Risk Prediction Performance of the Thai Cardiovascular Risk Score for Mild Cognitive Impairment in Adults with Metabolic Risk Factors in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset and Participants
2.2. Cognitive Assessment by MoCA Score [27]
2.3. Thai Cardiovascular Risk (TCVR) Score Models
- (1)
- Age, gender, DM, smoking status, SBP, and WC;
- (2)
- Age, gender, DM, smoking status, SBP, WC, and height;
- (3)
- Age, gender, DM, smoking status, SBP, and TC;
- (4)
- Age, gender, DM, smoking status, SBP, TC, and HDL;
- (5)
- Age, gender, DM, smoking status, SBP, HDL, and LDL;
- (6)
- Age, gender, DM, smoking status, SBP, and LDL.
2.4. Statistical Analysis
2.5. Missing Data
3. Results
3.1. Characteristics of the Study Participants
3.2. Six TMCIR Models
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maruhashi, T.; Soga, J.; Fujimura, N.; Idei, N.; Mikami, S.; Iwamoto, Y.; Iwamoto, A.; Kajikawa, M.; Matsumoto, T.; Oda, N.; et al. Increased arterial stiffness and cardiovascular risk prediction in controlled hypertensive patients with coronary artery disease: Post hoc analysis of FMD-J (Flow-mediated Dilation Japan) Study A. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2020, 43, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Amihăesei, I.C.; Chelaru, L. Metabolic syndrome a widespread threatening condition; risk factors, diagnostic criteria, therapeutic options, prevention and controversies: An overview. Rev. Med. -Chir. Soc. Med. Nat. Iasi 2014, 118, 896–900. [Google Scholar] [PubMed]
- Flint, A.C.; Conell, C.; Ren, X.; Banki, N.M.; Chan, S.L.; Rao, V.A.; Melles, R.B.; Bhatt, D.L. Effect of Systolic and Diastolic Blood Pressure on Cardiovascular Outcomes. N. Engl. J. Med. 2019, 381, 243–251. [Google Scholar] [CrossRef]
- Xing, L.; Jing, L.; Tian, Y.; Yan, H.; Zhang, B.; Sun, Q.; Dai, D.; Shi, L.; Liu, D.; Yang, Z.; et al. Epidemiology of dyslipidemia and associated cardiovascular risk factors in northeast China: A cross-sectional study. Nutr. Metab. Cardiovasc. Dis. NMCD 2020, 30, 2262–2270. [Google Scholar] [CrossRef] [PubMed]
- Dal Canto, E.; Ceriello, A.; Rydén, L.; Ferrini, M.; Hansen, T.B.; Schnell, O.; Standl, E.; Beulens, J.W. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur. J. Prev. Cardiol. 2019, 26, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaffe, K.; Kanaya, A.; Lindquist, K.; Simonsick, E.M.; Harris, T.; Shorr, R.I.; Tylavsky, F.A.; Newman, A.B. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA 2004, 292, 2237–2242. [Google Scholar] [CrossRef] [Green Version]
- Panza, F.; Frisardi, V.; Capurso, C.; Imbimbo, B.P.; Vendemiale, G.; Santamato, A.; D’Onofrio, G.; Seripa, D.; Sancarlo, D.; Pilotto, A.; et al. Metabolic syndrome and cognitive impairment: Current epidemiology and possible underlying mechanisms. J. Alzheimer’s Dis. JAD 2010, 21, 691–724. [Google Scholar] [CrossRef] [PubMed]
