Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Assessment of Study Quality
3. Results
3.1. Muscle Composition
3.1.1. Echo Intensity
3.1.2. Phase Angle
3.1.3. Muscular Adipose Tissue
3.2. Muscle Architecture
3.2.1. Fascicle Pennation Angle
3.2.2. Fascicle Length
3.2.3. Muscle Fiber Type
3.3. Muscle Oxidative Capacity
3.4. Insulin Sensitivity
3.5. Neuromuscular Components
4. Discussion
4.1. Muscule Composition
4.1.1. Echo Intensity
4.1.2. Phase Angle
4.1.3. Muscular Adipose Tissue
4.2. Muscle Architecture
4.2.1. Fascicle Pennation Angle
4.2.2. Fascicle Length
4.2.3. Muscle Fiber Type
4.3. Neuromuscular Components
4.3.1. Neuromuscular Activation
4.3.2. Motor Unit
4.4. Muscle Oxidative Capacity
4.5. Insulin Sensitivity
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dutta, C.; Hadley, E.C.; Lexell, J. Sarcopenia and physical performance in old age: Overview. Muscle Nerve 1997, 20 (Suppl. S5), S5–S9. [Google Scholar] [CrossRef]
- Lynch, N.A.; Metter, E.J.; Lindle, R.S.; Fozard, J.L.; Tobin, J.D.; Roy, T.A.; Fleg, J.L.; Hurley, B.F. Muscle quality. I. Age-associated differences between arm and leg muscle groups. J. Appl. Physiol. 1999, 86, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tracy, B.L.; Ivey, F.M.; Hurlbut, D.; Martel, G.F.; Lemmer, J.T.; Siegel, E.L.; Metter, E.J.; Fozard, J.L.; Fleg, J.L.; Hurley, B.F. Muscle quality. II. Effects Of strength training in 65- to 75-yr-old men and women. J. Appl. Physiol. 1999, 86, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Barbat-Artigas, S.; Rolland, Y.; Zamboni, M.; Aubertin-Leheudre, M. How to assess functional status: A new muscle quality index. J. Nutr. Health Aging 2012, 16, 67–77. [Google Scholar] [CrossRef]
- McGregor, R.A.; Cameron-Smith, D.; Poppitt, S.D. It is not just muscle mass: A review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev. Healthspan 2014, 3, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NHLBI. Study Quality Assessment Tools, NIH n.d. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 20 June 2021).
- Ma, L.-L.; Wang, Y.-Y.; Yang, Z.-H.; Huang, D.; Weng, H.; Zeng, X.-T. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: What are they and which is better? Mil. Med. Res. 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Garrett, J.; Keller, J.; Anders, J.P.; Hergenrader, K.; Neltner, T.; Housh, T.; Schmidt, R.; Johnson, G. Echo intensity is weakly associated with muscular strength and endurance in young, healthy adults. Res. Sport Med. 2021, 30, 1–12. [Google Scholar] [CrossRef]
- Yamauchi, T.; Yamada, T.; Satoh, Y. Relationship between muscle echo intensity on ultrasound and isokinetic strength of the three superficial quadriceps femoris muscles in healthy young adults. J. Phys. Sci. 2021, 33, 334–338. [Google Scholar] [CrossRef]
- Bali, A.U.; Harmon, K.K.; Burton, A.M.; Phan, D.C.; Mercer, N.E.; Lawless, N.W.; Stock, M.S. Muscle strength, not age, explains unique variance in echo intensity. Exp. Gerontol. 2020, 139, 111047. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Tohara, H.; Hara, K.; Nakane, A.; Yoshimi, K.; Nakagawa, K.; Minakuchi, S. Factors associated with masseter muscle quality assessed from ultrasonography in community-dwelling elderly individuals: A cross-sectional study. Arch. Gerontol. Geriatr. 2019, 82, 128–132. [Google Scholar] [CrossRef]
- Akagi, R.; Suzuki, M.; Kawaguchi, E.; Miyamoto, N.; Yamada, Y.; Ema, R. Muscle size-strength relationship including ultrasonographic echo intensity and voluntary activation level of a muscle group. Arch. Gerontol. Geriatr. 2018, 75, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Stock, M.S.; Whitson, M.; Burton, A.M.; Dawson, N.T.; Sobolewski, E.J.; Thompson, B.J. Echo Intensity Versus Muscle Function Correlations in Older Adults are Influenced by Subcutaneous Fat Thickness. Ultrasound Med. Biol. 2018, 44, 1597–1605. [Google Scholar] [CrossRef]
- Gerstner, G.R.; Giuliani, H.K.; Mota, J.A.; Ryan, E.D. Age-related reductions in muscle quality influence the relative differences in strength and power. Exp. Gerontol. 2017, 99, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Mota, J.A.; Stock, M.S. Rectus Femoris Echo Intensity Correlates with Muscle Strength, but Not Endurance, in Younger and Older Men. Ultrasound Med. Biol. 2017, 43, 1651–1657. [Google Scholar] [CrossRef] [PubMed]
- Taniguchi, M.; Yamada, Y.; Fukumoto, Y.; Sawano, S.; Minami, S.; Ikezoe, T.; Watanabe, Y.; Kimura, M.; Ichihashi, N. Increase in echo intensity and extracellular-to-intracellular water ratio is independently associated with muscle weakness in elderly women. Eur. J. Appl. Physiol. 2017, 117, 2001–2007. [Google Scholar] [CrossRef] [Green Version]
- Rech, A.; Radaelli, R.; Goltz, F.R.; da Rosa, L.H.T.; Schneider, C.D.; Pinto, R.S. Echo intensity is negatively associated with functional capacity in older women. Age 2014, 36, 9708. [Google Scholar] [CrossRef]
- Wilhelm, E.N.; Rech, A.; Minozzo, F.; Radaelli, R.; Botton, C.E.; Pinto, R.S. Relationship between quadriceps femoris echo intensity, muscle power, and functional capacity of older men. Age 2014, 36, 9625. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, Y.; Yamada, Y.; Fukumoto, Y.; Ishihara, T.; Yokoyama, K.; Yoshida, T.; Miyake, M.; Yamagata, E.; Kimura, M. Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men. Clin. Interv. Aging 2013, 8, 993–998. [Google Scholar] [CrossRef] [Green Version]
- Cadore, E.L.; Lhullier, F.L.R.; Pinto, R.S.; Albertons, C.L.; Pinto, S.; Tartaruga, M.P.; Kruel, L.F.M. Correlations between serum hormones, strength and endurance in healthy elderly South-American men. J. Sport Med. Phys. Fit. 2013, 53, 255–260. [Google Scholar]
- Fukumoto, Y.; Ikezoe, T.; Yamada, Y.; Tsukagoshi, R.; Nakamura, M.; Mori, N.; Kimura, M.; Ichihashi, N. Skeletal muscle quality assessed from echo intensity is associated with muscle strength of middle-aged and elderly persons. Eur. J. Appl. Physiol. 2012, 112, 1519–1525. [Google Scholar] [CrossRef] [PubMed]
- Strasser, E.M.; Draskovits, T.; Praschak, M.; Quittan, M.; Graf, A. Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. Age 2013, 35, 2377–2388. [Google Scholar] [CrossRef] [Green Version]
