Linking Depressive and Anxiety Symptoms with Diet Quality of University Students: A Cross-Sectional Study during the COVID-19 Pandemic in India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sampling and Study Procedure
2.3. Measures
2.3.1. Diet Quality
2.3.2. Depressive Symptoms
2.3.3. Anxiety Symptoms
2.3.4. Other Health and Lifestyle Characteristics
2.4. Data Analysis
3. Results
3.1. Distribution of Diet Quality across Different Socio-Demographic Characteristics of Study Participants during the COVID-19 Pandemic in India
3.2. Health and Lifestyle Characteristics
3.3. Logistic Regression Analysis on Socio-Demographic, Health, and Lifestyle Factors on Diet Quality
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Hegde, S.; Son, C.; Keller, B.; Smith, A.; Sasangohar, F. Investigating Mental Health of US College Students during the COVID-19 Pandemic: Cross-Sectional Survey Study. J. Med. Internet Res. 2020, 22, e22817. [Google Scholar] [CrossRef] [PubMed]
- Banna, M.H.A.; Sayeed, A.; Kundu, S.; Christopher, E.; Hasan, M.T.; Begum, M.R.; Kormoker, T.; Dola, S.T.I.; Hassan, M.M.; Chowdhury, S.; et al. The Impact of the COVID-19 Pandemic on the Mental Health of the Adult Population in Bangladesh: A Nationwide Cross-Sectional Study. Int. J. Environ. Health Res. 2020, 32, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Banna, M.H.A.; Sayeed, A.; Sultana, M.S.; Brazendale, K.; Harris, J.; Mandal, M.; Jahan, I.; Abid, M.T.; Khan, M.S.I. Determinants of Household Food Security and Dietary Diversity during the COVID-19 Pandemic in Bangladesh. Public Health Nutr. 2020, 24, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Ghazawy, E.R.; Ewis, A.A.; Mahfouz, E.M.; Khalil, D.M.; Arafa, A.; Mohammed, Z.; Mohammed, E.-N.F.; Hassan, E.E.; Hamid, S.A.; Ewis, S.A. Psychological Impacts of COVID-19 Pandemic on the University Students in Egypt. Health Promot. Int. 2020, 36, 1116–1125. [Google Scholar] [CrossRef]
- Lee, J.; Solomon, M.; Stead, T.; Kwon, B.; Ganti, L. Impact of COVID-19 on the Mental Health of US College Students. BMC Psychol. 2021, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Ping, S.; Liu, X. Gender Differences in Depression, Anxiety, and Stress among College Students: A Longitudinal Study from China. J. Affect. Disord. 2020, 263, 292–300. [Google Scholar] [CrossRef]
- Beiter, R.; Nash, R.; McCrady, M.; Rhoades, D.; Linscomb, M.; Clarahan, M.; Sammut, S. The Prevalence and Correlates of Depression, Anxiety, and Stress in a Sample of College Students. J. Affect. Disord. 2015, 173, 90–96. [Google Scholar] [CrossRef]
- Jacka, F.N.; Mykletun, A.; Berk, M.; Bjelland, I.; Tell, G.S. The Association between Habitual Diet Quality and the Common Mental Disorders in Community-Dwelling Adults: The Hordaland Health Study. Psychosom. Med. 2011, 73, 483–490. [Google Scholar] [CrossRef]
- Gibson-Smith, D.; Bot, M.; Brouwer, I.A.; Visser, M.; Penninx, B.W.J.H. Diet Quality in Persons with and without Depressive and Anxiety Disorders. J. Psychiatr. Res. 2018, 106, 1–7. [Google Scholar] [CrossRef]
- Molendijk, M.; Molero, P.; Sánchez-Pedreño, F.O.; Van der Does, W.; Martínez-González, M.A. Diet Quality and Depression Risk: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. J. Affect. Disord. 2018, 226, 346–354. [Google Scholar] [CrossRef] [Green Version]
- Poorrezaeian, M.; Siassi, F.; Qorbani, M.; Karimi, J.; Koohdani, F.; Asayesh, H.; Sotoudeh, G. Association of Dietary Diversity Score with Anxiety in Women. Psychiatry Res. 2015, 230, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Weng, T.-T.; Hao, J.-H.; Qian, Q.-W.; Cao, H.; Fu, J.-L.; Sun, Y.; Huang, L.; Tao, F.-B. Is There Any Relationship between Dietary Patterns and Depression and Anxiety in Chinese Adolescents? Public Health Nutr. 2012, 15, 673–682. [Google Scholar] [CrossRef]