- Pal, K.; Mukadam, N.; Petersen, I.; Cooper, C. Mild cognitive impairment and progression to dementia in people with diabetes, prediabetes and metabolic syndrome: A systematic review and meta-analysis. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.S.; Vidal, J.S.; Masaki, K.; Petrovitch, H.; Ross, G.W.; Tilley, C.; DeMattos, R.B.; Tracy, R.P.; White, L.R.; Launer, L.J. Midlife blood pressure, plasma β-amyloid, and the risk for Alzheimer disease: The Honolulu Asia Aging Study. Hypertension 2012, 59, 780–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rönnemaa, E.; Zethelius, B.; Lannfelt, L.; Kilander, L. Vascular risk factors and dementia: 40-year follow-up of a population-based cohort. Dement. Geriatr. Cogn. Disord. 2011, 31, 460–466. [Google Scholar] [CrossRef]
- Walker, K.A.; Power, M.C.; Gottesman, R.F. Defining the Relationship Between Hypertension, Cognitive Decline, and Dementia: A Review. Curr. Hypertens. Rep. 2017, 19, 24. [Google Scholar] [CrossRef]
- Bello-Chavolla, O.Y.; Antonio-Villa, N.E.; Vargas-Vázquez, A.; Ávila-Funes, J.A.; Aguilar-Salinas, C.A. Pathophysiological Mechanisms Linking Type 2 Diabetes and Dementia: Review of Evidence from Clinical, Translational and Epidemiological Research. Curr. Diabetes Rev. 2019, 15, 456–470. [Google Scholar] [CrossRef]
- Appleton, J.P.; Scutt, P.; Sprigg, N.; Bath, P.M. Hypercholesterolaemia and vascular dementia. Clin. Sci. 2017, 131, 1561–1578. [Google Scholar] [CrossRef] [Green Version]
- Liao, P.J.; Lin, T.Y.; Ting, M.K.; Peng, T.I.; Chiou, W.K.; Chen, L.H.; Hsu, K.H. Chest width, waist circumference, and thigh circumference are predictors of dementia. Int. J. Geriatr. Psychiatry 2018, 33, 1019–1027. [Google Scholar] [CrossRef]
- Hishikawa, N.; Fukui, Y.; Sato, K.; Kono, S.; Yamashita, T.; Ohta, Y.; Deguchi, K.; Abe, K. Cognitive and affective functions in Alzheimer’s disease patients with metabolic syndrome. Eur. J. Neurol. 2016, 23, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, F.; Vega, S.; Olazarán, J.; Fernández, C.; Gabriel, R. Mild cognitive impairement in the elderly. Rev. Clin. Esp. 1998, 198, 159–165. [Google Scholar] [PubMed]
- Bermejo-Pareja, F.; Contador, I.; Del Ser, T.; Olazarán, J.; Llamas-Velasco, S.; Vega, S.; Benito-León, J. Predementia constructs: Mild cognitive impairment or mild neurocognitive disorder? A narrative review. Int. J. Geriatr. Psychiatry 2020, 36, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Hashem, H.; Mustafa, Y. Correlation between Metabolic Syndrome and Mild Cognitive Impairment. J. Alzheimers Dis. Park. 2018, 8, 414. [Google Scholar] [CrossRef]
- Tolea, M.I.; Morris, J.C.; Galvin, J.E. Trajectory of Mobility Decline by Type of Dementia. Alzheimer Dis. Assoc. Disord. 2016, 30, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C., Jr.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef]
- Vathesatogkit, P.; Woodward, M.; Tanomsup, S.; Ratanachaiwong, W.; Vanavanan, S.; Yamwong, S.; Sritara, P. Cohort Profile: The electricity generating authority of Thailand study. Int. J. Epidemiol. 2011, 41, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridtidat, R.; Komanasin, N.; Mogkolwongroj, P. Assessment of cardiovascular disease risk by the Rama-EGAT heart score in staff of Songkhla hospital. J. Med. Technol. Phys. Ther. 2015, 27, 14–27. [Google Scholar]
- Supina, P.; Harncharoen, K.; Siri, S.; Maneesia, A. Rama—EGAT heart Score validity among acute coronary syndromes patients in Siriraj Hospital. J. Nurs. Sci. 2009, 27, 77–82. [Google Scholar]
