Spinal Reflex Excitability of Lower Leg Muscles Following Acute Lateral Ankle Sprain: Bilateral Inhibition of Soleus Spinal Reflex Excitability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Spinal Reflex Excitability
2.3. Statistical Analysis
3. Results
3.1. Participant Demographics
3.2. Spinal Reflex Excitability
4. Discussion
4.1. Spinal Reflex Excitability Changes
4.2. Bilateral Inhibition
4.3. Selective Inhibition
4.4. Implications
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Delahunt, E.; Bleakley, C.M.; Bossard, D.S.; Caulfield, B.M.; Docherty, C.L.; Doherty, C.; Fourchet, F.; Fong, D.T.; Hertel, J.; Hiller, C.E.; et al. Clinical assessment of acute lateral ankle sprain injuries (ROAST): 2019 consensus statement and recommendations of the International Ankle Consortium. Br. J. Sports Med. 2018, 52, 1304–1310. [Google Scholar] [CrossRef] [Green Version]
- Herzog, M.M.; Kerr, Z.Y.; Marshall, S.W.; Wikstrom, E.A. Epidemiology of Ankle Sprains and Chronic Ankle Instability. J. Athl. Train. 2019, 54, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Hubbard, T.J.; Wikstrom, E.A. Ankle sprain: Pathophysiology, predisposing factors, and management strategies. Open Access J. Sports Med. 2010, 1, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Tiemstra, J.D. Update on acute ankle sprains. Am. Fam. Physician 2012, 85, 1170–1176. [Google Scholar]
- Bulathsinhala, L.; Hill, O.T.; Scofield, D.E.; Haley, T.F.; Kardouni, J.R. Epidemiology of Ankle Sprains and the Risk of Separation From Service in U.S. Army Soldiers. J. Orthop. Sports Phys. Ther. 2015, 45, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Waterman, B.R.; Belmont, P.J., Jr.; Cameron, K.L.; Deberardino, T.M.; Owens, B.D. Epidemiology of ankle sprain at the United States Military Academy. Am. J. Sports Med. 2010, 38, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Malliaropoulos, N.; Ntessalen, M.; Papacostas, E.; Longo, U.G.; Maffulli, N. Reinjury after acute lateral ankle sprains in elite track and field athletes. Am. J. Sports Med. 2009, 37, 1755–1761. [Google Scholar] [CrossRef]
- Hertel, J.; Corbett, R.O. An Updated Model of Chronic Ankle Instability. J. Athl. Train. 2019, 54, 572–588. [Google Scholar] [CrossRef] [Green Version]
- Riemann, B.L.; Lephart, S.M. The sensorimotor system, part I: The physiologic basis of functional joint stability. J. Athl. Train. 2002, 37, 71–79. [Google Scholar]
- Hertel, J. Sensorimotor deficits with ankle sprains and chronic ankle instability. Clin. Sports Med. 2008, 27, 353–370. [Google Scholar] [CrossRef]
- Gribble, P.A.; Bleakley, C.M.; Caulfield, B.M.; Docherty, C.L.; Fourchet, F.; Fong, D.T.; Hertel, J.; Hiller, C.E.; Kaminski, T.W.; McKeon, P.O.; et al. Evidence review for the 2016 International Ankle Consortium consensus statement on the prevalence, impact and long-term consequences of lateral ankle sprains. Br. J. Sports Med. 2016, 50, 1496–1505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, R.C.; Nyland, L.; Nitz, A.J.; Pinerola, J.; Johnson, D.L. Relationship between ankle invertor H-reflexes and acute swelling induced by inversion ankle sprain. J. Orthop. Sport Phys. 1999, 29, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Klykken, L.W.; Pietrosimone, B.G.; Kim, K.M.; Ingersoll, C.D.; Hertel, J. Motor-Neuron Pool Excitability of the Lower Leg Muscles After Acute Lateral Ankle Sprain. J. Athl. Train. 2011, 46, 263–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepley, A.S.; Gribble, P.A.; Thomas, A.C.; Tevald, M.A.; Sohn, D.H.; Pietrosimone, B.G. