Analysis of Fall Events, Physical Fitness, and Gait Speed According to Fall Risk in Older Korean Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Procedure
2.2. Participants
2.3. BBS and Fall Event Test
2.4. Body Composition
2.5. Physical Fitness Test
2.6. Gait Parameter Measurements
2.7. Statistical Analysis
3. Results
3.1. Physical Characteristics of the Study Participants
3.2. Comparison of Fall Events According to Fall Risk Level (BBS)
3.3. Comparison of Physical Fitness and Gait Speed in Upper and Lower Fall Risk Groups
3.4. Relative Risk for Physical Fitness and Gait Speed According to Fall RISK Level (BBS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Korean Statistical Information Service. Average Life Expectance at Birth in South Korea. Korean Statistical Information Service. 2020. Available online: http://kosis.kr/index/index.do (accessed on 30 September 2022).
- Korea Institute for Health and Social Affairs. Social Problem-Solving Health and Medical Technology and Policy Tasks for Extending Health Lifetime; Korea Institute for Health and Social Affairs: Sejong, Korea, 2019. (In Korean) [Google Scholar]
- Kang, H.J.; Lee, B.K. Comparison of gait variables of fallers and non-fallers and relative risk of falls according to gait speed during flat and obstacles gait in Korean elderly women. Exer. Sci. 2022, 31, 80–87. [Google Scholar] [CrossRef]
- Berg, K.; Wood-Dauphinee, S.; Williams, J.I.; Cayton, D. Measuring balance in the elderly: Preliminary development of an instrument. Phys. Ther. Can. 1989, 41, 304–311. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Baldwin, M.; Polissar, N.L.; Gruber, W. Predicting the probability for falls in community-dwelling older adults. Phys. Ther. 1997, 77, 812–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.-N.W.; Perera, S.; VanSwearingen, J.; Studenski, S. Performance measures predict onset of activity of daily living difficulty in community-dwelling older adults. J. Am. Geriatr. Soc. 2010, 58, 844–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-H.; Lee, Y.-S. The diagnostic accuracy of the Berg balance scale in predicting falls. West. J. Nurs. Res. 2017, 39, 1502–1525. [Google Scholar] [CrossRef]
- Neuls, P.D.; Clark, T.L.; Van Heuklon, N.C.; Proctor, J.E.; Kilker, B.J.; Bieber, M.E.; Donlan, A.V.; Carr-Jules, S.A.; Neidel, W.H.; Newton, R.A. Usefulness of the Berg Balance Scale to predict falls in the elderly. J. Geriatr. Phys. Ther. 2011, 34, 3–10. [Google Scholar]
- Wee, J.Y.; Bagg, S.D.; Palepu, A. The Berg balance scale as a predictor of length of stay and discharge destination in an acute stroke rehabilitation setting. Arch. Phys. Med. Rehabil. 1999, 80, 448–452. [Google Scholar] [CrossRef]
- Wee, J.Y.; Wong, H.; Palepu, A. Validation of the Berg balance scale as a predictor of length of stay and discharge destination in stroke rehabilitation. Arch. Phys. Med. Rehabil. 2003, 84, 731–735. [Google Scholar] [CrossRef]
- Juneja, G.; Czyrny, J.J.; Linn, R.T. Admission balance and outcomes of patients admitted for acute inpatient rehabilitation. Am J. Phys. Med. Rehabil. 1998, 77, 388–393. [Google Scholar] [CrossRef]
- Park, S.H. Tools for assessing fall risk in the elderly: A systematic review and meta-analysis. Aging Clin. Exp. Res. 2018, 30, 1–16. [Google Scholar] [CrossRef]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2018. [Google Scholar]
- Eskurza, I.; Donato, A.J.; Moreau, K.L.; Seals, D.R.; Tanaka, H. Changes in maximal aerobic capacity with age in endurance-trained women: 7yr follow up. J. Appl. Physiol. 2002, 92, 2302–2308. [Google Scholar] [CrossRef] [PubMed]
- Korea Association of Geriatric Healthy Exercise. Guidelines of Exercise Medicine for Older Adults; Hanmibook: Seoul, Korea, 2015. [Google Scholar]
