Comparison of Clinical Features, Complete Blood Count Parameters, and Outcomes between Two Distinct Waves of COVID-19: A Monocentric Report from Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
2.3. Data Collection
2.4. Statistics
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Hematological Characteristics
3.3. Clinical Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 1 July 2022).
- Gualano, M.R.; Corradi, A.; Voglino, G.; Bert, F.; Siliquini, R. Beyond COVID-19: A Cross-Sectional Study in Italy Exploring the COVID Collateral Impacts on Healthcare Services. Health Policy 2021, 125, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.L.; Rathmell, W.K. COVID-19 Impact on Early Career Investigators: A Call for Action. Nat. Rev. Cancer 2020, 20, 357–358. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Xu, D.; Li, H.; Xu, G.; Tian, J.; Lyu, L.; Wan, N.; Wei, L.; Rong, W.; Liu, C.; et al. Impact of Long-Term Home Quarantine on Mental Health and Physical Activity of People in Shanghai during the COVID-19 Pandemic. Front. Psychiatry 2022, 12, 782753. [Google Scholar] [CrossRef] [PubMed]
- Paula, J.R. Lockdowns due to COVID-19 Threaten Ph.D. Students’ and Early-Career Researchers’ Careers. Nat. Ecol. Evol. 2020, 4, 999. [Google Scholar] [CrossRef]
- Mureșan, A.V.; Russu, E.; Arbănași, E.M.; Kaller, R.; Hosu, I.; Arbănași, E.M.; Voidăzan, S.T. Negative Impact of the COVID-19 Pandemic on Kidney Disease Management—A Single-Center Experience in Romania. JCM 2022, 11, 2452. [Google Scholar] [CrossRef] [PubMed]
- Di Cosimo, S.; Susca, N.; Apolone, G.; Silvestris, N.; Racanelli, V. The Worldwide Impact of COVID-19 on Cancer Care: A Meta-Analysis of Surveys Published after the First Wave of the Pandemic. Front. Oncol. 2022, 12, 961380. [Google Scholar] [CrossRef] [PubMed]
- Spadaccio, C.; Pisani, A.; Salsano, A.; Nenna, A.; Fardman, A.; D’Alessandro, D.; Santini, F.; Gaudino, M.F.L.; Sundt, T.M.; Rose, D. Treatment and Outcomes of Mechanical Complications of Acute Myocardial Infarction during the COVID-19 Era: A Comparison with the Pre-COVID-19 Period. A Systematic Review and Meta-Analysis. Open Med. 2022, 17, 1412–1416. [Google Scholar] [CrossRef]
- Vallée, A. Heterogeneity of the COVID-19 Pandemic in the United States of America: A Geo-Epidemiological Perspective. Front. Public Health 2022, 10, 818989. [Google Scholar] [CrossRef]
- Gaudart, J.; Landier, J.; Huiart, L.; Legendre, E.; Lehot, L.; Bendiane, M.K.; Chiche, L.; Petitjean, A.; Mosnier, E.; Kirakoya-Samadoulougou, F.; et al. Factors Associated with the Spatial Heterogeneity of the First Wave of COVID-19 in France: A Nationwide Geo-Epidemiological Study. Lancet Public Health 2021, 6, e222–e231. [Google Scholar] [CrossRef]
- Steinegger, B.; Arola-Fernández, L.; Granell, C.; Gómez-Gardeñes, J.; Arenas, A. Behavioural Response to Heterogeneous Severity of COVID-19 Explains Temporal Variation of Cases among Different Age Groups. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2022, 380, 20210119. [Google Scholar] [CrossRef]
- Bignami-Van Assche, S.; Boujija, Y.; Ghio, D.; Stilianakis, N.I. Beware of Regional Heterogeneity When Assessing the Role of Schools in the SARS-CoV-2 Second Wave in Italy. Lancet Reg. Health—Eur. 2021, 7, 100174. [Google Scholar] [CrossRef] [PubMed]
