anti-VEGF | 0.00351 | 0.0947 | 27.0 | 0.0371 | 0.971 |
Visit | Treatment | N | Mean | Median | SD | Min | Max | |
---|---|---|---|---|---|---|---|---|
Macular edema (μm) | baseline | Ozurdex | 15 | 427 | 404 | 76.8 | 320 | 570 |
Cortisone + anti-VEGF | 15 | 471 | 496 | 48.8 | 394 | 534 | ||
4 months | Ozurdex | 15 | 361 | 326 | 94.4 | 240 | 536 | |
Cortisone + anti-VEGF | 15 | 390 | 380 | 55.9 | 300 | 490 | ||
6 months | Ozurdex | 15 | 347 | 300 | 97.9 | 260 | 520 | |
Cortisone + anti-VEGF | 15 | 344 | 320 | 58.0 | 268 | 480 |
Visit | Treatment | N | Mean | Median | SD | Min | Max | |
---|---|---|---|---|---|---|---|---|
IOP (mmHg) | Baseline | Ozurdex | 15 | 13.9 | 13 | 2.63 | 10 | 19 |
Cortisone + anti-VEGF | 15 | 15.4 | 16 | 2.77 | 11 | 20 | ||
1 week | Ozurdex | 15 | 20.3 | 19 | 4.95 | 13 | 28 | |
Cortisone + anti-VEGF | 15 | 16.3 | 16 | 3.48 | 12 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darabuş, D.-M.; Munteanu, M.; Preda, M.-A.; Karancsi, O.L.; Șuță, M.C. The Impact of Intraocular Treatment on Visual Acuity of Patients Diagnosed with Branch Retinal Vein Occlusions. Healthcare 2023, 11, 1414. https://doi.org/10.3390/healthcare11101414
Darabuş D-M, Munteanu M, Preda M-A, Karancsi OL, Șuță MC. The Impact of Intraocular Treatment on Visual Acuity of Patients Diagnosed with Branch Retinal Vein Occlusions. Healthcare. 2023; 11(10):1414. https://doi.org/10.3390/healthcare11101414
Chicago/Turabian StyleDarabuş, Diana-Maria, Mihnea Munteanu, Maria-Alexandra Preda, Olimpiu Ladislau Karancsi, and Marius Cristian Șuță. 2023. "The Impact of Intraocular Treatment on Visual Acuity of Patients Diagnosed with Branch Retinal Vein Occlusions" Healthcare 11, no. 10: 1414. https://doi.org/10.3390/healthcare11101414
APA StyleDarabuş, D.-M., Munteanu, M., Preda, M.-A., Karancsi, O. L., & Șuță, M. C. (2023). The Impact of Intraocular Treatment on Visual Acuity of Patients Diagnosed with Branch Retinal Vein Occlusions. Healthcare, 11(10), 1414. https://doi.org/10.3390/healthcare11101414