- Yu, Y.J.; Lee, K.K.; Kim, S.B. Effects of fear of falling and cognitive task on the obstacle gait in older adults. J. Korean Acad. Kinesiol. 2014, 16, 63–72. [Google Scholar]
- Anstey, K.J.; von Sanden, C.; Luszcz, M.A. An 8-year prospective study of the relationship between cognitive performance and falling in very old adults. J. Am. Geriatr. Soc. 2006, 54, 1169–1176. [Google Scholar] [CrossRef]
- Tareef, A.-A. Falls in the elderly. Can. Fam. Physician 2011, 57, 771–776. [Google Scholar]
- Muir, S.W.; Berg, K.; Chesworth, B.; Speechley, M. Use of the Berg Balance Scale for Predicting Multiple Falls in Community-Dwelling Elderly People: A Prospective Study. Phys. Ther. 2008, 88, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.Y.; Hsieh, C.L.; Olson, S.L.; Wang, C.H.; Sheu, C.F.; Liang, C.C. Psychometric properties of the Berg balance scale in a community-dwelling elderly resident population in Taiwan. J. Formos. Med. Assoc. 2006, 105, 992–1000. [Google Scholar] [CrossRef] [Green Version]
- Ersoy, Y.; MacWalter, R.S.; Durmus, B.; Altay, Z.E.; Baysal, O. Predictive Effects of Different Clinical Balance Measures and the Fear of Falling on Falls in Postmenopausal Women Aged 50 Years and Over. Gerontology 2009, 55, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.Y.; Park, J.H.; Shim, J.J.; Kim, M.J.; Hwang, M.R.; Kim, S.H. Reliability test of Korean version of Berg balance scale. J. Korean Acad. Rehab. Med. 2006, 30, 611–618. [Google Scholar]
- Lajoie, Y.; Gallagher, S.P. Predicting falls within the elderly community: Comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Arch. Gerontol. Geriatr. 2004, 38, 11–26. [Google Scholar] [CrossRef]
- Conradsson, M.; Lundun-Olsson, L.; Lindelof, N.; Littbrand, H.; Malmqvist, L.; Gustafson, Y.; Rosendahl, E. Berg balance scale: Intrarater test-retest reliability among older people dependent in activities of daily living and living in residential care facilities. Phys. Ther. 2007, 87, 1155–1163. [Google Scholar] [CrossRef] [Green Version]
- Berg, K.O.; Williams, J.I.; Wood-Dauphinee, S.L. The balance scale: Reliability assessment with elderly residents and patients with an acute stroke. Scand. J. Rehabi. Med. 1995, 27, 27–36. [Google Scholar]
- Rikli, R.E.; Jones, C.J. Senior Fitness Test Manual; Human Kinetics: Champaign, IL, USA, 2001. [Google Scholar]
- Duncan, P.W.; Studenski, S.; Chandler, J.; Prescott, B. Functional reach: Predictive validity in a sample of elderly male veterans. J. Gerontol. 1992, 47, 93–98. [Google Scholar] [CrossRef]
- Song, S.-H. Classification, risk factor and assessment of fall. Geriatr. Rehabil. 2011, 1, 83–90. [Google Scholar]
- Kim, S. Validity and Reliability of the Korean Version of the Activities Specific Balance Confidence Scale in Individuals with Stroke. Doctoral Thesis, Graduate School of Yonsei University, Seoul, Korea, 2012. [Google Scholar]
- De Rekeneire, N.; Visser, M.; Peila, R.; Nevitt, M.C.; Cauley, J.A.; Tylavsky, F.A.; Simonsick, E.M.; Harris, T.B. Is a fall just a fall: Correlates of falling in healthy older persons. The Health, Aging, and Body Composition Study. J. Am. Geriatr. Soc. 2003, 51, 841–846. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.K.; Chou, M.Y.; Peng, L.N.; Liao, M.C.; Chu, C.L.; Lin, Y.T.; Chen, L.K. Gait speed and risk assessment for falls among men aged 80 years and older: A prospective cohort study in Taiwan. Eur. Geriatr. Med. 2014, 5, 298–302. [Google Scholar] [CrossRef]