- Alfano, V.; Ercolano, S. The Efficacy of Lockdown Against COVID-19: A Cross-Country Panel Analysis. Appl. Health Econ. Health Policy. 2020, 18, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Born, B.; Dietrich, A.M.; Müller, G.J. The Lockdown Effect: A Counterfactual for Sweden. PLoS ONE 2021, 16, e0249732. [Google Scholar] [CrossRef] [PubMed]
- Magesh, S.; John, D.; Li, W.T.; Li, Y.; Mattingly-app, A.; Jain, S.; Chang, E.Y.; Ongkeko, W.M. Disparities in COVID-19 Outcomes by Race, Ethnicity, and Socioeconomic Status: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2021, 4, e2134147. [Google Scholar] [CrossRef]
- Mude, W.; Oguoma, V.M.; Nyanhanda, T.; Mwanri, L.; Njue, C. Racial Disparities in COVID-19 Pandemic Cases, Hospitalisations, and Deaths: A Systematic Review and Meta-Analysis. J. Glob. Health 2021, 11, 05015. [Google Scholar] [CrossRef]
- Armocida, B.; Formenti, B.; Ussai, S.; Palestra, F.; Missoni, E. The Italian Health System and the COVID-19 Challenge. Lancet Public Health 2020, 5, e253. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.; Basumallick, S.; Lu, A.; Chiu, H.; Shah, M.A.; Shukla, Y.; Tiwari, A. The Healthier Healthcare Management Models for COVID-19. J. Infect. Public Health 2021, 14, 927–937. [Google Scholar] [CrossRef]
- Yasmin, F.; Najeeb, H.; Moeed, A.; Naeem, U.; Asghar, M.S.; Chughtai, N.U.; Yousaf, Z.; Seboka, B.T.; Ullah, I.; Lin, C.-Y.; et al. COVID-19 Vaccine Hesitancy in the United States: A Systematic Review. Front. Public Health 2021, 9, 770985. [Google Scholar] [CrossRef]
- Zinellu, E.; Zinellu, A.; Merella, M.; Mangoni, A.A.; Pau, M.C.; Fois, S.S.; Fois, A.G.; Carru, C.; Pirina, P. Vaccination Status and Number of Vaccine Doses Are Independently Associated with the PaO2/FiO2 Ratio on Admission in Hospitalized COVID-19 Patients. Vaccines 2022, 10, 1424. [Google Scholar] [CrossRef]
- Capalbo, C.; Aceti, A.; Simmaco, M.; Bonfini, R.; Rocco, M.; Ricci, A.; Napoli, C.; Rocco, M.; Alfonsi, V.; Teggi, A.; et al. The Exponential Phase of the COVID-19 Pandemic in Central Italy: An Integrated Care Pathway. IJERPH 2020, 17, 3792. [Google Scholar] [CrossRef]
- Long, B.; Carius, B.M.; Chavez, S.; Liang, S.Y.; Brady, W.J.; Koyfman, A.; Gottlieb, M. Clinical Update on COVID-19 for the Emergency Clinician: Presentation and Evaluation. Am. J. Emerg. Med. 2022, 54, 46–57. [Google Scholar] [CrossRef] [PubMed]
- de Bruin, S.; Bos, L.D.; van Roon, M.A.; Tuip-de Boer, A.M.; Schuurman, A.R.; Koel-Simmelinck, M.J.A.; Bogaard, H.J.; Tuinman, P.R.; van Agtmael, M.A.; Hamann, J.; et al. Clinical Features and Prognostic Factors in COVID-19: A Prospective Cohort Study. EBioMedicine 2021, 67, 103378. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Niloofa, R.; Jayarajah, U.; De Mel, S.; Abeysuriya, V.; Seneviratne, S.L. Hematological Abnormalities in COVID-19: A Narrative Review. Am. J. Trop. Med. Hyg. 2021, 104, 1188–1201. [Google Scholar] [CrossRef] [PubMed]