- O’Caoimh, R.; Timmons, S.; Molloy, D.W. Screening for Mild Cognitive Impairment: Comparison of "MCI Specific" Screening Instruments. J. Alzheimer’s Dis. JAD 2016, 51, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Wong, A.; Nyenhuis, D.; Black, S.E.; Law, L.S.N.; Lo, E.S.K.; Kwan, P.W.L.; Au, L.; Chan, A.Y.Y.; Wong, L.K.S.; Nasreddine, Z.; et al. Montreal Cognitive Assessment 5-min protocol is a brief, valid, reliable, and feasible cognitive screen for telephone administration. Stroke 2015, 46, 1059–1064. [Google Scholar] [CrossRef] [Green Version]
- Phrommintikul, A.; Sa-Nguanmoo, P.; Sripetchwandee, J.; Vathesatogkit, P.; Chattipakorn, N.; Chattipakorn, S.C. Factors associated with cognitive impairment in elderly versus nonelderly patients with metabolic syndrome: The different roles of FGF21. Sci. Rep. 2018, 8, 5174. [Google Scholar] [CrossRef] [Green Version]
- Nasreddine, Z.S.; Phillips, N.A.; Bédirian, V.; Charbonneau, S.; Whitehead, V.; Collin, I.; Cummings, J.L.; Chertkow, H. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. 2005, 53, 695–699. [Google Scholar] [CrossRef]
- Hemrungrojn, S.; Tangwongchai, S.; Charoenboon, T.; Panasawat, M.; Supasitthumrong, T.; Maleevach, P.; Likitjaroen, Y.; Phanthumchinda, K.; Maes, M. Use of the Montreal Cognitive Assessment Thai version (MoCA) to discriminate amnestic mild cognitive impairment from Alzheimer’s disease and healthy controls: Machine learning results. Dement. Geriatr. Cogn. Disord. 2021, 50, 183–194. [Google Scholar] [CrossRef]
- Thai Atherosclerosis Society. Clinical Practice Guideline on Pharmacologic Therapy of Dyslipidemia for Atherosclerotic Cardiovascular Disease Prevention; The Royal College of Physicians of Thailand (RCPT): Pathum thani, Thailand, 2016. [Google Scholar]
- Nantsupawat, N.; Booncharoen, A.; Wisetborisut, A.; Jiraporncharoen, W.; Pinyopornpanish, K.; Chutarattanakul, L.; Angkurawaranon, C. Appropriate Total cholesterol cut-offs for detection of abnormal LDL cholesterol and non-HDL cholesterol among low cardiovascular risk population. Lipids Health Dis. 2019, 18, 28. [Google Scholar] [CrossRef] [Green Version]
- Thai Hypertension Society. Thai Guidelines on The Treatment of Hypertension Update 2019. Available online: http://www.thaiheart.org/images/column_1563846428/Thai%20HT%20Guideline%202019.pdf (accessed on 19 April 2022).
- Joosten, H.; van Eersel, M.E.; Gansevoort, R.T.; Bilo, H.J.; Slaets, J.P.; Izaks, G.J. Cardiovascular risk profile and cognitive function in young, middle-aged, and elderly subjects. Stroke 2013, 44, 1543–1549. [Google Scholar] [CrossRef] [Green Version]
- Hoo, Z.H.; Candlish, J.; Teare, D. What is an ROC curve? Emerg. Med. J. 2017, 34, 357. [Google Scholar] [CrossRef] [Green Version]
- Mehra, A.; Suri, V.; Kumari, S.; Avasthi, A.; Grover, S. Association of mild cognitive impairment and metabolic syndrome in patients with hypertension. Asian J. Psychiatry 2020, 53, 102185. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Mild Cognitive Impairment. Continuum 2016, 22, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Eshkoor, S.A.; Hamid, T.A.; Mun, C.Y.; Ng, C.K. Mild cognitive impairment and its management in older people. Clin. Interv. Aging 2015, 10, 687–693. [Google Scholar] [CrossRef] [Green Version]