- Quirk, S.E.; Williams, L.J.; O’Neil, A.; Pasco, J.A.; Jacka, F.N.; Housden, S.; Berk, M.; Brennan, S.L. The Association between Diet Quality, Dietary Patterns and Depression in Adults: A Systematic Review. BMC Psychiatry 2013, 13, 175. [Google Scholar] [CrossRef]
- Li, Y.; Lv, M.-R.; Wei, Y.-J.; Sun, L.; Zhang, J.-X.; Zhang, H.-G.; Li, B. Dietary Patterns and Depression Risk: A Meta-Analysis. Psychiatry Res. 2017, 253, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy Dietary Indices and Risk of Depressive Outcomes: A Systematic Review and Meta-Analysis of Observational Studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Sacker, A.; Cable, N. Do Adolescent Leisure-Time Physical Activities Foster Health and Well-Being in Adulthood? Evidence from Two British Birth Cohorts. Eur. J. Public Health 2006, 16, 331–335. [Google Scholar] [CrossRef]
- Pasco, J.A.; Williams, L.J.; Jacka, F.N.; Henry, M.J.; Coulson, C.E.; Brennan, S.L.; Leslie, E.; Nicholson, G.C.; Kotowicz, M.A.; Berk, M. Habitual Physical Activity and the Risk for Depressive and Anxiety Disorders among Older Men and Women. Int. Psychogeriatr. 2011, 23, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Pasco, J.A.; Williams, L.J.; Jacka, F.N.; Ng, F.; Henry, M.J.; Nicholson, G.C.; Kotowicz, M.A.; Berk, M. Tobacco Smoking as a Risk Factor for Major Depressive Disorder: Population-Based Study. Br. J. Psychiatry 2008, 193, 322–326. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-L.; Schnepp, J.; Tucker, R.M. Increased Hunger, Food Cravings, Food Reward, and Portion Size Selection after Sleep Curtailment in Women without Obesity. Nutrients 2019, 11, 663. [Google Scholar] [CrossRef] [PubMed]
- Spaeth, A.M.; Dinges, D.F.; Goel, N. Effects of Experimental Sleep Restriction on Weight Gain, Caloric Intake, and Meal Timing in Healthy Adults. Sleep 2013, 36, 981–990. [Google Scholar] [CrossRef]
- Du, C.; Wang, W.; Hsiao, P.Y.; Ludy, M.-J.; Tucker, R.M. Insufficient Sleep and Poor Sleep Quality Completely Mediate the Relationship between Financial Stress and Dietary Risk among Higher Education Students. Behav. Sci. 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Nisar, M.; Mohammad, R.M.; Arshad, A.; Hashmi, I.; Yousuf, S.M.; Baig, S. Influence of Dietary Intake on Sleeping Patterns of Medical Students. Cureus 2019, 11, e4106. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Grosso, G.; Castellano, S.; Galvano, F.; Caraci, F.; Ferri, R. Association between Diet and Sleep Quality: A Systematic Review. Sleep Med. Rev. 2021, 57, 101430. [Google Scholar] [CrossRef]
- Rahe, C.; Unrath, M.; Berger, K. Dietary Patterns and the Risk of Depression in Adults: A Systematic Review of Observational Studies. Eur. J. Nutr. 2014, 53, 997–1013. [Google Scholar] [CrossRef]
- Khalid, S.; Williams, C.M.; Reynolds, S.A. Is There an Association between Diet and Depression in Children and Adolescents? A Systematic Review. Br. J. Nutr. 2016, 116, 2097–2108. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, J.L. Prevention of Depression in the College Student Population: A Review of the Literature. Arch. Psychiatr. Nurs. 2012, 26, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Nezam, S.; Golwara, A.K.; Jha, P.C.; Khan, S.A.; Singh, S.; Tanwar, A.S. Comparison of Prevalence of Depression among Medical, Dental, and Engineering Students in Patna Using Beck’s Depression Inventory II: A Cross-Sectional Study. J. Fam. Med. Prim. Care 2020, 9, 3005. [Google Scholar]
- Kim, W.Y.; Cho, M.S.; Lee, H.S. Development and Validation of Mini Dietary Assessment Index for Koreans. Korean J. Nutr. 2003, 36, 83–92. [Google Scholar]
- National Institute of Nutrition. Dietary Guidelines for Indians; Hyderabad, India, 2011. Available online: https://www.nin.res.in/downloads/DietaryGuidelinesforNINwebsite.pdf (accessed on 27 June 2021).