- Kolodziej, M.; Ignasiak, Z.; Ignasiak, T. Relationship Between Bioelectrical Impedance Parameters and Appendicular Muscle Functional Quality in Older Adults from South-Western Poland. Clin. Interv. Aging 2021, 16, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Matias, C.N.; Campa, F.; Nunes, C.L.; Francisco, R.; Jesus, F.; Cardoso, M.; Valamatos, M.J.; Homens, P.M.; Sardinha, L.B.; Martins, P.; et al. Phase Angle Is a Marker of Muscle Quantity and Strength in Overweight/Obese Former Athletes. Int. J. Env. Res. Public Health 2021, 18, 6649. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, D.C.D.; Schieferdecker, M.E.M.; Macedo, D.S.; Biesek, S.; Silveira Gomes, A.R.; Rabito, E.I. Phase Angle Reflects Loss of Functionality in Older Women. J. Nutr. Health Aging 2020, 24, 251–254. [Google Scholar] [CrossRef]
- Di Vincenzo, O.; Marra, M.; Sammarco, R.; Speranza, E.; Cioffi, I.; Scalfi, L. Body composition, segmental bioimpedance phase angle and muscular strength in professional volleyball players compared to a control group. J. Sport Med. Phys. Fit. 2020, 60, 870–874. [Google Scholar] [CrossRef]
- Hetherington-Rauth, M.; Baptista, F.; Sardinha, L.B. BIA-assessed cellular hydration and muscle performance in youth, adults, and older adults. Clin. Nutr. 2020, 39, 2624–2630. [Google Scholar] [CrossRef]
- Bourgeois, B.; Fan, B.; Johannsen, N.; Gonzalez, M.C.; Ng, B.K.; Sommer, M.J.; Shepard, J.A.; Heymsfield, S.B. Improved strength prediction combining clinically available measures of skeletal muscle mass and quality. J. Cachexia Sarcopenia Muscle 2019, 10, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rodríguez, F.; Cristi-Montero, C.; González-Ruíz, K.; Correa-Bautista, J.E.; Ramírez-Vélez, R. Bioelectrical Impedance Vector Analysis and Muscular Fitness in Healthy Men. Nutrients 2016, 8, E407. [Google Scholar] [CrossRef] [Green Version]
- Young, H.-J.; Southern, W.M.; Mccully, K.K. Comparisons of ultrasound-estimated intramuscular fat with fitness and health indicators. Muscle Nerve 2016, 54, 743–749. [Google Scholar] [CrossRef]
- Wroblewski, A.P.; Amati, F.; Smiley, M.A.; Goodpaster, B.; Wright, V. Chronic exercise preserves lean muscle mass in masters athletes. Phys. Sport. 2011, 39, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Baum, T.; Inhuber, S.; Dieckmeyer, M.; Cordes, C.; Ruschke, S.; Klupp, E.; Jungmann, P.M.; Farlock, R.; Eggers, H.; Kooijman, H.; et al. Association of Quadriceps Muscle Fat with Isometric Strength Measurements in Healthy Males Using Chemical Shift Encoding-Based Water-Fat Magnetic Resonance Imaging. J. Comput. Assist. Tomogr. 2016, 40, 447–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inhuber, S.; Sollmann, N.; Schlaeger, S.; Dieckmeyer, M.; Burian, E.; Kohlmeyer, C.; Karampinos, D.C.; Kirschke, J.S.; Baum, T.; Kreuzpointner, F.; et al. Associations of thigh muscle fat infiltration with isometric strength measurements based on chemical shift encoding-based water-fat magnetic resonance imaging. Eur. Radiol. Exp. 2019, 3, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gysel, T.; Calders, P.; Cambier, D.; Roman de Mettelinge, T.; Kaufman, J.-M.; Taes, Y.; Zmierczak, H.-G.; Goemaere, S. Association between insulin resistance, lean mass and muscle torque/force in proximal versus distal body parts in healthy young men. J. Musculoskelet. Neuronal Interact. 2014, 14, 41–49. [Google Scholar] [PubMed]
- Justice, J.N.; Pierpoint, L.A.; Mani, D.; Schwartz, R.S.; Enoka, R.M. Motor function is associated with 1,25(OH)(2)D and indices of insulin-glucose dynamics in non-diabetic older adults. Aging Clin. Exp. Res. 2014, 26, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Bijlsma, A.Y.; Meskers, C.G.M.; van Heemst, D.; Westendorp, R.G.J.; de Craen, A.J.M.; Maier, A.B. Diagnostic criteria for sarcopenia relate differently to insulin resistance. Age 2013, 35, 2367–2375. [Google Scholar] [CrossRef] [Green Version]
- Seko, T.; Akasaka, H.; Koyama, M.; Himuro, N.; Saitoh, S.; Miura, T.; Mori, M.; Ohnishi, H. Lower limb muscle mass is associated with insulin resistance more than lower limb muscle strength in non-diabetic older adults. Geriatr. Gerontol. Int. 2019, 19, 1254–1259. [Google Scholar] [CrossRef]
- Gysel, T.; Tonoli, C.; Pardaens, S.; Cambier, D.; Kaufman, J.-M.; Zmierczak, H.-G.; Goemaere, S.; Lapauw, B.; Calders, P. Lower insulin sensitivity is related to lower relative muscle cross-sectional area, lower muscle density and lower handgrip force in young and middle aged non-diabetic men. J. Musculoskelet. Neuronal Interact. 2016, 16, 302–309. [Google Scholar]
- Herda, T.J.; Trevino, M.A.; Sterczala, A.J.; Miller, J.D.; Wray, M.E.; Dimmick, H.L.; Gallagher, P.M.; Fry, A.C. Muscular strength and power are correlated with motor unit action potential amplitudes, but not myosin heavy chain isoforms in sedentary males and females. J. Biomech. 2019, 86, 251–255. [Google Scholar] [CrossRef]
- Evangelidis, P.E.; Massey, G.J.; Ferguson, R.A.; Wheeler, P.C.; Pain, M.T.G.; Folland, J.P. The functional significance of hamstrings composition: Is it really a “fast” muscle group? Scand. J. Med. Sci. Sport. 2017, 27, 1181–1189. [Google Scholar] [CrossRef] [Green Version]
- De Souza, E.O.; Tricoli, V.; Paulo, A.C.; Silva-Batista, C.; Cardoso, R.K.; Brum, P.C.; Bacurau, A.V.N.; Laurentino, G.; Neves Jr., M.; Aihara, A.Y.; et al. Multivariate analysis in the maximum strength performance. Int. J. Sport Med. 2012, 33, 970–974. [Google Scholar] [CrossRef] [PubMed]
- Selva Raj, I.; Bird, S.R.; Shield, A.J. Ultrasound Measurements of Skeletal Muscle Architecture Are Associated with Strength and Functional Capacity in Older Adults. Ultrasound Med. Biol. 2017, 43, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Trezise, J.; Collier, N.; Blazevich, A.J. Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men. Eur. J. Appl. Physiol. 2016, 116, 1159–1177. [Google Scholar] [CrossRef] [PubMed]
- Ando, R.; Saito, A.; Umemura, Y.; Akima, H. Local architecture of the vastus intermedius is a better predictor of knee extension force than that of the other quadriceps femoris muscle heads. Clin. Physiol. Funct. Imaging 2015, 35, 376–382. [Google Scholar] [CrossRef]