- Bath, P.A.; Morgan, K. Differential risk factors profiles indoor and outdoor falls in older people living at home in Nottingham, UK. Eur. J. Epidemiol. 1999, 15, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Ribom, E.L.; Grundberg, E.; Mallmin, H.; Ohlsson, C.; Lorenzon, M.; Orwoll, E.; Holmberg, A.H.; Mellstrom, D.; Ljunggren, O.; Karlsson, M.K. Estimation of physical performance and measurements of habitual physical activity may capture men with high risk to fall--data from the Mr Os Sweden cohort. Arch. Gerontol. Geriatr. 2008, 49, e72–e76. [Google Scholar] [CrossRef]
- Choi, H.J.; Kim, S.H.; Kim, S.Y.; Lee, B.K.; Kang, H.J. Comparison of body composition, functional fitness and foot pressure balance between muscle-strengthening type in older persons. A J. Kinesiol. 2013, 15, 11–24. [Google Scholar]
- Csuka, M.; McCarty, D.J.; Bohannon, R.W. Simple method for measurement of lower extremity muscle strength. Am. J. Med. 1985, 78, 77–81. [Google Scholar] [CrossRef]
- Alexander, N.B.; Schultz, A.B.; Warwick, D.N. Rising from a chair: Effects of age and functional ability on performance biomechanics. J. Gerontoloty 1991, 46, M91–M98. [Google Scholar] [CrossRef] [PubMed]
- MacRae, P.G.; Lacourse, M.; Moldavon, R. Physical performance measures that predict faller status in community-dwelling older adults. J. Orthop. Sports Phy. Ther. 1992, 16, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.J.; Kim, S.B.; Lee, B.K. Effects of rhythmic exercise and strengthening-aerobic exercise on physical fitness and MVAS in older females. Asian J. Kinesiol. 2013, 15, 1–14. [Google Scholar] [CrossRef]
- Nuzzo, L.J. The case for retiring flexibility as a major component of physical fitness. Sports Med. 2020, 50, 853–870. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Gau, M.I.; Lin, W.-C.; George, K. Assessing risk of falling in the adult. Public Health Nurs. 2003, 20, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, K.H. The effect of musculoskeletal disorders on body regions and pain levels in elderly people on dynamic balance ability. J. Mens Health 2020, 16, 98–108. [Google Scholar]
- Cebolla, E.C.; Rodacki, A.L.F.; Bento, P.C.B. Balance, gait, functionality and strength: Comparison between elderly fallers and non-fallers. Braz. J. Phys. Ther. 2015, 19, 146–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Harmer, P.; Fitzgerald, K.; Eckstrom, E.; Akers, L.; Chou, L.-S.; Pidgeon, D.; Voit, J.; Winters-Stone, K. Effectiveness of a therapeutic tai ji quan intervention vs a multimodal exercise intervention to prevent falls among older adults at high risk of falling: A randomized clinical trial. JAMA Intern. Med. 2018, 178, 1301–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeeuwe, P.E.M.; Verhagen, A.; Bierma-Zeinstra, S.; van Rossum, E.; Faber, M.J.; Koes, B.W. The effect of tai chi chuan in reducing falls among elderly people: Design of a randomized clinical trial in the Netherlands [ISRCTN98840266]. BMC Geriatr. 2006, 6, 6. [Google Scholar] [CrossRef]
- Chan, B.K.S.; Marshall, L.M.; Winters, K.M.; Faulkner, K.A.; Schwartz, A.V. Incident fall risk, and physical activity and physical performance among older men: The Osteoporotic Fractures in Men Study. Am. J. Epidemiol. 2007, 165, 696–703. [Google Scholar] [CrossRef] [Green Version]
- Toraman, A.; Yıldırım, N.U. The falling risk and physical fitness in older people. Arch. Gerontol. Geriatr. 2010, 51, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Ko, B.-G.; Song, H.-S.; Song, J.-H.; Lee, M.; Jae, S.Y.; Jeon, J.; Kwon, J.P.S.; Lee, J.; Park, S.H. Development of criterion referenced health fitness standards for chronic disease prevention in Korean adults: The Korea Institute of Sport Science Fitness Standards Study (KISS FitS). Kor. J. Sport Stud. 2018, 57, 385–396. [Google Scholar] [CrossRef]
Group | Age (Years) | Weight (kg) | Height (cm) | Body Mass Index (kg/m2) |
---|---|---|---|---|