- Pinto, C.; Subramanyam, A.A. Mild cognitive impairment: The dilemma. Indian J. Psychiatry 2009, 51 (Suppl. S1), S44–S51. [Google Scholar]
- Odawara, T. Cautious notification and continual monitoring of patients with mild cognitive impairment. Psychogeriatr. Off. J. Jpn. Psychogeriatr. Soc. 2012, 12, 131–132. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Liang, N.; Li, X.-L.; Yang, S.-H.; Wang, Y.-P.; Shi, N.-N. Diagnosis and Treatment for Mild Cognitive Impairment: A Systematic Review of Clinical Practice Guidelines and Consensus Statements. Front. Neurol. 2021, 12, 719849. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Veronese, N.; Vernuccio, L.; Catanese, G.; Inzerillo, F.; Salemi, G.; Barbagallo, M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients 2021, 13, 4080. [Google Scholar] [CrossRef] [PubMed]
- Kalmijn, S.; Foley, D.; White, L.; Burchfiel, C.M.; Curb, J.D.; Petrovitch, H.; Ross, G.W.; Havlik, R.J.; Launer, L.J. Metabolic cardiovascular syndrome and risk of dementia in Japanese-American elderly men. The Honolulu-Asia aging study. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 2255–2260. [Google Scholar] [CrossRef] [Green Version]
- Petersen, R.C.; Roberts, R.O.; Knopman, D.S.; Boeve, B.F.; Geda, Y.E.; Ivnik, R.J.; Smith, G.E.; Jack, C.R., Jr. Mild cognitive impairment: Ten years later. Arch. Neurol. 2009, 66, 1447–1455. [Google Scholar] [CrossRef] [Green Version]
- Bennett, D.A.; Schneider, J.A.; Bienias, J.L.; Evans, D.A.; Wilson, R.S. Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology 2005, 64, 834–841. [Google Scholar] [CrossRef]
- Jicha, G.A.; Parisi, J.E.; Dickson, D.W.; Johnson, K.; Cha, R.; Ivnik, R.J.; Tangalos, E.G.; Boeve, B.F.; Knopman, D.S.; Braak, H.; et al. Neuropathologic outcome of mild cognitive impairment following progression to clinical dementia. Arch. Neurol. 2006, 63, 674–681. [Google Scholar] [CrossRef] [Green Version]
- Kshirsagar, V.; Thingore, C.; Juvekar, A. Insulin resistance: A connecting link between Alzheimer’s disease and metabolic disorder. Metab. Brain Dis. 2021, 36, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Pinyopornpanish, K.; Chattipakorn, N.; Chattipakorn, S.C. Lipocalin-2: Its perspectives in brain pathology and possible roles in cognition. J. Neuroendocrinol. 2019, 31, e12779. [Google Scholar] [CrossRef] [PubMed]
- Buawangpong, N.; Pinyopornpanish, K.; Siri-Angkul, N.; Chattipakorn, N.; Chattipakorn, S.C. The role of trimethylamine-N-Oxide in the development of Alzheimer’s disease. J. Cell. Physiol. 2021, 237, 1661–1685. [Google Scholar] [CrossRef]
- Won, H.; Abdul, M.Z.; Mat Ludin, A.F.; Omar, M.A.; Razali, R.; Shahar, S. The cut-off values of anthropometric variables for predicting mild cognitive impairment in Malaysian older adults: A large population based cross-sectional study. Clin. Interv. Aging 2017, 12, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.; Hay, P.; Campbell, L.; Trollor, J.N. A review of the association between obesity and cognitive function across the lifespan: Implications for novel approaches to prevention and treatment. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2011, 12, 740–755. [Google Scholar] [CrossRef]