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: A 6-month longitudinal investigation. Scand. J. Med. Sci. Spor. 2015, 25, 828–839. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, R.M.; Ingersoll, C.D.; Hoffman, M.A.; Cordova, M.L.; Porter, D.A.; Edwards, J.E.; Babington, J.P.; Krause, B.A.; Stone, M.B. Arthrogenic muscle response to a simulated ankle joint effusion. Br. J. Sports Med. 2004, 38, 26–30. [Google Scholar] [CrossRef] [Green Version]
- McVey, E.D.; Palmieri, R.M.; Docherty, C.L.; Zinder, S.M.; Ingersoll, C.D. Arthrogenic muscle inhibition in the leg muscles of subjects exhibiting functional ankle instability. Foot Ankle Int. 2005, 26, 1055–1061. [Google Scholar] [CrossRef]
- Rice, D.A.; McNair, P.J. Quadriceps arthrogenic muscle inhibition: Neural mechanisms and treatment perspectives. Semin. Arthritis Rheum. 2010, 40, 250–266. [Google Scholar] [CrossRef]
- Palmieri-Smith, R.M.; Hopkins, J.T.; Brown, T.N. Peroneal activation deficits in persons with functional ankle instability. Am. J. Sports Med. 2009, 37, 982–988. [Google Scholar] [CrossRef]
- Kim, K.M.; Hart, J.M.; Saliba, S.A.; Hertel, J. Modulation of the Fibularis Longus Hoffmann Reflex and Postural Instability Associated With Chronic Ankle Instability. J. Athl. Train. 2016, 51, 637–643. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.M.; Ingersoll, C.D.; Hertel, J. Altered postural modulation of Hoffmann reflex in the soleus and fibularis longus associated with chronic ankle instability. J. Electromyogr. Kinesiol. 2012, 22, 997–1002. [Google Scholar] [CrossRef]
- Hiraoka, K.; Matsuo, Y.; Abe, K. Soleus H-reflex inhibition during gait initiation in Parkinson’s disease. Mov. Disord. 2005, 20, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Harkey, M.; McLeod, M.M.; Terada, M.; Gribble, P.A.; Pietrosimone, B.G. Quadratic Association between Corticomotor and Spinal-Reflexive Excitability and Self-Reported Disability in Participants with Chronic Ankle Instability. J. Sport Rehabil. 2016, 25, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Feger, M.A.; Snell, S.; Handsfield, G.G.; Blemker, S.S.; Wombacher, E.; Fry, R.; Hart, J.M.; Saliba, S.A.; Park, J.S.; Hertel, J. Diminished Foot and Ankle Muscle Volumes in Young Adults with Chronic Ankle Instability. Orthop. J. Sports Med. 2016, 4, 2325967116653719. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.M.; Kim, J.S.; Cruz-Diaz, D.; Ryu, S.; Kang, M.; Taube, W. Changes in Spinal and Corticospinal Excitability in Patients with Chronic Ankle Instability: A Systematic Review with Meta-Analysis. J. Clin. Med. 2019, 8, 1037. [Google Scholar] [CrossRef] [Green Version]
- Sonnery-Cottet, B.; Saithna, A.; Quelard, B.; Daggett, M.; Borade, A.; Ouanezar, H.; Thaunat, M.; Blakeney, W.G. Arthrogenic muscle inhibition after ACL reconstruction: A scoping review of the efficacy of interventions. Br. J. Sports Med. 2019, 53, 289–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, D.A.; McNair, P.J.; Lewis, G.N.; Dalbeth, N. Quadriceps arthrogenic muscle inhibition: The effects of experimental knee joint effusion on motor cortex excitability. Arthritis Res. Ther. 2014, 16, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, J.T.; Ingersoll, C.D.; Krause, B.A.; Edwards, J.E.; Cordova, M.L. Effect of knee joint effusion on quadriceps and soleus motoneuron pool excitability. Med. Sci. Sports Exerc. 2001, 33, 123–126. [Google Scholar] [CrossRef]