- Cuesta-Vargas, A.; González-Sánchez, M. Correlation between architectural variables and torque in the erector spinae muscle during maximal isometric contraction. J. Sport Sci. 2014, 32, 1797–17804. [Google Scholar] [CrossRef]
- Wakahara, T.; Kanehisa, H.; Kawakami, Y.; Fukunaga, T.; Yanai, T. Relationship between muscle architecture and joint performance during concentric contractions in humans. J. Appl. Biomech. 2013, 29, 405–412. [Google Scholar] [CrossRef]
- Cuesta-Vargas, A.I.; Gonzalez-Sanchez, M. Relationship of moderate and low isometric lumbar extension through architectural and muscular activity variables: A cross sectional study. BMC Med. Imaging 2013, 13, 38. [Google Scholar] [CrossRef] [Green Version]
- Zane, A.C.; Reiter, D.A.; Shardell, M.; Cameron, D.; Simonsick, E.M.; Fishbein, K.W.; Studenski, S.A.; Spencer, R.G.; Ferruci, L. Muscle strength mediates the relationship between mitochondrial energetics and walking performance. Aging Cell 2017, 16, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Kaya, R.D.; Nakazawa, M.; Hoffman, R.L.; Clark, B.C. Interrelationship between muscle strength, motor units, and aging. Exp. Gerontol. 2013, 48, 920–925. [Google Scholar] [CrossRef] [Green Version]
- Young, H.-J.; Jenkins, N.T.; Zhao, Q.; Mccully, K.K. Measurement of intramuscular fat by muscle echo intensity. Muscle Nerve 2015, 52, 963–971. [Google Scholar] [CrossRef] [Green Version]
- Rabello, R.; Klauber, P.; Paz, I.; Lanferdini, F.; Pinto, R.; Vaz, M. Echo Intensity Reliability From Two Ultrasound Systems. J. Diagn. Med. Sonogr. 2020, 36, 875647932092903. [Google Scholar] [CrossRef]
- Caresio, C.; Molinari, F.; Emanuel, G.; Minetto, M.A. Muscle Echo Intensity: Reliability and Conditioning Factors. Clin. Physiol. Funct. Imaging 2015, 35, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Rabello, R.; Fröhlich, M.; Bueno, A.F.; Marcolino, M.A.Z.; De Bona Bernardi, T.; Sbruzzi, G.; Vaz, M.A. Echo Intensity Reliability between Two Rectus Femoris Probe Sites. Ultrasound J. Br. Med. Ultrasound Soc. 2019, 27, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Heckmatt, J.Z.; Leeman, S.; Dubowitz, V. Ultrasound imaging in the diagnosis of muscle disease. J. Pediatr. 1982, 101, 656–660. [Google Scholar] [CrossRef]
- Stock, M.S.; Thompson, B.J. Echo intensity as an indicator of skeletal muscle quality: Applications, methodology, and future directions. Eur. J. Appl. Physiol. 2021, 121, 369–380. [Google Scholar] [CrossRef]
- Pillen, S.; Tak, R.O.; Zwarts, M.J.; Lammens, M.M.Y.; Verrijp, K.N.; Arts, I.M.P.; van der Laak, J.A.; Hoogerbrugge, P.M.; van Engelen, B.G.M.; Verrips, A. Skeletal Muscle Ultrasound: Correlation Between Fibrous Tissue and Echo Intensity. Ultrasound Med. Biol. 2009, 35, 443–446. [Google Scholar] [CrossRef]
- Arts, I.M.P.; Pillen, S.; Schelhaas, H.J.; Overeem, S.; Zwarts, M.J. Normal values for quantitative muscle ultrasonography in adults. Muscle Nerve 2010, 41, 32–41. [Google Scholar] [CrossRef]
- Sipilä, S.; Suominen, H. Muscle ultrasonography and computed tomography in elderly trained and untrained women. Muscle Nerve 1993, 16, 294–300. [Google Scholar] [CrossRef]
- Cadore, E.L.; Izquierdo, M.; Conceição, M.; Radaelli, R.; Pinto, R.S.; Baroni, B.M.; Vaz, M.A.; Alberton, C.L.; Pinto, S.S.; Cunha, G.; et al. Echo intensity is associated with skeletal muscle power and cardiovascular performance in elderly men. Exp. Gerontol. 2012, 47, 473–478. [Google Scholar] [CrossRef]
- Addison, O.; Marcus, R.L.; LaStayo, P.C.; Ryan, A.S. Intermuscular Fat: A Review of the Consequences and Causes. Int. J. Endocrinol. 2014, 2014, 309570. [Google Scholar] [CrossRef] [Green Version]
- Akazawa, N.; Kishi, M.; Hino, T.; Tsuji, R.; Tamura, K.; Hioka, A.; Moriyama, H. Relationship Between Aging and Intramuscular Adipose Tissue in Older Inpatients. J. Am. Med. Dir. Assoc. 2021, 22, 1287–1291.e1. [Google Scholar] [CrossRef]
- Rahemi, H.; Nigam, N.; Wakeling, J.M. The effect of intramuscular fat on skeletal muscle mechanics: Implications for the elderly and obese. J. R. Soc. Interface 2015, 12, 20150365. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-Silva, M.C.G.; Barros, A.J.D. Bioelectrical impedance analysis in clinical practice: A new perspective on its use beyond body composition equations. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.C.; Barbosa-Silva, T.G.; Bielemann, R.M.; Gallagher, D.; Heymsfield, S.B. Phase angle and its determinants in healthy subjects: Influence of body composition. Am. J. Clin. Nutr. 2016, 103, 712–716. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.M.; Matias, C.N.; Santos, D.A.; Rocha, P.M.; Minderico, C.S.; Sardinha, L.B. Increases in intracellular water explain strength and power improvements over a season. Int. J. Sport Med. 2014, 35, 1101–1105. [Google Scholar] [CrossRef] [PubMed]
- Serra-Prat, M.; Lorenzo, I.; Palomera, E.; Yébenes, J.C.; Campins, L.; Cabré, M. Intracellular Water Content in Lean Mass is Associated with Muscle Strength, Functional Capacity, and Frailty in Community-Dwelling Elderly Individuals. A Cross-Sectional Study. Nutrients 2019, 11, 661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Yoshida, T.; Yokoyama, K.; Watanabe, Y.; Miyake, M.; Yamagata, E.; Yamada, M.; Kimura, M.; Study, K.-K. The Extracellular to Intracellular Water Ratio in Upper Legs is Negatively Associated with Skeletal Muscle Strength and Gait Speed in Older People. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 293–298. [Google Scholar] [CrossRef] [Green Version]
- Marcus, R.L.; Addison, O.; Kidde, J.P.; Dibble, L.E.; Lastayo, P.C. Skeletal muscle fat infiltration: Impact of age, inactivity, and exercise. J. Nutr. Health Aging 2010, 14, 362–366. [Google Scholar] [CrossRef] [Green Version]
- Keller, K.; Engelhardt, M. Strength and muscle mass loss with aging process. Age and strength loss. Muscles Ligaments Tendons J. 2013, 3, 346–350. [Google Scholar] [CrossRef]