- Whitmer, R.A.; Sidney, S.; Selby, J.; Johnston, S.C.; Yaffe, K. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 2005, 64, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.; Kåreholt, I.; Ngandu, T.; Winblad, B.; Nissinen, A.; Tuomilehto, J.; Soininen, H.; Kivipelto, M. Serum cholesterol changes after midlife and late-life cognition: Twenty-one-year follow-up study. Neurology 2007, 68, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, A.; Barrett-Connor, E.; Shan, J. Total, LDL, and HDL cholesterol decrease with age in older men and women. The Rancho Bernardo Study 1984-1994. Circulation 1997, 96, 37–43. [Google Scholar] [CrossRef]
- Mc Auley, M.T. The Interplay Between Cholesterol Metabolism and Intrinsic Ageing. In Subcellular Biochemistry; Springer: Singapore, 2018; Volume 90, pp. 99–118. [Google Scholar] [CrossRef]
- Gylling, H.; Strandberg, T.; Tilvis, R.; Miettinen, T.A. Regulation of serum cholesterol level in middle-aged and elderly men. Relation of cholesterol absorption and synthesis to lipoprotein metabolism. Arterioscler. Thromb. A J. Vasc. Biol. 1994, 14, 694–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waite, S.J.; Maitland, S.; Thomas, A.; Yarnall, A.J. Sarcopenia and frailty in individuals with dementia: A systematic review. Arch. Gerontol. Geriatr. 2021, 92, 104268. [Google Scholar] [CrossRef]
- Ranieri, P.; Rozzini, R.; Franzoni, S.; Barbisoni, P.; Trabucchi, M. Serum cholesterol levels as a measure of frailty in elderly patients. Exp. Aging Res. 1998, 24, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Namioka, N.; Hanyu, H.; Hirose, D.; Hatanaka, H.; Sato, T.; Shimizu, S. Oxidative stress and inflammation are associated with physical frailty in patients with Alzheimer’s disease. Geriatr. Gerontol. Int. 2017, 17, 913–918. [Google Scholar] [CrossRef] [PubMed]
- Hallfrisch, J.; Muller, D.; Drinkwater, D.; Tobin, J.; Andres, R. Continuing diet trends in men: The Baltimore Longitudinal Study of Aging (1961–1987). J. Gerontol. 1990, 45, M186–M191. [Google Scholar] [CrossRef]
- Ferrini, R.L.; Edelstein, S.L.; Barrett-Connor, E. Factors associated with health behavior change among residents 50 to 96 years of age in Rancho Bernardo, California. Am. J. Prev. Med. 1994, 10, 26–30. [Google Scholar] [CrossRef]
- Yaneva-Sirakova, T.; Traykov, L.; Petrova, J.; Gruev, I.; Vassilev, D. Screening for mild cognitive impairment in patients with cardiovascular risk factors. Neuropsychiatr. Dis. Treat. 2017, 13, 2925–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidaka, S.; Nishimiura, A.; Hirata, M.; Ishioka, K.; Ohtake, T.; Oka, M.; Tamura, T.; Shibata, K.; Nishihara, M.; Kuji, T.; et al. Prevalence of mild cognitive impairment and its association with handgrip strength in patients on hemodialysis. Sci. Rep. 2022, 12, 3850. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Jiang, H.; Zhang, J.; Jia, X.; Huang, F.; Wang, H.; Zhang, B.; Wang, L.; Gu, M.; Huang, Y.; et al. Dietary Patterns Are Associated With Multi-Dimensional Cognitive Functions Among Adults Aged 55 and Older in China. Front. Nutr. 2022, 9, 806871. [Google Scholar] [CrossRef]
- Pires, L.A.; Almeida, A.L.M.; Paraízo, M.A.; Corrêa, J.; Dias, D.D.S.; Fernandes, N.D.S.; Ezequiel, D.G.A.; Paula, R.B.; Fernandes, N. Cross-sectional assessment of mild cognitive impairment in pre-dialysis chronic kidney disease and its association with inflammation and changes seen on MRI: What the eyes cannot see. J. Bras. Nefrol. Orgao Of. Soc. Bras. Lat. -Am. Nefrol. 2022, 44, 336–348. [Google Scholar] [CrossRef]