- Torry, M.R.; Decker, M.J.; Viola, R.W.; O’Connor, D.D.; Steadman, J.R. Intra-articular knee joint effusion induces quadriceps avoidance gait patterns. Clin. Biomech. 2000, 15, 147–159. [Google Scholar] [CrossRef]
- Harkey, M.S.; Gribble, P.A.; Pietrosimone, B.G. Disinhibitory interventions and voluntary quadriceps activation: A systematic review. J. Athl. Train. 2014, 49, 411–421. [Google Scholar] [CrossRef] [Green Version]
- Bruce, A.S.; Howard, J.S.; van Werkhoven, H.; McBride, J.M.; Needle, A.R. The Effects of Transcranial Direct Current Stimulation on Chronic Ankle Instability. Med. Sci. Sports Exerc. 2020, 52, 335–344. [Google Scholar] [CrossRef]
- Mawdsley, R.H.; Hoy, D.K.; Erwin, P.M. Criterion-related validity of the figure-of-eight method of measuring ankle edema. J. Orthop. Sport Phys. 2000, 30, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.L.; Irrgang, J.J.; Burdett, R.G.; Conti, S.F.; Van Swearingen, J.M. Evidence of validity for the Foot and Ankle Ability Measure (FAAM). Foot Ankle Int. 2005, 26, 968–983. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.; Palmieri, R.M.; Ingersoll, C.D. Simultaneous Hoffmann reflex measurements in multiple muscles around the ankle. Int. J. Neurosci. 2003, 113, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, R.M.; Hoffman, M.A.; Ingersoll, C.D. Intersession reliability for H-reflex measurements arising from the soleus, peroneal, and tibialis anterior musculature. Int. J. Neurosci. 2002, 112, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Karagiannakis, D.N.; Iatridou, K.I.; Mandalidis, D.G. Ankle muscles activation and postural stability with Star Excursion Balance Test in healthy individuals. Hum. Mov. Sci. 2020, 69, 102563. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Association: Hillsdale, Australia, 1988. [Google Scholar]
- Bowker, S.; Terada, M.; Thomas, A.C.; Pietrosimone, B.G.; Hiller, C.E.; Gribble, P.A. Neural Excitability and Joint Laxity in Chronic Ankle Instability, Coper, and Control Groups. J. Athl. Train. 2016, 51, 336–343. [Google Scholar] [CrossRef] [Green Version]
- McLeod, M.M.; Gribble, P.A.; Pietrosimone, B.G. Chronic Ankle Instability and Neural Excitability of the Lower Extremity. J. Athl. Train. 2015, 50, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Sefton, J.M.; Hicks-Little, C.A.; Hubbard, T.J.; Clemens, M.G.; Yengo, C.M.; Koceja, D.M.; Cordova, M.L. Segmental spinal reflex adaptations associated with chronic ankle instability. Arch. Phys. Med. Rehabil. 2008, 89, 1991–1995. [Google Scholar] [CrossRef]
- Pietrosimone, B.G.; Lepley, A.S.; Ericksen, H.M.; Clements, A.; Sohn, D.H.; Gribble, P.A. Neural Excitability Alterations After Anterior Cruciate Ligament Reconstruction. J. Athl. Train. 2015, 50, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, R.M.; Ingersoll, C.D.; Hoffman, M.A. The hoffmann reflex: Methodologic considerations and applications for use in sports medicine and athletic training research. J. Athl. Train. 2004, 39, 268–277. [Google Scholar]
- Pierrot-Deseilligny, E.; Mazevet, D. The monosynaptic reflex: A tool to investigate motor control in humans. Interest and limits. Neurophysiol. Clin. 2000, 30, 67–80. [Google Scholar] [CrossRef]
- Sanderson, A.; Wang, S.F.; Elgueta-Cancino, E.; Martinez-Valdes, E.; Sanchis-Sanchez, E.; Liew, B.; Falla, D. The effect of experimental and clinical musculoskeletal pain on spinal and supraspinal projections to motoneurons and motor unit properties in humans: A systematic review. Eur. J. Pain 2021, 25, 1668–1701. [Google Scholar] [CrossRef] [PubMed]