Lower BBS (n = 52) | 74.2 ± 5.8 | 59.0 ± 8.0 | 153.7 ± 5.1 | 24.9 ± 3.0 |
Upper BBS (n = 96) | 71.2 ± 4.9 | 57.4 ± 7.8 | 154.3 ± 4.6 | 24.1 ± 3.0 |
Total (n = 148) | 72.2 ± 5.2 | 58.0 ± 7.9 | 154.1 ± 4.8 | 24.3 ± 3.0 |
t | 3.484 | 1.174 | 0.676 | 1.590 |
p | 0.001 *** | 0.243 | 0.500 | 0.114 |
Fall Event | Variables | Fall Risk Level | Total | |
---|---|---|---|---|
Lower BBS (n = 52) | Upper BBS (n = 96) | |||
Non-fallers | Frequency | 39 | 87 | 126 |
No fall event % | 31.0% | 69.0% | 100.0% | |
BBS group % | 75.0% | 90.6% | 85.1% | |
Total % | 26.4% | 58.8% | 85.1% | |
Fallers | Frequency | 13 | 9 | 22 |
Fall event e % | 59.1% | 40.9% | 100.0% | |
BBS group % | 25.0% | 9.4% | 14.9% | |
Total % | 8.8% | 6.1% | 14.9% | |
Total | Frequency | 52 | 96 | 148 |
Fall and non-fall event % | 35.1% | 64.9% | 100.0% | |
BBS group % | 100.0% | 100.0% | 100.0% | |
Total % | 35.1% | 64.9% | 100.0% |
Physical Fitness | Fall Risk Levels | Total | t | p | |
---|---|---|---|---|---|
Lower BBS(n = 52) | Upper BBS(n = 96) | ||||
Arm curl (each/30 s) | 16.54 ± 4.14 | 17.26 ± 4.62 | 17.01 ± 4.45 | 0.940 | 0.349 |
Chair stand (each/30 s) | 12.75 ± 4.25 | 15.57 ± 5.17 | 14.58 ± 5.04 | 3.365 | 0.001 ** |
2 min step test (steps) | 134.73 ± 54.41 | 131.39 ± 42.61 | 132.55 ± 46.88 | 0.380 | 0.705 |
Chair sit-and-reach (cm) | 10.21 ± 7.18 | 13.73 ± 8.55 | 12.49 ± 8.25 | 2.523 | 0.013 * |
Timed up-and-go (s) | 8.46 ± 2.11 | 7.13 ± 2.04 | 7.59 ± 2.15 | 3.714 | <0.001 *** |
Single-leg stance with eyes open (s) | 17.74 ± 20.65 | 35.08 ± 24.56 | 28.99 ± 24.63 | 4.556 | <0.001 *** |
Gait Speed | Fall Risk Level | Total | t | p | |
---|---|---|---|---|---|
Lower BBS (n = 52) | Upper BBS (n = 96) | ||||
Flat ground gait speed (m/s) | 1.14 ± 0.20 | 1.37 ± 0.66 | 1.28 ± 0.55 | 2.365 | 0.019 * |
5 cm obstacle gait speed (m/s) | 1.11 ± 0.24 | 1.23 ± 0.23 | 1.18 ± 0.23 | 2.863 | 0.005 ** |
10% HT obstacle gait speed (m/s)# | 0.96 ± 0.25 | 1.05 ± 0.23 | 1.02 ± 0.23 | 2.115 | 0.036 * |
30 cm obstacle gait speed (m/s) | 0.76 ± 0.21 | 0.86 ± 0.21 | 0.82 ± 0.21 | 2.617 | 0.010 * |
Variables | OR | 95% CI | p |
---|---|---|---|
Arm curl (each/30 s) | 1.102 | 0.559–2.171 | 0.779 |
Chair stand (each/30 s) | 0.368 | 0.177–0.766 | 0.007 ** |
2 min step test (steps) | 0.870 | 0.429–1.762 | 0.699 |
Chair sit-and-reach (cm) | 0.447 | 0.221–0.904 | 0.025 * |
Timed up-and-go (s)# | 0.323 | 0.159–0.652 | 0.002 ** |
Single-leg stance with eyes open (s) | 0.227 | 0.104–0.494 | <0.001 *** |
Variables | OR | 95% CI | p |
---|---|---|---|
Flat ground gait speed (m/s) | 0.327 | 0.167–0.640 | 0.001 ** |
5 cm obstacle gait speed (m/s) | 0.605 | 0.335–1.092 | 0.095 |
10% HT obstacle gait speed (m/s)# | 0.516 | 0.283–0.940 | 0.031 * |
30 cm obstacle gait speed (m/s) | 0.462 | 0.251–0.850 | 0.013 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.-K.; So, W.-Y.; Kang, H.-J. Analysis of Fall Events, Physical Fitness, and Gait Speed According to Fall Risk in Older Korean Women. Healthcare 2022, 10, 1936. https://doi.org/10.3390/healthcare10101936
Lee B-K, So W-Y, Kang H-J. Analysis of Fall Events, Physical Fitness, and Gait Speed According to Fall Risk in Older Korean Women. Healthcare. 2022; 10(10):1936. https://doi.org/10.3390/healthcare10101936
Chicago/Turabian StyleLee, Byung-Kun, Wi-Young So, and Hyun-Joo Kang. 2022. "Analysis of Fall Events, Physical Fitness, and Gait Speed According to Fall Risk in Older Korean Women" Healthcare 10, no. 10: 1936. https://doi.org/10.3390/healthcare10101936
APA StyleLee, B.-K., So, W.-Y., & Kang, H.-J. (2022). Analysis of Fall Events, Physical Fitness, and Gait Speed According to Fall Risk in Older Korean Women. Healthcare, 10(10), 1936. https://doi.org/10.3390/healthcare10101936