- Dettorre, G.M.; Dolly, S.; Loizidou, A.; Chester, J.; Jackson, A.; Mukherjee, U.; Zambelli, A.; Aguilar-Company, J.; Bower, M.; Sng, C.C.T.; et al. Systemic Pro-Inflammatory Response Identifies Patients with Cancer with Adverse Outcomes from SARS-CoV-2 Infection: The OnCovid Inflammatory Score. J. Immunother. Cancer 2021, 9, e002277. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated with Acute Respiratory Distress Syndrome and Death in Patients with Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934. [Google Scholar] [CrossRef] [Green Version]
- Yang, A.-P.; Liu, J.; Tao, W.; Li, H. The Diagnostic and Predictive Role of NLR, d-NLR and PLR in COVID-19 Patients. Int. Immunopharmacol. 2020, 84, 106504. [Google Scholar] [CrossRef]
- Hamad, D.A.; Aly, M.M.; Abdelhameid, M.A.; Ahmed, S.A.; Shaltout, A.S.; Abdel-Moniem, A.E.; Ragheb, A.M.R.; Attia, M.N.; Meshref, T.S. Combined Blood Indexes of Systemic Inflammation as a Mirror to Admission to Intensive Care Unit in COVID-19 Patients: A Multicentric Study. J. Epidemiol. Glob. Health 2022, 12, 64–73. [Google Scholar] [CrossRef]
- Peng, J.; Qi, D.; Yuan, G.; Deng, X.; Mei, Y.; Feng, L.; Wang, D. Diagnostic Value of Peripheral Hematologic Markers for Coronavirus Disease 2019 (COVID-19): A Multicenter, Cross-sectional Study. J. Clin. Lab. Anal. 2020, 34, e23475. [Google Scholar] [CrossRef]
- Karimi, A.; Shobeiri, P.; Kulasinghe, A.; Rezaei, N. Novel Systemic Inflammation Markers to Predict COVID-19 Prognosis. Front. Immunol. 2021, 12, 741061. [Google Scholar] [CrossRef]
- Karaaslan, T.; Karaaslan, E. Predictive Value of Systemic Immune-Inflammation Index in Determining Mortality in COVID-19 Patients. J. Crit. Care Med. 2022, 8, 156–164. [Google Scholar] [CrossRef]
- Citu, C.; Gorun, F.; Motoc, A.; Sas, I.; Gorun, O.M.; Burlea, B.; Tuta-Sas, I.; Tomescu, L.; Neamtu, R.; Malita, D.; et al. The Predictive Role of NLR, d-NLR, MLR, and SIRI in COVID-19 Mortality. Diagnostics 2022, 12, 122. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi, H.; Mohammadshahi, J.; Javaheri, N.; Fouladi, N.; Mirzazadeh, Y.; Aslani, M.R. Role of Leukocytes and Systemic Inflammation Indexes (NLR, PLR, MLP, DNLR, NLPR, AISI, SIR-I, and SII) on Admission Predicts in-Hospital Mortality in Non-Elderly and Elderly COVID-19 Patients. Front. Med. 2022, 9, 916453. [Google Scholar] [CrossRef] [PubMed]
- Kudlinski, B.; Zgoła, D.; Stolińska, M.; Murkos, M.; Kania, J.; Nowak, P.; Noga, A.; Wojciech, M.; Zaborniak, G.; Zembron-Lacny, A. Systemic Inflammatory Predictors of in-Hospital Mortality in COVID-19 Patients: A Retrospective Study. Diagnostics 2022, 12, 859. [Google Scholar] [CrossRef] [PubMed]
- Moisa, E.; Corneci, D.; Negoita, S.; Filimon, C.R.; Serbu, A.; Negutu, M.I.; Grintescu, I.M. Dynamic Changes of the Neutrophil-to-Lymphocyte Ratio, Systemic Inflammation Index, and Derived Neutrophil-to-Lymphocyte Ratio Independently Predict Invasive Mechanical Ventilation Need and Death in Critically Ill COVID-19 Patients. Biomedicines 2021, 9, 1656. [Google Scholar] [CrossRef]
- Halmaciu, I.; Arbănași, E.M.; Kaller, R.; Mureșan, A.V.; Arbănași, E.M.; Bacalbasa, N.; Suciu, B.A.; Cojocaru, I.I.; Runcan, A.I.; Grosu, F.; et al. Chest CT Severity Score and Systemic Inflammatory Biomarkers as Predictors of the Need for Invasive Mechanical Ventilation and of COVID-19 Patients’ Mortality. Diagnostics 2022, 12, 2089. [Google Scholar] [CrossRef]