- Pietrosimone, B.G.; Gribble, P.A. Chronic ankle instability and corticomotor excitability of the fibularis longus muscle. J. Athl. Train. 2012, 47, 621–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbach, D.; Nebelung, W.; Weiler, H.T.; Awiszus, F. Bilateral deficit of voluntary quadriceps muscle activation after unilateral ACL tear. Med. Sci. Sports Exerc. 1999, 31, 1691–1696. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, J. Patients with chronic unilateral anterior knee pain experience bilateral deficits in quadriceps function and lower quarter flexibility: A cross-sectional study. Physiother. Theory Pract. 2021, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Urbach, D.; Awiszus, F. Impaired ability of voluntary quadriceps activation bilaterally interferes with function testing after knee injuries. A twitch interpolation study. Int. J. Sports Med. 2002, 23, 231–236. [Google Scholar] [CrossRef]
- Needle, A.R.; Lepley, A.S.; Grooms, D.R. Central Nervous System Adaptation After Ligamentous Injury: A Summary of Theories, Evidence, and Clinical Interpretation. Sports Med. 2017, 47, 1271–1288. [Google Scholar] [CrossRef]
- Wikstrom, E.A.; Naik, S.; Lodha, N.; Cauraugh, J.H. Bilateral balance impairments after lateral ankle trauma: A systematic review and meta-analysis. Gait Posture 2010, 31, 407–414. [Google Scholar] [CrossRef]
- Evans, T.; Hertel, J.; Sebastianelli, W. Bilateral deficits in postural control following lateral ankle sprain. Foot Ankle Int. 2004, 25, 833–839. [Google Scholar] [CrossRef]
- Kim, K.M.; Kim, J.S.; Oh, J.; Lee, S.Y. Time-to-boundary analysis of postural control following acute lateral ankle sprain. Gait Posture 2019, 67, 151–153. [Google Scholar] [CrossRef]
- Masani, K.; Popovic, M.R.; Nakazawa, K.; Kouzaki, M.; Nozaki, D. Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. J. Neurophysiol. 2003, 90, 3774–3782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gollnick, P.D.; Sjodin, B.; Karlsson, J.; Jansson, E.; Saltin, B. Human soleus muscle: A comparison of fiber composition and enzyme activities with other leg muscles. Pflug. Arch. 1974, 348, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Galban, C.J.; Maderwald, S.; Uffmann, K.; de Greiff, A.; Ladd, M.E. Diffusive sensitivity to muscle architecture: A magnetic resonance diffusion tensor imaging study of the human calf. Eur. J. Appl. Physiol. 2004, 93, 253–262. [Google Scholar] [CrossRef]
- Kovacs, B.; Kobor, I.; Gyimes, Z.; Sebestyen, O.; Tihanyi, J. Lower leg muscle-tendon unit characteristics are related to marathon running performance. Sci. Rep. 2020, 10, 17870. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, C.; Russo, T.L.; Delfino, G.; Peviani, S.M.; Alcantara, C.; Salvini, T.F. Effect of tibiotarsal joint inflammation on gene expression and cross-sectional area in rat soleus muscle. Braz J. Phys. Ther. 2013, 17, 244–254. [Google Scholar] [CrossRef] [Green Version]
- Maffiuletti, N.A.; Martin, A.; Babault, N.; Pensini, M.; Lucas, B.; Schieppati, M. Electrical and mechanical H(max)-to-M(max) ratio in power- and endurance-trained athletes. J. Appl. Physiol. 2001, 90, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Hertel, J. The role of nonsteroidal anti-inflammatory drugs in the treatment of acute soft tissue injuries. J. Athl. Train. 1997, 32, 350–358. [Google Scholar]