- Delmonico, M.J.; Harris, T.B.; Visser, M.; Park, S.W.; Conroy, M.B.; Velasquez-Mieyer, P.; Bourdeau, R.; Manini, T.M.; Nevitt, M.; Newman, A.B.; et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 2009, 90, 1579–1585. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.P.; Chong, M.S.; Tay, L.; Yang, Y.X.; Leung, B.P.; Yeo, A.; Yew, S.; Tan, C.H.; Lim, W.S. Inter-muscular adipose tissue is associated with adipose tissue inflammation and poorer functional performance in central adiposity. Arch. Gerontol. Geriatr. 2019, 81, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Biltz, N.K.; Collins, K.H.; Shen, K.C.; Schwartz, K.; Harris, C.A.; Meyer, G.A. Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction. J. Physiol. 2020, 598, 2669–2683. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, O.M.; Jones, D.A. Measurement of fibre pennation using ultrasound in the human quadriceps in vivo. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 433–437. [Google Scholar] [CrossRef]
- May, S.; Locke, S.; Kingsley, M. Reliability of ultrasonographic measurement of muscle architecture of the gastrocnemius medialis and gastrocnemius lateralis. PLoS ONE 2021, 16, e0258014. [Google Scholar] [CrossRef] [PubMed]
- Herbert, R.D.; Gandevia, S.C. Changes in pennation with joint angle and muscle torque: In vivo measurements in human brachialis muscle. J. Physiol. 1995, 484 Pt 2, 523–532. [Google Scholar] [CrossRef]
- Fukunaga, T.; Ichinose, Y.; Ito, M.; Kawakami, Y.; Fukashiro, S. Determination of fascicle length and pennation in a contracting human muscle in vivo. J. Appl. Physiol. 1997, 82, 354–358. [Google Scholar] [CrossRef]
- Aagaard, P.; Andersen, J.L.; Dyhre-Poulsen, P.; Leffers, A.-M.; Wagner, A.; Magnusson, S.P.; Halkjaer-Kristensen, J.; Simonsen, E.B. A mechanism for increased contractile strength of human pennate muscle in response to strength training: Changes in muscle architecture. J. Physiol. 2001, 534, 613–623. [Google Scholar] [CrossRef]
- Kawakami, Y.; Abe, T.; Fukunaga, T. Muscle-fiber pennation angles are greater in hypertrophied than in normal muscles. J. Appl. Physiol. 1993, 74, 2740–2744. [Google Scholar] [CrossRef]
- Seynnes, O.R.; de Boer, M.; Narici, M.V. Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J. Appl. Physiol. 2007, 102, 368–373. [Google Scholar] [CrossRef]
- Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.; Newman, A.B.; Nevitt, M.; Rubin, S.M.; Simonsick, E.M.; Harris, T.B. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 324–333. [Google Scholar] [CrossRef]
- Jones, E.J.; Bishop, P.A.; Woods, A.K.; Green, J.M. Cross-sectional area and muscular strength: A brief review. Sport Med. 2008, 38, 987–994. [Google Scholar] [CrossRef]
- Clark, B.C.; Manini, T.M. Functional consequences of sarcopenia and dynapenia in the elderly. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Alkner, B.A.; Tesch, P.A.; Berg, H.E. Quadriceps EMG/force relationship in knee extension and leg press. Med. Sci Sport Exerc. 2000, 32, 459–463. [Google Scholar] [CrossRef]
- Kumagai, K.; Abe, T.; Brechue, W.F.; Ryushi, T.; Takano, S.; Mizuno, M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J. Appl. Physiol. 2000, 88, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Abe, T.; Fukashiro, S.; Harada, Y.; Kawamoto, K. Relationship between sprint performance and muscle fascicle length in female sprinters. J. Physiol. Anthr. Appl. Hum. Sci. 2001, 20, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasirzade, A.; Sadeghi, H.; Sobhkhiz, A.; Mohammadian, K.; Nikouei, A.; Baghaiyan, M.; Fattahi, A. Multivariate analysis of 200-m front crawl swimming performance in young male swimmers. Acta Bioeng. Biomech. 2015, 17, 137–143. [Google Scholar]
- Bárány, M. ATPase Activity of Myosin Correlated with Speed of Muscle Shortening. J. Gen. Physiol. 1967, 50, 197–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schluter, J.M.; Fitts, R.H. Shortening velocity and ATPase activity of rat skeletal muscle fibers: Effects of endurance exercise training. Am. J. Physiol. 1994, 266, C1699–C1713. [Google Scholar] [CrossRef]
- Stager, J.M.; Tanner, D.A. The Handbook of Sports Medicine and Science: Swimming; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Abe, T.; Kumagai, K.; Brechue, W.F. Fascicle length of leg muscles is greater in sprinters than distance runners. Med. Sci. Sport Exerc. 2000, 32, 1125–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiaffino, S.; Reggiani, C. Fiber Types in Mammalian Skeletal Muscles. Physiol. Rev. 2011, 91, 1447–1531. [Google Scholar] [CrossRef] [Green Version]
- Bergh, U.; Thorstensson, A.; Sjödin, B.; Hulten, B.; Piehl, K.; Karlsson, J. Maximal oxygen uptake and muscle fiber types in trained and untrained humans. Med. Sci. Sport. 1978, 10, 151–154. [Google Scholar]
- Wilson, J.M.; Loenneke, J.P.; Jo, E.; Wilson, G.J.; Zourdos, M.C.; Kim, J.-S. The effects of endurance, strength, and power training on muscle fiber type shifting. J. Strength Cond. Res. 2012, 26, 1724–1729. [Google Scholar] [CrossRef]
- Sullivan, S.M.; Pittman, R.N. Relationship between mitochondrial volume density and capillarity in hamster muscles. Am. J. Physiol. 1987, 252, H149–H155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karp, J.R. Muscle Fiber Types and Training. Strength Cond. J. 2001, 23, 21. [Google Scholar] [CrossRef]
- Malisoux, L.; Francaux, M.; Nielens, H.; Theisen, D. Stretch-shortening cycle exercises: An effective training paradigm to enhance power output of human single muscle fibers. J. Appl. Physiol. 2006, 100, 771–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widrick, J.J.; Stelzer, J.E.; Shoepe, T.C.; Garner, D.P. Functional properties of human muscle fibers after short-term resistance exercise training. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R408–R416. [Google Scholar] [CrossRef] [Green Version]
- Aagaard, P.; Andersen, J.L. Correlation between contractile strength and myosin heavy chain isoform composition in human skeletal muscle. Med. Sci. Sport Exerc. 1998, 30, 1217–1222. [Google Scholar] [CrossRef]
- Fry, A.C.; Schilling, B.K.; Staron, R.S.; Hagerman, F.C.; Hikida, R.S.; Thrush, J.T. Muscle fiber characteristics and performance correlates of male Olympic-style weightlifters. J. Strength Cond. Res. 2003, 17, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Folland, J.P.; Buckthorpe, M.W.; Hannah, R. Human capacity for explosive force production: Neural and contractile determinants. Scand. J. Med. Sci. Sport. 2014, 24, 894–906. [Google Scholar] [CrossRef]