- Arbănași, E.M.; Halmaciu, I.; Kaller, R.; Mureșan, A.V.; Arbănași, E.M.; Suciu, B.A.; Coșarcă, C.M.; Cojocaru, I.I.; Melinte, R.M.; Russu, E. Systemic Inflammatory Biomarkers and Chest CT Findings as Predictors of Acute Limb Ischemia Risk, Intensive Care Unit Admission, and Mortality in COVID-19 Patients. Diagnostics 2022, 12, 2379. [Google Scholar] [CrossRef]
- Chen, L.; Yu, J.; He, W.; Chen, L.; Yuan, G.; Dong, F.; Chen, W.; Cao, Y.; Yang, J.; Cai, L.; et al. Risk Factors for Death in 1859 Subjects with COVID-19. Leukemia 2020, 34, 2173–2183. [Google Scholar] [CrossRef]
- Ioannou, G.N.; Locke, E.; Green, P.; Berry, K.; O’Hare, A.M.; Shah, J.A.; Crothers, K.; Eastment, M.C.; Dominitz, J.A.; Fan, V.S. Risk Factors for Hospitalization, Mechanical Ventilation, or Death among 10 131 US Veterans With SARS-CoV-2 Infection. JAMA Netw. Open 2020, 3, e2022310. [Google Scholar] [CrossRef]
- Olivieri, F.; Sabbatinelli, J.; Bonfigli, A.R.; Sarzani, R.; Giordano, P.; Cherubini, A.; Antonicelli, R.; Rosati, Y.; Del Prete, S.; Di Rosa, M.; et al. Routine Laboratory Parameters, Including Complete Blood Count, Predict COVID-19 in-Hospital Mortality in Geriatric Patients. Mech. Ageing Dev. 2022, 204, 111674. [Google Scholar] [CrossRef]
- Paliogiannis, P.; Zinellu, A.; Scano, V.; Mulas, G.; De Riu, G.; Pascale, R.M.; Arru, L.B.; Carru, C.; Pirina, P.; Mangoni, A.A.; et al. Laboratory Test Alterations in Patients with COVID-19 and Non COVID-19 Interstitial Pneumonia: A Preliminary Report. J. Infect. Dev. Ctries. 2020, 14, 685–690. [Google Scholar] [CrossRef]
- Fois, A.G.; Paliogiannis, P.; Scano, V.; Cau, S.; Babudieri, S.; Perra, R.; Ruzzittu, G.; Zinellu, E.; Pirina, P.; Carru, C.; et al. The Systemic Inflammation Index on Admission Predicts in-Hospital Mortality in COVID-19 Patients. Molecules 2020, 25, 5725. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A New Method of Classifying Prognostic Comorbidity in Longitudinal Studies: Development and Validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Task Force COVID-19 Del Dipartimento Malattie Infettive e Servizio Di Informatica, Istituto Superiore Di Sanità. Epidemia COVID-19. Aggiornamento Nazionale: 17 Novembre 2021. Available online: https://www.epicentro.iss.it/coronavirus/bollettino/Bollettino-sorveglianza-integrata-COVID-19_17-novembre-2021.pdf (accessed on 1 August 2022).
- Dessie, Z.G.; Zewotir, T. Mortality-Related Risk Factors of COVID-19: A Systematic Review and Meta-Analysis of 42 Studies and 423,117 Patients. BMC Infect. Dis. 2021, 21, 855. [Google Scholar] [CrossRef] [PubMed]
- Antonini, C.; Calandrini, S.; Bianconi, F. A Modeling Study on Vaccination and Spread of SARS-CoV-2 Variants in Italy. Vaccines 2021, 9, 915. [Google Scholar] [CrossRef] [PubMed]
- Ministero Della Salute Circolare n. 10596 Del 18 Marzo 2021 “Indagine Rapida per La Valutazione Della” Prevalenza Delle Varianti VOC 202012/01 Lineage B.1.1.7, P.1, P.2, Lineage B.1.351, Lineage B.1.525, in Italia. Available online: https://www.epicentro.iss.it/coronavirus/pdf/sars-cov-2-monitoraggio-varianti-indagini-rapide-18-marzo-2021.pdf (accessed on 15 July 2022).
