Bilateral Knee Joint Cooling on Anaerobic Capacity and Wheel Cadence during Sprint Cycling Intervals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Testing Procedures
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Cycling Performance
3.2. Thigh Temperature
3.3. Fatigue Perception
3.4. Heart Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kwiecien, S.Y.; McHugh, M.P. The cold truth: The role of cryotherapy in the treatment of injury and recovery from exercise. Eur. J. Appl. Physiol. 2021, 121, 2125–2142. [Google Scholar] [CrossRef] [PubMed]
- Khezri, M.B.; Akrami, A.; Majdi, M.; Gahandideh, B. Effect of cryotherapy on pain scores and satisfaction levels of patients in cataract surgery under topical anesthesia: A prospective randomized double-blind trial. BMC Res. Notes 2022, 15, 234. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.S.; Robergs, R.A.; Kravitz, L.R.; Gurney, B.A.; Mermier, C.M.; Schneider, S.M. Palm cooling delays fatigue during high-intensity bench press exercise. Med. Sci. Sports Exerc. 2010, 42, 1557–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pietrosimone, B.G.; Ingersoll, C.D. Focal knee joint cooling increases the quadriceps central activation ratio. J. Sports Sci. 2009, 27, 873–879. [Google Scholar] [CrossRef]
- Kim, H.; Lee, D.; Choi, H.-M.; Park, J. Joint cooling does not hinder athletic performance during high-intensity intermittent exercise. Int. J. Sports Med. 2016, 37, 641–646. [Google Scholar] [CrossRef]
- Bleakley, C.M.; Costello, J.T. Do thermal agents affect range of movement and mechanical properties in soft tissues? A systematic review. Arch. Phys. Med. Rehabil. 2013, 94, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Raynor, M.C.; Pietrobon, R.; Guller, U.; Higgins, L.D. Cryotherapy after ACL reconstruction: A meta-analysis. J. Knee Surg. 2005, 18, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Stackhouse, S.K.; Dean, J.C.; Lee, S.C.; Binder-MacLeod, S.A. Measurement of central activation failure of the quadriceps femoris in healthy adults. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med. 2000, 23, 1706–1712. [Google Scholar] [CrossRef]
- Lee, M.; Kim, S.; Choi, H.-M.; Park, J. Ankle or knee joint cooling alters countermovement but not squat jump height in healthy collegiate athletes. Isokinet. Exerc. Sci. 2017, 25, 1–8. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; López-Albán, C.A.; La Rotta-Villamizar, D.R.; Romero-García, J.A.; Alonso-Martinez, A.M.; Izquierdo, M. Wingate anaerobic test percentile norms in colombian healthy adults. J. Strength Cond. Res. 2016, 30, 217–225. [Google Scholar] [CrossRef]
- Stickley, C.D.; Hetzler, R.K.; Wages, J.J.; Freemyer, B.G.; Kimura, I.F. Allometric scaling of Wingate anaerobic power test scores in men. J. Strength Cond. Res. 2013, 27, 2603–2611. [Google Scholar] [CrossRef] [PubMed]
- Flouris, A.D.; Webb, P.; Kenny, G.P. Noninvasive assessment of muscle temperature during rest, exercise, and postexercise recovery in different environments. J. Appl. Physiol. 2015, 118, 1310–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brajkovic, D.; Ducharme, M.B.; Webb, P.; Reardon, F.D.; Kenny, G.P. Insulation disks on the skin to estimate muscle temperature. Eur. J. Appl. Physiol. 2006, 97, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Bijur, P.E.; Silver, W.; Gallagher, E.J. Reliability of the visual analog scale for measurement of acute pain. Acad. Emerg. Med. 2001, 8, 1153–1157. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Quantitative methods in psychology. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Palmieri-Smith, R.M.; Leonard-Frye, J.L.; Garrison, C.J.; Weltman, A.; Ingersoll, C.D. Peripheral joint cooling increases spinal reflex excitability and serum norepinephrine. Int. J. Neurosci. 2007, 117, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Arngrimsson, S.A.; Petitt, D.S.; Stueck, M.G.; Jorgensen, D.K.; Cureton, K.J. Cooling vest worn during active warm-up improves 5-km run performance in the heat. J. Appl. Physiol. 2004, 96, 1867–1874. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Song, K.; Lee, S.Y. Single-leg drop jump biomechanics after ankle or knee joint cooling in healthy young adults. J. Sport Rehabil. 2022, 31, 271–278. [Google Scholar] [CrossRef]
- Evans, T.A.; Ingersoll, C.; Knight, K.L.; Worrell, T. Agility following the application of cold therapy. J. Athl. Train. 1995, 30, 231–234. [Google Scholar]
- Uchio, Y.; Ochi, M.; Fujihara, A.; Adachi, N.; Iwasa, J.; Sakai, Y. Cryotherapy influences joint laxity and position sense of the healthy knee joint. Arch. Phys. Med. Rehabil. 2003, 84, 131–135. [Google Scholar] [CrossRef]
- Alegre, L.M.; Hasler, M.; Wenger, S.; Nachbauer, W.; Csapo, R. Does knee joint cooling change in vivo patellar tendon mechanical properties? Eur. J. Appl. Physiol. 2016, 116, 1921–1929. [Google Scholar] [CrossRef]
- Loro, W.A.; Thelen, M.D.; Rosenthal, M.D.; Stoneman, P.D.; Ross, M.D. The effects of cryotherapy on quadriceps electromyographic activity and isometric strength in patient in the early phases following knee surgery. J. Orthop. Surg. 2019, 27, 2309499019831454. [Google Scholar] [CrossRef] [PubMed]
- Takano, T.; Funahashi, Y.; Kaibuchi, K. Neural polarity: Positive and negative feedback signals. Front. Cell Dev. Biol. 2019, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Asmussen, E.; Bøje, O. Body temperature and capacity for work. Acta Physiol. Scand. 1945, 10, 1–22. [Google Scholar] [CrossRef]
- Bergh, U.; Ekblom, B. Influence of muscle temperature on maximal muscle strength and power output in human skeletal muscles. Acta Physiol. Scand. 1979, 107, 33–37. [Google Scholar] [CrossRef]
- De Ruiter, C.; De Haan, A. Temperature effect on the force/velocity relationship of the fresh and fatigued human adductor pollicis muscle. Pflügers Arch. 2000, 440, 163–170. [Google Scholar] [CrossRef]
- Edwards, R.; Harris, R.; Hultman, E.; Kaijser, L.; Koh, D.; Nordesjö, L. Effect of temperature on muscle energy metabolism and endurance during successive isometric contractions, sustained to fatigue, of the quadriceps muscle in man. J. Physiol. 1972, 220, 335–352. [Google Scholar] [CrossRef] [Green Version]
- Racinais, S.; Blonc, S.; Hue, O. Effects of active warm-up and diurnal increase in temperature on muscular power. Med. Sci. Sports Exerc. 2005, 37, 2134. [Google Scholar] [CrossRef]
- Sargeant, A.J. Effect of muscle temperature on leg extension force and short-term power output in humans. Eur. J. Appl. Physiol. Occup. Physiol. 1987, 56, 693–698. [Google Scholar] [CrossRef]
- Hajoglou, A.; Foster, C.; De, J.K.; Lucia, A.; Kernozek, T.W.; Porcari, J.P. Effect of warm-up on cycle time trial performance. Med. Sci. Sports Exerc. 2005, 37, 1608–1614. [Google Scholar] [CrossRef] [Green Version]