- Trezise, J.; Blazevich, A.J. Anatomical and Neuromuscular Determinants of Strength Change in Previously Untrained Men Following Heavy Strength Training. Front. Physiol. 2019, 10, 1001. [Google Scholar] [CrossRef] [Green Version]
- Costill, D.L.; Daniels, J.; Evans, W.; Fink, W.; Krahenbuhl, G.; Saltin, B. Skeletal muscle enzymes and fiber composition in male and female track athletes. J. Appl. Physiol. 1976, 40, 149–154. [Google Scholar] [CrossRef]
- Zajac, F.E. Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 1989, 17, 359–411. [Google Scholar] [PubMed]
- Vigotsky, A.D.; Halperin, I.; Lehman, G.J.; Trajano, G.S.; Vieira, T.M. Interpreting Signal Amplitudes in Surface Electromyography Studies in Sport and Rehabilitation Sciences. Front. Physiol. 2018, 8, 985. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.L. Point:Counterpoint: The interpolated twitch does/does not provide a valid measure of the voluntary activation of muscle. J. Appl. Physiol. 2009, 107, 354–355. [Google Scholar] [CrossRef]
- Arabadzhiev, T.I.; Dimitrov, V.G.; Dimitrova, N.A.; Dimitrov, G.V. Interpretation of EMG integral or RMS and estimates of “neuromuscular efficiency” can be misleading in fatiguing contraction. J. Electromyogr. Kinesiol. 2010, 20, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Trajano, G.S.; Seitz, L.; Nosaka, K.; Blazevich, A.J. Contribution of central vs. peripheral factors to the force loss induced by passive stretch of the human plantar flexors. J. Appl. Physiol. 2013, 115, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Balog, E.M. Excitation-contraction coupling and minor triadic proteins in low-frequency fatigue. Exerc. Sport Sci. Rev. 2010, 38, 135–142. [Google Scholar] [CrossRef]
- Straight, C.R.; Ades, P.A.; Toth, M.J.; Miller, M.S. Age-related reduction in single muscle fiber calcium sensitivity is associated with decreased muscle power in men and women. Exp. Gerontol. 2018, 102, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Konrad, P. The Abc of Emg. A Practical Introduction to Kinesiological Electromyography; Noraxon Inc.: Scottsdale, AZ, USA, 2005; p. 1. [Google Scholar]
- Doherty, T.J.; Vandervoort, A.A.; Brown, W.F. Effects.s of ageing on the motor unit: A brief review. Can. J. Appl. Physiol 1993, 18, 331–358. [Google Scholar] [CrossRef]
- McNeil, C.J.; Doherty, T.J.; Stashuk, D.W.; Rice, C.L. Motor unit number estimates in the tibialis anterior muscle of young, old, and very old men. Muscle Nerve 2005, 31, 461–467. [Google Scholar] [CrossRef]
- Coen, P.M.; Jubrias, S.A.; Distefano, G.; Amati, F.; Mackey, D.C.; Glynn, N.W.; Manini, T.M.; Wohlgemuth, S.E.; Leeuwenburgh, C.; Cummings, S.R.; et al. Skeletal Muscle Mitochondrial Energetics Are Associated with Maximal Aerobic Capacity and Walking Speed in Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 447–455. [Google Scholar] [CrossRef]
- Distefano, G.; Standley, R.A.; Zhang, X.; Carnero, E.A.; Yi, F.; Cornnell, H.H.; Coen, P.M. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J. Cachexia Sarcopenia Muscle 2018, 9, 279–294. [Google Scholar] [CrossRef] [Green Version]
- Peterson, C.M.; Johannsen, D.L.; Ravussin, E. Skeletal Muscle Mitochondria and Aging: A Review. J. Aging Res. 2012, 2012, 194821. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, R.; Sparrow, D.; Weiss, S.T. Handgrip strength and insulin levels: Cross-sectional and prospective associations in the Normative Aging Study. Metabolism 1997, 46, 1266–1269. [Google Scholar] [CrossRef]
- Abbatecola, A.M.; Ferrucci, L.; Ceda, G.; Russo, C.R.; Lauretani, F.; Bandinelli, S.; Barbieri, M.; Valenti, G.; Paolisso, G. Insulin resistance and muscle strength in older persons. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 1278–1282. [Google Scholar] [CrossRef]
- Karelis, A.D.; Tousignant, B.; Nantel, J.; Proteau-Labelle, M.; Malita, F.M.; St-Pierre, D.H.; Brochu, M.; Doucet, E.; Rabasa-Lhoret, R. Association of insulin sensitivity and muscle strength in overweight and obese sedentary postmenopausal women. Appl. Physiol. Nutr. Metab. 2007, 32, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-K.; Lin, L.-Y.; Yu, Y.-H.; Wu, K.-H.; Kuo, H.-K. Inverse association between insulin resistance and gait speed in nondiabetic older men: Results from the U.S. National Health and Nutrition Examination Survey (NHANES) 1999–2002. BMC Geriatr. 2009, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Merz, K.E.; Thurmond, D.C. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr. Physiol. 2020, 10, 785–809. [Google Scholar] [CrossRef] [PubMed]
- Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell Physiol. 2019, 234, 8152–8161. [Google Scholar] [CrossRef]
- Hultman, E.; Greenhaff, P.L. Skeletal muscle energy metabolism and fatigue during intense exercise in man. Sci. Prog. 1991, 75, 361–370. [Google Scholar] [PubMed]
- Goodpaster, B.H.; Thaete, F.L.; Simoneau, J.-A.; Kelley, D.E. Subcutaneous Abdominal Fat and Thigh Muscle Composition Predict Insulin Sensitivity Independently of Visceral Fat. Diabetes 1997, 46, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Hausman, G.J.; Basu, U.; Du, M.; Fernyhough-Culver, M.; Dodson, M.V. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues. Adipocyte 2014, 3, 242–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, D.L. Intermuscular Adipose Tissue: A Brief Review of Etiology, Association with Physical Function and Weight Loss in Older Adults. Ann. Geriatr. Med. Res. 2019, 23, 3–8. [Google Scholar] [CrossRef] [PubMed]
Category | Search Term |
---|---|
Muscle Strength | (“Muscle Strength” OR Strength* OR Strong* OR “Maximum Voluntary Contraction” OR “Maximum Voluntary Isometric Contraction” OR “Torque”) |
Muscle Quality | (“Muscle Quality” OR “Muscle Fib*” OR “Contractile Propert*” OR “Myosin Heavy Chain” OR “Satellite Cell” OR “Intermuscular Adipose” OR “Intramuscular Adipose” OR “Intermuscular Fat*” OR “Intramuscular Fat*” OR “Fat Infiltration” OR “Fatty Infiltration” OR “Adipose Tissue Infiltration” OR “Phase Angle” OR “Echo Intensity” OR “Muscle Density” OR “Muscle Attenuation” OR “Aerobic Capacity” OR “Insulin Resistance” OR “Insulin Sensitivity” OR “Fascicle Length” OR “Pennation Angle” OR “Motor Unit” OR “Neuromuscular Activ*” OR “EMG Amplitude” OR “Root Mean Square” OR “RMS”) |