- Micheli, V.; Bracchitta, F.; Rizzo, A.; Mancon, A.; Mileto, D.; Lombardi, A.; Stefanelli, P.; Gismondo, M.R. First Identification of the New Severe Acute Respiratory Syndrome Coronavirus 2 Omicron Variant (B.1.1.529) in Italy. Clin. Infect. Dis. 2022, 75, 522–524. [Google Scholar] [CrossRef]
- Grabowski, F.; Kochańczyk, M.; Lipniacki, T. The Spread of SARS-CoV-2 Variant Omicron with a Doubling Time of 2.0–3.3 Days Can Be Explained by Immune Evasion. Viruses 2022, 14, 294. [Google Scholar] [CrossRef] [PubMed]
- Bálint, G.; Vörös-Horváth, B.; Széchenyi, A. Omicron: Increased Transmissibility and Decreased Pathogenicity. Signal Transduct. Target. Ther. 2022, 7, 151. [Google Scholar] [CrossRef]
- Zinellu, A.; Zinellu, E.; Pau, M.C.; Carru, C.; Pirina, P.; Fois, A.G.; Mangoni, A.A. A Comprehensive Systematic Review and Meta-Analysis of the Association between the Neutrophil-to-Lymphocyte Ratio and Adverse Outcomes in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. JCM 2022, 11, 3365. [Google Scholar] [CrossRef]
- Wu, M.; Zhou, L.; Zhu, D.; Lai, T.; Chen, Z.; Shen, H. Hematological Indices as Simple, Inexpensive and Practical Severity Markers of Obstructive Sleep Apnea Syndrome: A Meta-Analysis. J. Thorac. Dis 2018, 10, 6509–6521. [Google Scholar] [CrossRef]
- Mikolasch, T.; Sahota, J.; Garthwaite, H.; Win, T.; Ganeshan, B.; Heightman, M.; Hoy, L.; Machado, M.; Groves, A.; Porter, J. S142 Neutrophil Lymphocyte Ratio (NLR) as a Predictive Biomarker in Idiopathic Pulmonary Fibrosis (IPF). BMJ 2018, 73, A88.2–A89. [Google Scholar] [CrossRef]
- Huang, W.-J.; Huang, G.-T.; Zhan, Q.-M.; Chen, J.-L.; Luo, W.-T.; Wu, L.-H.; Wu, L.-Y.; Wu, L.-Y.; Lu, Z.-N.; Sun, Y.-F. The Neutrophil to Lymphocyte Ratio as a Novel Predictor of Asthma and Its Exacerbation: A Systematic Review and Meta-Analysis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 11719–11728. [Google Scholar] [CrossRef] [PubMed]
Wave 2 Median (IQR)/n (%) | Wave 4 Median (IQR)/n (%) | p-Value | |
---|---|---|---|
Age (years) | 72 (62–83) (n = 182) | 78.5 (67–84) (n = 160) | 0.012 |
Gender (male) | 123 (67.6) (n = 182) | 86 (53.7) (n = 160) | 0.009 |
Body mass index (kg/m2) | 27.2 (25–29.2) (n = 96) | 25 (22.5–29.4 (n = 97) | 0.0497 |
Smoking (yes) | 48 (55.8) (n = 86) | 31 (43.1) (n = 72) | 0.08 |
Admission PaO2/FiO2 ratio | 225 (145–310) (n = 180) | 231 (181–303) (n = 139) | 0.27 |
Cardiovascular disease (yes) | 125 (68.7) (n = 182) | 116 (72.5) (n = 160) | 0.44 |
Respiratory disease (yes) | 35 (19.2) (n = 182) | 49 (30.6) (n = 160) | 0.015 |
Kidney disease (yes) | 15 (8.2) (n = 182) | 23 (14.4) (n = 160) | 0.07 |
Diabetes (yes) | 45 (24.9) (n = 181) | 38 (23.7) (n = 160) | 0.81 |
Cancer (yes) | 15 (8.2) (n = 182) | 26 (16.3) (n = 159) | 0.02 |
Autoimmunity (yes) | 13 (7.2) (n = 181) | 14 (8.7) (n = 160) | 0.59 |
Charlson Comorbidity Index | 1.0 (0.0–2.0) (n = 182) | 2.0 (0.5–3.0) (n = 160) | 0.00002 |
Wave 2 Median (IQR) | Wave 4 Median (IQR) | p-Value | |
---|---|---|---|