- Mallette, M.M.; Green, L.A.; Hodges, G.J.; Fernley, R.E.; Gabriel, D.A.; Holmes, M.W.; Cheung, S.S. The effects of local muscle temperature on force variability. Eur. J. Appl. Physiol. 2019, 119, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.M.; Cheung, S.S.; Elder, G.C.; Sleivert, G.G. Voluntary muscle activation is impaired by core temperature rather than local muscle temperature. J. Appl. Physiol. 2006, 100, 1361–1369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, S.S.; Ting, K.H.; Hon, M.; Fung, N.Y.; Choi, M.M.; Cheng, J.C.; Yeung, E.W. Effects of cold water immersion on muscle oxygenation during repeated bouts of fatiguing exercise: A randomized controlled study. Medicine 2016, 95, e2455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, D.G.; Macneil, S.A.; Holt, L.E.; Mackinnon, N.C.; Rasmussen, R.L. The effect of hot or cold water immersion on isometric strength training. J. Strength Cond. Res. 2000, 14, 21–25. [Google Scholar] [CrossRef]
- Hatzel, B.; Thomas, K. The effects of ice immersion on concentric and eccentric isokinetic muscle performance in the ankle. Isokinet. Exerc. Sci. 2000, 8, 103–107. [Google Scholar] [CrossRef]
- Molkkari, M.; Angelotti, G.; Emig, T.; Räsänen, E. Dynamical heart beat correlations during running. Sci. Rep. 2020, 10, 13627. [Google Scholar] [CrossRef]
Set 1 | Set 2 | Set 3 | Set 4 | Set 5 | ||
---|---|---|---|---|---|---|
Anaerobic Capacity (watt) | Condition 1 | 399 ± 41 | 407 ± 43 | 394 ± 37 | 385 ± 38 | 383 ± 38 |
437 ± 33 | 436 ± 37 | 441 ± 38 | 434 ± 41 | 426 ± 42 | ||
Condition 2 | 399 ± 41 | 407 ± 43 | 394 ± 37 | 385 ± 38 | 383 ± 38 | |
440 ± 46 | 455 ± 45 | 453 ± 40 | 439 ± 43 | 435 ± 44 | ||
Condition 3 | 381 ± 39 | 385 ± 43 | 369 ± 39 | 354 ± 40 | 354 ± 41 | |
440 ± 43 | 445 ± 47 | 424 ± 44 | 405 ± 45 | 395 ± 44 | ||
Cadence (rpm) | Condition 1 | 149 ± 5 | 148 ± 8 | 150 ± 7 | 147 ± 7 | 147 ± 7 |
165 ± 6 | 167 ± 7 | 165 ± 8 | 163 ± 8 | 161 ± 8 | ||
Condition 2 | 147 ± 8 | 150 ± 8 | 147 ± 7 | 145 ± 9 | 144 ± 8 | |
160 ± 8 | 165 ± 7 | 164 ± 7 | 161 ± 8 | 159 ± 8 | ||
Condition 3 | 144 ± 6 | 146 ± 7 | 145 ± 6 | 139 ± 7 | 140 ± 7 | |
163 ± 6 | 168 ± 6 | 163 ± 6 | 157 ± 7 | 155 ± 7 |
Baseline | Set 1 | Set 2 | Set 3 | Set 4 | Set 5 | ||
---|---|---|---|---|---|---|---|
Fatigue perception (cm) | Condition 1 | 2.7 ± 0.9 | 2.5 ± 0.8 | 3.0 ± 0.8 | 3.6 ± 0.8 | 4.4 ± 0.9 | 5.3 ± 1.1 |
Condition 2 | 2.7 ± 1.0 | 2.6 ± 0.9 | 3.0 ± 0.8 | 3.6 ± 0.9 | 4.2 ± 1.0 | 5.5 ± 0.9 | |
Condition 3 | 3.2 ± 1.0 | 3.1 ± 1.0 | 3.7 ± 1.1 | 4.5 ± 1.1 | 5.4 ± 1.2 | 6.5 ± 1.2 | |
Heart rate (bpm) | Condition 1 | 73 ± 5 | 138 ± 7 | 143 ± 7 | 149 ± 7 | 152 ± 7 | 155 ± 7 |
Condition 2 | 76 ± 7 | 135 ± 9 | 143 ± 7 | 149 ± 7 | 153 ± 6 | 157 ± 6 | |
Condition 3 | 79 ± 4 | 138 ± 7 | 147 ± 6 | 153 ± 6 | 155 ± 6 | 156 ± 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, A.; Park, J. Bilateral Knee Joint Cooling on Anaerobic Capacity and Wheel Cadence during Sprint Cycling Intervals. Healthcare 2022, 10, 1951. https://doi.org/10.3390/healthcare10101951
Nam A, Park J. Bilateral Knee Joint Cooling on Anaerobic Capacity and Wheel Cadence during Sprint Cycling Intervals. Healthcare. 2022; 10(10):1951. https://doi.org/10.3390/healthcare10101951
Chicago/Turabian StyleNam, Agong, and Jihong Park. 2022. "Bilateral Knee Joint Cooling on Anaerobic Capacity and Wheel Cadence during Sprint Cycling Intervals" Healthcare 10, no. 10: 1951. https://doi.org/10.3390/healthcare10101951
APA StyleNam, A., & Park, J. (2022). Bilateral Knee Joint Cooling on Anaerobic Capacity and Wheel Cadence during Sprint Cycling Intervals. Healthcare, 10(10), 1951. https://doi.org/10.3390/healthcare10101951