Reference | Study Sample | Inclusion/Exclusion Criteria | Muscle Strength Outcome | Muscle Quality Outcome | Key Findings | Study Quality |
---|---|---|---|---|---|---|
Garrett et al., 2021 [9] | 30 recreationally active college-aged young adults (f: n = 15, 19.5 ± 0.8 years, 64 ± 7.9 kg; m: n = 15, 21.1 ± 1.8 years, 83.9 ± 10.8 kg) | ✕ cardiovascular, metabolic, or muscular diseases | knee EXT MVC, absolute and normalized to body mass (isometric; dynamometer) | EI, subcutaneous fat corrected (US; vastus lateralis muscle) | moderate negative correlation between EI and knee EXT MVC in the combined sample (absolute: r = −0.354, p = 0.028; normalized: r = −0.520, p = 0.002) | fair |
Yamauchi et al., 2021 [10] | 25 healthy young adults (f: n = 15, 21.6 ± 0.8 years, 50.2 ± 5.6 kg, 160.0 ± 5.7 cm, 19.5 ± 1.7 kg/m2; m: n = 10, 22.3 ± 2.4 years, 59.7 ± 3.1 kg, 171.0 ± 4.3 cm, 20.4 ± 0.8 kg/m2) | ✓aged between 18–35 years ✕ participation in systematic training programs, walking aid, history of lower limb trauma or surgery, neuromuscular, metabolic, hormonal, or cardiovascular diseases | knee EXT MVC (concentric; dynamometer) | EI (US; rectus femoris, vastus lateralis, and vastus medialis muscles) | moderate negative correlation between knee EXT MVC and vastus medialis muscle EI (f: r = −0.63, p < 0.05; m: r = −0.65, p < 0.05) | fair |
Bali et al., 2020 [11] | 13 younger men (23 ± 4 years, 70.1 ± 12.1 kg, 174.1 ± 6.7 cm, 23.1 ± 3.7 kg/m2), 15 younger women (21 ± 2 years, 58.7 ± 9.1 kg, 162.7 ± 5.1 cm, 22.1 ± 2.8 kg/m2), 10 older men (73 ± 6 years, 79.2 ± 13.0 kg, 172.4 ± 3.4 cm, 26.6 ± 3.9 kg/m2), 15 older women (70 ± 5 years, 69.1 ± 6.3 kg, 162.5 ± 6.8 cm, 26.2 ± 2.5 kg/m2) | ✓ aged 18–35 years and ≥65 years ✕ neurological, neuromuscular, or musculoskeletal disorders that impair the ability to perform muscle strength testing, regular lower body exercises, BMI ≥30 kg/m2 | knee EXT MVC, absolute and normalized to cross-sectional area (concentric; dynamometer) | EI, subcutaneous fat corrected and noncorrected (US; vastus lateralis and rectus femoris muscles) |
| fair |
Yamaguchi et al., 2019 [12] | 139 healthy community-dwelling elderly (f = 74, m = 65, median 75 years) | ✓ aged ≥65 years ✕ history of conditions that affect muscle mass | HG MVC (dynamometer) | EI (US; masseter muscle) |
| good |
Akagi et al., 2018 [13] | 20 young men (22 ± 2 years, 62.6 ± 6.5 kg, 170.6 ± 5.0 cm), 20 young women (22 ± 1 years, 51.7 ± 6.5 kg, 157.4 ± 4.1 cm), 19 elderly men (73 ± 5 years, 67.6 ± 10.3 kg, 165.4 ± 6.5 cm) and 14 elderly women (72 ± 7 years, 56.0 ± 5.9 kg, 154.5 ± 4.7 cm) | NR | plantar FLX MVC (isometric; dynamometer) | EI (US; gastrocnemius and soleus muscles) | EI predictor of plantar FLX MVC (β = −0.203, p = 0.036) | poor |
Stock et al., 2018 [14] | 23 older adults (f: n = 12, 71 ± 5 years, 26.6 ± 3.1 kg/m2; m: n = 11, 74 ± 7 years, 26.2 ± 3.6 kg/m2) | ✕ metabolic or neuromuscular diseases, participation in regular resistance or aerobic training | knee EXT MVC, normalized to body mass (isometric; dynamometer) | EI, subcutaneous fat corrected and noncorrected (US; rectus femoris muscle) | moderate negative correlation between subcutaneous fat corrected EI and normalized knee EXT MVC (r = −0.5, p < 0.05) | fair |
Gerstner et al., 2017 [15] | 20 young men (20.1 ± 52 years, 71.66 ± 9.68 kg, 173.71 ± 7.47 cm) and 20 older men (69.45 ± 3.07 years, 80.77 ± 8.18 kg, 177.70 ± 6.23 cm) | ✓ recreationally physically active ✕ metabolic or neuromuscular diseases, musculoskeletal injuries of the low back or lower limb | plantar FLX MVC, absolute and normalized to isometric force (concentric; dynamometer) | EI, subcutaneous fat corrected (US; gastrocnemius muscle), | moderate correlation between EI and percent decrease in plantar FLX MVC from slow to fast velocity (younger adults: r = 0.479, p = 0.032; older adults: r = 0.526, p = 0.025; groups combined: r = 0.605, p < 0.001) | poor |
Mota & Stock, 2017 [16] | 12 younger (25 ± 3 years, 65.2 ± 8.8 kg) and 13 older men (74 ± 6 years, 80.6 ± 10.4 kg) | ✕ surgery on the hip or knee joints, neuromuscular or metabolic diseases, walking aids, participation in lower body resistance training or structured exercise | knee EXT MVC, absolute and normalized to body mass (isometric; tension/load cell) | EI, subcutaneous fat corrected (US; rectus femoris muscle) |
| fair |
Taniguchi et al., 2017 [17] | 179 elderly women (74.1 ± 4.9 years, 50.0 ± 7.2 kg, 151.9 ± 5.0 cm, 21.7 ± 2.8 kg/m2) | ✕ walking aids, history of lower limb trauma or surgery, acute disease that causes muscle weakness | knee EXT MVC (isometric; dynamometer) | EI (US; rectus femoris and vastus intermedius muscles) |
| fair |
Rech et al., 2014 [18] | 45 habitually physically active elderly women (70.28 ± 6.2 years, 69.02 ± 11.5 kg, 1.55 ± 0.67 cm, 27.89 ± 3.6 kg/m2) | ✕ neurological, cardiovascular, or lower limb diseases |
| EI (US; rectus femoris, vastus lateralis, vastus intermedius, vastus medialis, and average quadriceps femoris muscles) |
| poor |
Wilhelm et al., 2014 [19] | 50 healthy older men (66.1 ± 4.5 years, 1.75 ± 0.06 m, 80.2 ± 11.0 kg) | ✕ metabolic and endocrine diseases, participation in any systematic physical exercise |
| EI (US; rectus femoris, vastus lateralis, vastus intermedius, vastus medialis, and average quadriceps femoris muscles) | moderate negative correlation between EI and 1RM (range r = [−0.498]–[−0.656], p ≤ 0.05), and between EI and knee EXT MVC (range r = [−0.460]–[−0.640], p ≤ 0.05) | fair |
Watanabe et al., 2013 [20] | 184 elderly men (74.4 ± 5.9 years, 62.3 ± 9.5 kg, 163.2 ± 6.0 cm) | ✓ the ability to walk without assistive aid ✕ lower limb trauma or surgery, neuromuscular disorder, strength or power impairing disease | knee EXT MVC (isometric; dynamometer) | EI (US; quadriceps femoris muscles) |
| good |