- Tigges, S. Effect of Prevalence on Sensitivity, Specificity, Positive and Negative Predictive Value. Available online: https://radiopaedia.org/cases/94475 (accessed on 19 April 2022).
Characteristic N = 421 | Missing Values n (%) | MCI (n = 348) | Missing Values n (%) | Non-MCI (n = 73) | p-Value |
---|---|---|---|---|---|
Age (year, mean ± SD) | 0 | 63.39 ± 7.15 | 0 | 62.00 ± 5.65 | 0.118 |
<65-year-old, n (%) | 189 (54.31) | 48 (65.75) | 0.073 | ||
≥65-year-old, n (%) | 159 (45.69) | 25 (34.25) | |||
Male, n (%) | 0 | 130 (37.36) | 0 | 23 (31.51) | 0.345 |
Female, n (%) | 0 | 218 (62.64) | 0 | 50 (68.49) | |
Body mass index (kg/m2, mean ± SD) | 0 | 26.17 ± 4.28 | 0 | 26.62 ± 5.43 | 0.435 |
Waist circumference (cm, mean ± SD) | 0 | 89.09 ± 12.26 | 0 | 88.63 ± 13.75 | 0.777 |
SBP (mmHg, mean ± SD) | 0 | 135.56 ± 15.45 | 0 | 134.26 ± 15.17 | 0.512 |
DBP (mmHg, mean ± SD) | 0 | 76.65 ± 9.59 | 0 | 77.59 ± 9.66 | 0.449 |
Underlying disease | |||||
Hypertension, n (%) | 0 | 262 (75.29) | 0 | 45 (61.64) | 0.017 |
Dyslipidemia, n (%) | 0 | 259 (74.43) | 0 | 54 (73.97) | 0.936 |
Type 2 Diabetes, n (%) | 0 | 151 (43.39) | 0 | 25 (34.25) | 0.150 |
Alcohol drinker, n (%) | 0 | 81 (24.14) | 0 | 12 (16.44) | 0.154 |
Smoking, n (%) | 0 | 8 (2.30) | 0 | 0 (0) | 0.191 |
Assessment | |||||
MoCA score (mean ± SD) | 0 | 19.54 ± 3.44 | 0 | 26.21 ± 1.21 | <0.001 |
Laboratory results | |||||
FBS (mg/dL, mean ± SD) | 49 (14.08) | 119.92 + 45.52 | 65 (10.96) | 109.30 + 30.79 | 0.074 |
TG (mg/dL, mean ± SD) | 6 (1.72) | 128.65 ± 71.62 | 1 (1.37) | 117.71 ± 57.22 | 0.224 |
TC (mg/dL, mean ± SD) | 7 (2.01) | 171.56 ± 38.24 | 3 (4.11) | 170.66 ± 38.75 | 0.857 |
HDL (mg/dL, mean ± SD) | 6 (1.72) | 55.36 ± 15.44 | 1 (1.37) | 58.93 ± 15.57 | 0.075 |
LDL (mg/dL, mean ± SD) | 6 (1.72) | 105.25 ± 35.52 | 2 (2.74) | 102.92 ± 33.11 | 0.610 |
Model | aOR (95% CI) | |||||
---|---|---|---|---|---|---|
M1 (n = 421) | M2 (n = 421) | M3 (n = 411) | M4 (n = 409) | M5 (n = 412) | M6 (n = 413) | |
Age (year) | 1.02 (0.99–1.06) | 1.02 (0.98–1.06) | 1.03 (0.99–1.07) | 1.03 (0.98–1.07) | 1.03 (0.99–1.07) | 1.03 (0.99–1.07) |
Male | 1.29 (0.74–2.24) | 1.77 (0.83–3.77) | 1.25 (0.71–2.19) | 1.20 (0.67–2.14) | 1.25 (0.70–2.21) | 1.35 (0.77–2.36) |
DM | 1.45 (0.82–2.56) | 1.40 (0.79–2.48) | 1.57 (0.88–2.80) | 1.47 (0.82–2.65) | 1.43 (0.80–2.55) | 1.55 (0.88–2.73) |
SBP (mmHg) | 1.00 (0.99–1.02) | 1.00 (0.99–1.02) | 1.00 (0.99–1.02) | 1.00 (0.99–1.02) | 1.00 (0.99–1.02) | 1.00 (0.99–1.02) |
WC (cm) | 0.99 (0.97–1.02) | 1.00 (0.97–1.02) | ||||
Height (cm) | 0.97 (0.92–1.02) | |||||
TC (mg/dL) | 1.00 (1.00–1.01) | 1.01 (1.00–1.01) | ||||
HDL (mg/dL) | 0.99 (0.97–1.00) | 0.99 (0.97–1.01) | ||||
LDL (mg/dL) | 1.01 (1.00–1.01) | 1.01 (1.00–1.01) | ||||
ROC | 0.58 (0.51–0.65) | 0.60 (0.53–0.66) | 0.59 (0.52–0.67) | 0.61 (0.53–0.68) | 0.60 (0.53–0.67) | 0.59 (0.51–0.66) |
Model | Subgroup Analysis | n | ROC Area | 95% CI | |
---|---|---|---|---|---|
Model 1: Age, gender, DM, SBP and WC | All ≥ 65 | 184 | 0.63 | 0.52 | 0.73 |
Male ≥ 65 | 74 | 0.67 | 0.49 | 0.85 | |