- Morishita, Y.; Kanemura, N.; Kokubun, T.; Murata, K.; Takayanagi, K. Acute molecular biological responses during spontaneous anterior cruciate ligament healing in a rat model. Sport Sci. Health 2019, 15, 659–666. [Google Scholar] [CrossRef]
- Thompson, A.K.; Chen, X.Y.; Wolpaw, J.R. Soleus H-reflex operant conditioning changes the H-reflex recruitment curve. Muscle Nerve 2013, 47, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.M.; Ingersoll, C.D.; Hertel, J. Facilitation of Hoffmann reflexes of ankle muscles in prone but not standing positions by focal ankle-joint cooling. J. Sport Rehabil. 2015, 24, 130–139. [Google Scholar] [CrossRef]
- Bleakley, C.M.; McDonough, S.M.; MacAuley, D.C.; Bjordal, J. Cryotherapy for acute ankle sprains: A randomised controlled study of two different icing protocols. Br. J. Sports Med. 2006, 40, 700–705; discussion 705. [Google Scholar] [CrossRef] [PubMed]
Group | AAS (n = 30) | Control (n = 30) | p Value |
---|---|---|---|
Sex (male/female) | 17/13 | 17/13 | N/A |
Age (yrs) | 22.1 ± 4.3 | 22.1 ± 2.1 | 0.878 |
Height (cm) | 174.8 ± 9.3 | 173.6 ± 10.2 | 0.645 |
Weight (kg) | 74.3 ± 11.4 | 71.3 ± 14.0 | 0.371 |
Ankle swelling (cm) a | 1.5 ± 1.1 * | 0.06 ± 0.3 | <0.001 |
VAS score for pain (cm) b | 3.6 ± 1.7 * | 0 | <0.001 |
FAAM-ADL (%) c | 60.4 ± 21.2 * | 99.6 ± 0.8 | <0.001 |
FAAM-Sport (%) d | 34.8 ± 23.4 * | 99.9 ± 0.6 | <0.001 |
Muscles | Side | AAS Group | Control Group | Group Effect Size a |
---|---|---|---|---|
Soleus | Injured | 0.58 ± 0.20 | 0.67 ± 0.15 | −0.51(−1.03, 0.02) |
Uninjured | 0.55 ± 0.20 | 0.68 ± 0.19 | −0.67(−1.19, −0.13) | |
Combined b | 0.56 ± 0.19 * | 0.68 ± 0.17 | −0.65(−1.17, −0.11) | |
Fibularis longus | Injured | 0.21 ± 0.14 | 0.21 ± 0.11 | 0.00(−0.54, 0.54) |
Uninjured | 0.21 ± 0.13 | 0.19 ± 0.11 | 0.17(−0.38, 0.70) | |
Combined b | 0.21 ± 0.13 | 0.20 ± 0.11 | 0.08(−0.46, 0.62) | |
Tibialis anterior | Injured | 0.16 ± 0.13 | 0.18 ± 0.11 | −0.17(−0.70, 0.38) |
Uninjured | 0.16 ± 0.10 | 0.21 ± 0.14 | −0.41(−0.95, 0.14) | |
Combined b | 0.16 ± 0.12 | 0.19 ± 0.13 | −0.24(−0.78, 0.31) |
Soleus Hmax:Mmax Ratios a | ||
---|---|---|
r | p | |
Ankle swelling (cm) b | −0.25 | 0.18 |
VAS score for pain (cm) c | −0.12 | 0.53 |
FAAM-ADL (%) d | 0.21 | 0.28 |
FAAM-Sport (%) e | 0.21 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-S.; Kim, K.-M.; Chang, E.; Jung, H.C.; Lee, J.-M.; Needle, A.R. Spinal Reflex Excitability of Lower Leg Muscles Following Acute Lateral Ankle Sprain: Bilateral Inhibition of Soleus Spinal Reflex Excitability. Healthcare 2022, 10, 1171. https://doi.org/10.3390/healthcare10071171
Kim J-S, Kim K-M, Chang E, Jung HC, Lee J-M, Needle AR. Spinal Reflex Excitability of Lower Leg Muscles Following Acute Lateral Ankle Sprain: Bilateral Inhibition of Soleus Spinal Reflex Excitability. Healthcare. 2022; 10(7):1171. https://doi.org/10.3390/healthcare10071171
Chicago/Turabian StyleKim, Joo-Sung, Kyung-Min Kim, Eunwook Chang, Hyun Chul Jung, Jung-Min Lee, and Alan R. Needle. 2022. "Spinal Reflex Excitability of Lower Leg Muscles Following Acute Lateral Ankle Sprain: Bilateral Inhibition of Soleus Spinal Reflex Excitability" Healthcare 10, no. 7: 1171. https://doi.org/10.3390/healthcare10071171
APA StyleKim, J.-S., Kim, K.-M., Chang, E., Jung, H. C., Lee, J.-M., & Needle, A. R. (2022). Spinal Reflex Excitability of Lower Leg Muscles Following Acute Lateral Ankle Sprain: Bilateral Inhibition of Soleus Spinal Reflex Excitability. Healthcare, 10(7), 1171. https://doi.org/10.3390/healthcare10071171