Cadore et al., 2013 [21] | 31 healthy elderly men (65.5 ± 5.0 years, 81.8 ± 12.0 kg, 172.2 ± 5.8 cm) | ✕ participation in regular exercise training, neuromuscular, metabolic, hormonal or cardiovascular diseases | knee EXT MVC (isometric and concentric; dynamometer) | EI (US; quadriceps femoris muscles) | moderate negative correlation between EI and knee EXT MVC (isometric: r = −0.51, p < 0.01; concentric: r = −0.48–−0.76, p < 0.01) | fair |
Fukumoto et al., 2012 [22] | 92 elderly women (70.4 ± 6.6 years, 50.4 ± 6.2 kg, 151.1 ± 5.4 cm, 22.0 ± 2.3 kg/m2) | ✕ walking aid, lower limb trauma or surgery, neuromuscular disorder, acute or chronic disease that impaired strength or power | knee EXT MVC (isometric; dynamometer) | EI (US; quadriceps femoris muscles) |
| good |
Strasser et al., 2013 [23] | 52 lower-limb healthy younger (24.2 ± 3.7 years, 70.2 ± 15.1 kg, 1.8 ± 0.1 m) and older adults (67.8 ± 4.8 years, 77.2 ± 13.2 kg, 1.7 ± 0.1 m) | ✕ neuromuscular diseases, prosthesis or fractures of the lower extremities, injuries or pain of the lower limb | knee EXT MVC (isometric; load cell) |
|
| good |
Kolodziej et al., 2021 [24] | 346 elderly adults (f: n = 259, 64.3 ± 5.8 years, 70.4 ± 12.2 kg, 159.5 ± 5.8 cm, 27.7 ± 4.6 kg/m2; m: n = 87, 66.3 ± 6.9 years, 85.6 ± 13.7 kg, 174.0 ± 7.0 cm, 28.2 ± 3.8 kg/m2) | ✓ aged ≥50 years ✕ medical contraindication, difficulty walking or limitations in daily activities, BMI ≥50 kg/m2, metal prostheses or limb amputations |
| PhA (BIA) |
| fair |
Matias et al., 2021 [25] | 94 overweight, former top-level athletes (f: n = 32, 43.5 ± 8.7 years, 81.7 ± 12.2 kg, 163.0 ± 6.3 cm, 30.7 ± 3.9 kg/m2; m: n = 62, 42.8 ± 9.8 years, 98.2 ± 17.9 kg, 175.9 ± 6.7 cm, 31.7 ± 5.1 kg/m2) | ✓ BMI ≥ 25 kg/m2, physically inactive ✕ cardiovascular or psychological disorders |
| PhA (BIA) |
| good |
Bittencourt et al., 2020 [26] | 152 community-dwelling older women (71 ± 4.38 years, 69.4 ± 12.01 kg, 1.56 ± 0.07 m, 28.4± 4.25 kg/m2) | NR | HG MVC (dynamometer) | PhA (BIA) | weak positive correlation between PhA and HG MVC (r = 0.177, p = 0.029) | poor |
Di Vincenzo et al., 2020 [27] | 12 female volleyball players (23.8 ± 3.6 years, 63.0 ± 5.1 kg, 170 ± 4 cm, 21.9 ± 1.3 kg/m2) and 22 non-athletic females (23.6 ± 2.0 years, 60.7 ± 4.8 kg; 167 ± 5 cm; 21.9 ± 1.3 kg/m2)) | NR | HG MVC (dynamometer) | PhA (BIA, upper limbs and whole body) | moderate positive correlation between HG MVC and whole body PhA (r = 0.696, p = 0.012) and upper limb PhA (r = 0.821, p = 0.001) in all subjects | poor |
Hetherington-Rauth et al., 2020 [28] | 249 adults (f: n = 158, 42.4 ± 11.5 years, 24.0 ± 4.1 kg/m2; m: n = 91, 41.1 ± 13.0 years, 25.6 ± 3.8 kg/m2) and 75 older adults (f: n = 54, 75.7 ± 7.8 years, 28.6 ± 4.3 kg/m2; m: n = 21, 75.7 ± 7.3 years, 28.8 ± 3.3 kg/m2) | ✕ health problems that contraindicate muscle performance tests, mobility limitations | HG MVC (dynamometer) | PhA (BIA) | no association between PhA and HG MVC in both adult groups | fair |
Bourgeois et al., 2019 [29] | 146 adults (f: n = 86, 49 ± 16 years, 72.9 ± 17.6 kg, 162.8 ± 6.8 cm, 27.6 ± 6.9 kg/m2, m: n = 60, 45 ± 18 years, 87.3 ± 17.0 kg, 176.9 ± 6.9 cm, 27.9 ± 5.2 kg/m2) | ✓ aged ≥18 years ✕ no medical implants, joint replacements, underlying chronic diseases, body weight ≥200 kg |
| PhA (BIA) | PhA was a predictor of HG MVC (right: R2 = 0.66, β = 2.93, p < 0.01; left: R2 = 0.61, β = 2.62, p < 0.01) and knee EXT MVC (right leg: R2 = 0.71, β = 11.12, p < 0.0001) | fair |
Rodrígues-Rodrígeuz et al., 2016 [30] | 223 healthy, non-athlete adult men (27 ± 10 years, 65.0 ± 11.3 kg, 1.68 ± 0.08 m, 22.8 ± 2.9 kg/m2) | ✕ inflammatory joint disease, neurological disorder, injury of the upper extremities, major systematic disease, elite level athletic participation | HG MVC, absolute and normalized to bodyweight (dynamometer) | PhA (BIA) | moderate positive correlation between PhA and HG MVC (absolute: r = 0.582, p < 0.05; normalized: r = 0.425, p < 0.05) | fair |
Young et al., 2016 [31] | 42 adults (f = 26, m = 16, 24.9 ± 11.4 years, 23.3 ± 3.0 kg/m2) | ✓ varying activity levels ✕ medical conditions which would make participation unsafe | knee EXT and FLX MVC, absolute and normalized to body weight (isometric; dynamometer) | IntraMAT (EI/US; rectus femoris and biceps femoris muscles) |
| poor |
Wroblewski et al., 2011 [32] | 40 competitive masters athletes (40–49: f = 5, m = 5, 45.9 ± 3.1 years, 136.3 ± 18.1 lbs, 20.3 ± 1.3 kg/m2; 50–59: f = 5, m = 5, 54.4 ± 3.5 years, 144.2 ± 25.2 lbs, 21.9 ± 2.8 kg/m2; 60–69: f = 5, m = 5, 65.2 ± 2.5 years, 134.8 ± 21.7 lbs, 21.6 ± 2.2 kg/m2; 70 +: f = 5, m = 5, 75.4 ± 3.4 years, 135.7 ± 19.18 lbs, 22.9 ± 1.5 kg/m2) | NR | knee FLX MVC (isometric; dynamometer) | IntraMAT (MRI; quadriceps femoris muscles) | no correlation between MVC and IntraMAT | fair |
Baum et al., 2016 [33] | 9 adult men (28 ± 8 years, 28.1 ± 3.9 kg/m2) | ✕ diabetes, neuromuscular disorders or quadriceps muscle injuries | knee EXT MVC, at 60° and 90° knee FLX (isometric; dynamometer) |
|
| poor |
Inhuber et al., 2019 [34] | 20 moderately active, healthy adults (f = 10, m = 10; age range: 22–41 years; BMI range: 22.2–31.8 kg/m2) | ✓ aged between 20–45 years, BMI between 23–33 kg/m2 ✕ history of high-performance sports, or neuromuscular or metabolic diseases, previous knee or thigh injuries | knee EXT and FLX MVC, normalized to BMI (isometric; dynamometer) | MAT (PDFF/MRI; bilateral thigh muscles) |
| poor |
Gysel et al., 2014 [35] | 178 healthy adult men (more insulin sensitive: n = 89, 33.2 + −5.4 years, 76.0 ± 8.18 kg, 1.80 ± 6.18 m, 23.4 ± 3.3 kg/m2; less insulin sensitive: n = 89, 35.6 + −5.3 years, 91.0 ± 13.7 kg, 1.79 ± 6.57 m, 28.2 ± 3.9 kg/m2) | ✕ illnesses or medication that may affect body composition, bone metabolism or sex steroid levels |
| IS (HOMA-IR) |
| good |
Justice et al., 2014 [36] | 56 elderly adults (f: n = 34, 75.8 ± 6.0 years, 26.3 ± 4.9 kg/m2; m: n = 22, 74.7 ± 6.1 years, 27.3 ± 2.7 kg/m2) | ✕ diabetes, neurological disorders, chronic pain, advanced chronic diseases, medical condition which would limit safe participation or BMI >40 kg/m2 |
| IS (Minimal Model Identification) | weak positive correlation between IS and 1RM (r = 0.30, p < 0.05) | good |