HGB (g/dL) | 13.5 (12.0–14.8) (n = 179) | 12.1 (10.4–14.0) (n = 157) | 0.000006 |
RBC (×1012 cells/L) | 4.79 (4.25–5.22) (n = 179) | 4.53 (3.87–5.01) (n = 157) | 0.005 |
RDW (%) | 14.9 (13.8–16.2) (n = 177) | 14.8 (13.3–16.5) (n = 158) | 0.33 |
WBC (×109 cells/L) | 8.30 (5.46–11.97) (n = 179) | 8.05 (5.70–10.79) (n = 157) | 0.94 |
Neutrophils (×109 cells/L) | 6.50 (4.20–10.42) (n = 179) | 6.00 (4.28–9.20) (n = 157) | 0.34 |
Lymphocytes (×109 cells/L) | 0.80 (0.50–1.20) (n = 179) | 0.80 (0.60–1.50) (n = 157) | 0.02 |
Monocytes (×109 cells/L) | 0.40 (0.21–0.50) (n = 179) | 0.40 (0.30–0.60) (n = 157) | 0.027 |
PLT (×109 cells/L) | 230 (169–292) (n = 178) | 221 (159–293) (n = 157) | 0.21 |
MPV (fL) | 8.40 (7.90–9.20) (n = 178) | 9.30 (8.20–10.30) (n = 158) | <0.000001 |
Combined indexes | |||
NLR | 8.50 (4.15–14.94) (n = 179) | 6.79 (3.20–12.43) (n = 157) | 0.029 |
dNLR | 4.96 (2.69–8.26) (n = 179) | 3.81 (1.91–6.58) (n = 157) | 0.009 |
LMR | 2.23 (1.50–3.13) (n = 178) | 2.31 (1.41–3.50) (n = 156) | 0.66 |
PLR | 290 (168–447) (n = 178) | 236 (117–377) (n = 157) | 0.004 |
SII | 1899 (778–3734) (n = 178) | 1229 (602–3096) (n = 157) | 0.01 |
SIRI | 2.80 (1.29–6.49) (n = 179) | 2.60 (1.19–5.41) (n = 157) | 0.46 |
AISI | 632 (243–1615) (n = 178) | 477 (251–1255) (n = 157) | 0.22 |
Wave 2 n (%) | Wave 4 n (%) | p-Value | |
---|---|---|---|
Received oxygen therapy | 76 (42.5) (n = 179) | 94 (59.1) (n = 159) | 0.08 |
Received CPAP/NIMV | 78 (43.6) (n = 179) | 38 (23.9) (n = 159) | 0.008 |
Transfer to intensive care | 23 (13.1) (n = 175) | 6 (4.1) (n = 145) | 0.01 |
Wave 2 (n = 182) | Wave 4 (n = 160) | |||
---|---|---|---|---|
Rho | p-Value | Rho | p-Value | |
NLR | 0.326 | <0.001 | 0.368 | <0.001 |
dNLR | 0.315 | <0.001 | 0.394 | <0.001 |
LMR | −0.234 | 0.0017 | −0.201 | 0.0123 |
PLR | 0.232 | 0.0020 | 0.259 | 0.0011 |
SII | 0.302 | <0.001 | 0.323 | <0.001 |
SIRI | 0.263 | 0.0004 | 0.259 | 0.0011 |
AISI | 0.236 | 0.0016 | 0.226 | 0.0046 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fois, S.S.; Zinellu, E.; Zinellu, A.; Merella, M.; Pau, M.C.; Carru, C.; Fois, A.G.; Pirina, P. Comparison of Clinical Features, Complete Blood Count Parameters, and Outcomes between Two Distinct Waves of COVID-19: A Monocentric Report from Italy. Healthcare 2022, 10, 2427. https://doi.org/10.3390/healthcare10122427
Fois SS, Zinellu E, Zinellu A, Merella M, Pau MC, Carru C, Fois AG, Pirina P. Comparison of Clinical Features, Complete Blood Count Parameters, and Outcomes between Two Distinct Waves of COVID-19: A Monocentric Report from Italy. Healthcare. 2022; 10(12):2427. https://doi.org/10.3390/healthcare10122427
Chicago/Turabian StyleFois, Sara Solveig, Elisabetta Zinellu, Angelo Zinellu, Michela Merella, Maria Carmina Pau, Ciriaco Carru, Alessandro Giuseppe Fois, and Pietro Pirina. 2022. "Comparison of Clinical Features, Complete Blood Count Parameters, and Outcomes between Two Distinct Waves of COVID-19: A Monocentric Report from Italy" Healthcare 10, no. 12: 2427. https://doi.org/10.3390/healthcare10122427