Female ≥ 65 | 110 | 0.57 | 0.42 | 0.71 | |
All < 65 | 237 | 0.52 | 0.43 | 0.61 | |
Male < 65 | 79 | 0.46 | 0.29 | 0.64 | |
Female < 65 | 158 | 0.53 | 0.42 | 0.64 | |
Model 2: Age, gender, DM, SBP WC, and height | All ≥ 65 | 184 | 0.69 | 0.58 | 0.79 |
Male ≥ 65 | 74 | 0.81 | 0.65 | 0.97 | |
Female ≥ 65 | 110 | 0.59 | 0.46 | 0.73 | |
All < 65 | 237 | 0.52 | 0.43 | 0.62 | |
Male < 65 | 79 | 0.46 | 0.30 | 0.63 | |
Female < 65 | 158 | 0.54 | 0.44 | 0.65 |
Model | Subgroup Analysis | n | ROC Area | 95% CI | |
---|---|---|---|---|---|
Model 3: Age, gender, DM, SBP and TC | All ≥ 65 | 181 | 0.59 | 0.47 | 0.71 |
Male ≥ 65 | 73 | 0.53 | 0.37 | 0.70 | |
Female ≥ 65 | 108 | 0.61 | 0.45 | 0.77 | |
All < 65 | 230 | 0.56 | 0.47 | 0.66 | |
Male < 65 | 78 | 0.56 | 0.40 | 0.72 | |
Female < 65 | 152 | 0.57 | 0.45 | 0.69 | |
Model 4: Age, gender, DM, SBP TC, and HDL | All ≥ 65 | 180 | 0.57 | 0.44 | 0.70 |
Male ≥ 65 | 72 | 0.48 | 0.30 | 0.66 | |
Female ≥ 65 | 108 | 0.61 | 0.45 | 0.76 | |
All < 65 | 229 | 0.60 | 0.51 | 0.70 | |
Male < 65 | 77 | 0.64 | 0.48 | 0.81 | |
Female < 65 | 152 | 0.59 | 0.47 | 0.70 | |
Model 5: Age, gender, DM, SBP HDL and LDL | All ≥ 65 | 180 | 0.57 | 0.44 | 0.70 |
Male ≥ 65 | 71 | 0.50 | 0.32 | 0.69 | |
Female ≥ 65 | 109 | 0.59 | 0.43 | 0.76 | |
All < 65 | 232 | 0.59 | 0.50 | 0.68 | |
Male < 65 | 78 | 0.65 | 0.48 | 0.82 | |
Female < 65 | 154 | 0.55 | 0.44 | 0.66 | |
Model 6: Age, gender, DM, SBP, and LDL | All ≥ 65 | 180 | 0.56 | 0.43 | 0.69 |
Male ≥ 65 | 71 | 0.52 | 0.34 | 0.69 | |
Female ≥ 65 | 109 | 0.59 | 0.42 | 0.77 | |
All < 65 | 233 | 0.56 | 0.47 | 0.65 | |
Male < 65 | 78 | 0.59 | 0.42 | 0.75 | |
Female < 65 | 155 | 0.55 | 0.44 | 0.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buawangpong, N.; Aramrat, C.; Pinyopornpanish, K.; Phrommintikul, A.; Soontornpun, A.; Jiraporncharoen, W.; Pliannuom, S.; Angkurawaranon, C. Risk Prediction Performance of the Thai Cardiovascular Risk Score for Mild Cognitive Impairment in Adults with Metabolic Risk Factors in Thailand. Healthcare 2022, 10, 1959. https://doi.org/10.3390/healthcare10101959
Buawangpong N, Aramrat C, Pinyopornpanish K, Phrommintikul A, Soontornpun A, Jiraporncharoen W, Pliannuom S, Angkurawaranon C. Risk Prediction Performance of the Thai Cardiovascular Risk Score for Mild Cognitive Impairment in Adults with Metabolic Risk Factors in Thailand. Healthcare. 2022; 10(10):1959. https://doi.org/10.3390/healthcare10101959
Chicago/Turabian StyleBuawangpong, Nida, Chanchanok Aramrat, Kanokporn Pinyopornpanish, Arintaya Phrommintikul, Atiwat Soontornpun, Wichuda Jiraporncharoen, Suphawita Pliannuom, and Chaisiri Angkurawaranon. 2022. "Risk Prediction Performance of the Thai Cardiovascular Risk Score for Mild Cognitive Impairment in Adults with Metabolic Risk Factors in Thailand" Healthcare 10, no. 10: 1959. https://doi.org/10.3390/healthcare10101959
APA StyleBuawangpong, N., Aramrat, C., Pinyopornpanish, K., Phrommintikul, A., Soontornpun, A., Jiraporncharoen, W., Pliannuom, S., & Angkurawaranon, C. (2022). Risk Prediction Performance of the Thai Cardiovascular Risk Score for Mild Cognitive Impairment in Adults with Metabolic Risk Factors in Thailand. Healthcare, 10(10), 1959. https://doi.org/10.3390/healthcare10101959