Bijlsma et al., 2013 [37] | 301 low to highly active, healthy, elderly adults (f: n = 155, 64.4 ± 7.7 years, 71.9 ± 11.2 kg, 1.66 ± 0.06 m, 26.0 ± 4.1 kg/m2; m: n = 146, 67.4 ± 7.1 years, 83.9 ± 11.2 kg, 1.78 ± 0.06 m, 26.4 ± 3.3 kg/m2) | ✕ neurologic disorders, metabolic diseases, rheumatic diseases, malignancy, heart failure, severe chronic obstructive pulmonary disease or recent orthopedic surgery | HG MVC (dynamometer) | IS (HOMA-IR) | no association between HG MVC and HOMA-IR | fair |
Seko et al., 2019 [38] | elderly adults (f: n = 156, 74.9 ± 6.8 years, 50.8 ± 8.5 kg, 149.5 ± 5.9 cm, 22.7 ± 3.2 kg/m2; m: n = 116, 75.0 ± 6.4 years, 62.8 ± 11.0 kg, 163.6 ± 6.2 cm, 23.4 ± 3.6 kg/m2) | ✓ aged ≥65 years ✕ diabetes type 2 |
| IS (HOMA-IR) | no correlation between either HG MVC or knee EXT MVC and HOMA-IR | good |
Gysel et al., 2016 [39] | 178 healthy men (more insulin sensitive: 33.2 ± 5.4 years, 76.0 ± 8.27 kg, 1.80 ± 0.063 m, 23.4 ± 2.3 kg/m2; less insulin sensitive: 35.5 ± 5.3 years, 90.4 ± 12.56 kg, 1.79 ± 0.064 m, 28.1 ± 3.7 kg/m2) | ✕ diseases or medication that affect body composition, bone metabolism or sex steroid levels |
| IS (HOMA-IR) | weak negative correlation between HOMA-IR and normalized HG MVC (r = −0.23, p < 0.001) | fair |
Herda et al., 2019 [40] | 22 healthy individuals (20.4 ± 2.1 years, 172.3 ± 10.3 cm; 70.8 ± 17.0 kg) | ✕ participation in structured exercise in the previous | knee EXT MVC (isometric and concentric; dynamometer) |
|
| poor |
Evangelidis et al., 2017 [41] | 31 low to moderately active adults (21 ± 3 years, 1.79 ± 0.07 m, 71.8 ± 7.3 kg) | ✕history of musculoskeletal problems or injuries of the lower back and lower limb | knee FLX MVC (isometric; dynamometer) | MHC isoform (muscle biopsy; biceps femoris muscle) | no correlation between MHC composition and knee FLX MVC | fair |
de Souza et al., 2012 [42] | 50 physically active, male, college students (23.9 ± 5.2 years, 73.2 ± 13.2 kg, 174.1 ± 6.3 cm) | ✕ participation in regular strength or endurance training, health problems or neuromuscular disorders | 1RM (isometric; leg press) | muscle fiber quantification (muscle biopsy; vastus lateralis muscle) | percentage of type II fibers and total muscle cross-sectional area were significantly associated with predicting muscle strength in low strength performance group (adjusted R2 = 0.25, p = 0.002) and the whole sample (adjusted R2 = 0.35, p = 0.0001) | good |
Selva Raj et al., 2017 [43] | 36 elderly adults (f: n = 16, 68.0 ± 5.9 years, 161.1 ± 5.9 cm, 68.9 ± 9.5 kg, 26.6 ± 3.4 kg/m2; m: n = 20, 68.4 ± 4.9 years, 171.6 ± 9.6 cm, 81.4 ± 12.6 kg, 27.6 ± 3.1 kg/m2) | ✕ relevant cardiovascular or orthopedic problems, performance influencing medication or walking aids | knee EXT MVC (isometric and concentric; dynamometer) |
| weak positive correlation between isometric knee EXT MVC and θf (r = 0.36, p < 0.05) | fair |
Trezise et al., 2016 [44] | 56 healthy men (29.0 ± 5.1 years, 1.78 ± 0.06 m, 78.6 ± 14.0 kg) consisting out of 14 runners, 13 weightlifters, 15 recreationally active, and 14 untrained | ✕ cardiovascular and inflammatory diseases, lower limb injury, and performance-influencing conditions | knee EXT MVC (isometric and concentric; dynamometer/load cell) |
|
| fair |
Ando et al., 2015 [45] | 11 healthy men (21.9 ± 0.9 years, 174.3 ± 6.2 cm, 65.1 ± 9.3 kg) | ✕ involvement in resistance training | knee EXT MVC (isometric; dynamometer) |
| moderate positive correlation between knee EXT MVC and lateral vastus intermedius θf (r = 0.68, p < 0.05) | poor |
Cuesta-Vargas & González-Sánchez, 2014 [46] | 46 healthy adult participants (f: n = 25, 30.39 ± 7.4 years, 57.9 ± 6.7 kg, 165.8 ± 5.2 cm, 24.84 ± 2.87 kg/m2; m: n = 21, 30.39 ± 8.2 years, 78.6 ± 14.4 kg, 178.1 ± 6.7 cm, 21.61 ± 3.44 kg/m2) | ✕ spinal disorders, infections, osteoporotic fractures, neoplastic, metastatic or arthritic diseases, and BMI >35 kg/m2 | lumbar EXT MVC (concentric; dynamometer) | θf (US; erector spinae muscles) | moderate predictive effect of left θf on lumbar EXT MVC (R2 = 0.680, standardized β = 0.443, p = 0.025) | good |
Wakahara et al., 2013 [47] | 22 healthy young men (26.0 ± 3.7 years, 68.9 ± 9.5 kg, 172.5 ± 5.1 cm) | ✕ participation in regular upper extremity resistance training for at least 1 year | elbow EXT MVC, absolute and normalized to muscle mass (isometric; dynamometer/load cell) | θf (US; triceps brachii muscle) | moderate positive correlation between θf and absolute elbow EXT MVC (r = 0.471, p < 0.05) | poor |
Cuesta-Vargas & González-Sánchez, 2013 [48] | 46 healthy adults (f = 25, m = 21, 30.39 ± 7.79 years, 73.59 ± 21.20 kg, 170.52 ± 16.93 m, 23.71 ± 3.16 kg/m2) | NR | lumbar EXT MVC, at light, moderate, and maximal intensity (isometric; load cell) |
|
| good |
Zane et al., 2017 [49] | 326 adults (f = 172, m = 154; 71.4 ± 12.6 years) | ✕ major chronic conditions or functional impairments | knee EXT MVC (isometric; dynamometer) | mitochondrial oxidative capacity, via phosphocreatine resynthesis rate (phosphorus magnetic resonance spectroscopy; vastus lateralis muscle) |
| fair |
Kaya et al., 2013 [50] | 18 older adults (f = 12, m = 6; 67 ± 1.20 years, 69.7 ± 2.77 kg, 167.7 ± 1.98 cm) and 24 younger adults (f = 10, m = 14, 22 ± 0.74 years, 72.6 ± 2.39 kg, 173.2 ± 2.30 cm) | ✕ neurological or orthopedic conditions and participation of resistance training | pinch-grip MVC (isometric; force transducer) |
| no main effect of MUNIX or MUSIX on pinch-grip MVC | fair |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuschel, L.B.; Sonnenburg, D.; Engel, T. Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review. Healthcare 2022, 10, 1937. https://doi.org/10.3390/healthcare10101937
Kuschel LB, Sonnenburg D, Engel T. Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review. Healthcare. 2022; 10(10):1937. https://doi.org/10.3390/healthcare10101937
Chicago/Turabian StyleKuschel, Luciano Bruno, Dominik Sonnenburg, and Tilman Engel. 2022. "Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review" Healthcare 10, no. 10: 1937. https://doi.org/10.3390/healthcare10101937
APA StyleKuschel, L. B., Sonnenburg, D., & Engel, T. (2022). Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review. Healthcare, 10(10), 1937. https://doi.org/10.3390/healthcare10101937