- Kim, Y.; Park, J.Y.; Kim, S.B.; Jung, I.-K.; Lim, Y.S.; Kim, J.-H. The Effects of Internet Addiction on the Lifestyle and Dietary Behavior of Korean Adolescents. Nutr. Res. Pract. 2010, 4, 51. [Google Scholar] [CrossRef]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a Brief Depression Severity Measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Kundu, S.; Bakchi, J.; Al Banna, M.H.; Sayeed, A.; Hasan, M.T.; Abid, M.T.; Ghosh, S.; Sarker, N.; Khan, M.S.I. Depressive Symptoms Associated with Loneliness and Physical Activities among Graduate University Students in Bangladesh: Findings from a Cross-Sectional Pilot Study. Heliyon 2021, 7, e06401. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Akter, R.; Sikder, T.; Griffiths, M.D. Prevalence and Factors Associated with Depression and Anxiety among First-Year University Students in Bangladesh: A Cross-Sectional Study. Int. J. Ment. Health Addict. 2020, 20, 1289–1302. [Google Scholar] [CrossRef] [Green Version]
- Wasil, A.R.; Malhotra, T.; Nandakumar, N.; Glinski, S.; Bhatia, A.; DeRubeis, R.J. Which Symptoms of Depression and Anxiety Matter Most?: An Investigation of Subjective Importance Ratings with College Students in India. Behav. Ther. 2022, 53, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Manea, L.; Gilbody, S.; McMillan, D. Optimal Cut-off Score for Diagnosing Depression with the Patient Health Questionnaire (PHQ-9): A Meta-Analysis. CMAJ 2012, 184, E191–E196. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W.; Löwe, B. A Brief Measure for Assessing Generalized Anxiety Disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef]
- Górnicka, M.; Drywień, M.E.; Zielinska, M.A.; Hamułka, J. Dietary and Lifestyle Changes during COVID-19 and the Subsequent Lockdowns among Polish Adults: A Cross-Sectional Online Survey PLifeCOVID-19 Study. Nutrients 2020, 12, 2324. [Google Scholar] [CrossRef]
- Sayeed, A.; Hassan, M.N.; Rahman, M.H.; El Hayek, S.; Al Banna, M.H.; Mallick, T.; Hasan, A.-R.; Meem, A.E.; Kundu, S. Facebook Addiction Associated with Internet Activity, Depression and Behavioral Factors among University Students of Bangladesh: A Cross-Sectional Study. Child. Youth Serv. Rev. 2020, 118, 105424. [Google Scholar] [CrossRef]
- Coakley, K.E.; Le, H.; Silva, S.R.; Wilks, A. Anxiety Is Associated with Appetitive Traits in University Students during the COVID-19 Pandemic. Nutr. J. 2021, 20, 45. [Google Scholar] [CrossRef]
- Aristovnik, A.; Keržič, D.; Ravšelj, D.; Tomaževič, N.; Umek, L. Impacts of the COVID-19 Pandemic on Life of Higher Education Students: A Global Perspective. Sustainability 2020, 12, 8438. [Google Scholar] [CrossRef]
- Gonzalez, T.; De La Rubia, M.A.; Hincz, K.P.; Comas-Lopez, M.; Subirats, L.; Fort, S.; Sacha, G.M. Influence of COVID-19 Confinement on Students’ Performance in Higher Education. PLoS ONE 2020, 15, e0239490. [Google Scholar] [CrossRef]
- Odriozola-González, P.; Planchuelo-Gómez, Á.; Irurtia, M.J.; de Luis-García, R. Psychological Effects of the COVID-19 Outbreak and Lockdown among Students and Workers of a Spanish University. Psychiatry Res. 2020, 290, 113108. [Google Scholar] [CrossRef] [PubMed]
- Lipson, S.K.; Zhou, S.; Wagner III, B.; Beck, K.; Eisenberg, D. Major Differences: Variations in Undergraduate and Graduate Student Mental Health and Treatment Utilization across Academic Disciplines. J. Coll. Stud. Psychother. 2016, 30, 23–41. [Google Scholar] [CrossRef]
- Owusu-Fordjour, C.; Koomson, C.K.; Hanson, D. The Impact of COVID-19 on Learning-the Perspective of the Ghanaian Student. Eur. J. Educ. Stud. 2020, 7. [Google Scholar] [CrossRef]
- Adnan, M.; Anwar, K. Online Learning amid the COVID-19 Pandemic: Students’ Perspectives. J. Pedagog. Sociol. Psychol. 2020, 2, 45–51. [Google Scholar] [CrossRef]
- Demuyakor, J. Coronavirus (COVID-19) and Online Learning in Higher Institutions of Education: A Survey of the Perceptions of Ghanaian International Students in China. Online J. Commun. Media Technol. 2020, 10, e202018. [Google Scholar] [CrossRef]
- Antunes, R.; Frontini, R.; Amaro, N.; Salvador, R.; Matos, R.; Morouço, P.; Rebelo-Gonçalves, R. Exploring Lifestyle Habits, Physical Activity, Anxiety and Basic Psychological Needs in a Sample of Portuguese Adults during COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 4360. [Google Scholar] [CrossRef]
- Son, C.; Hegde, S.; Smith, A.; Wang, X.; Sasangohar, F. Effects of COVID-19 on College Students’ Mental Health in the United States: Interview Survey Study. J. Med. Internet Res. 2020, 22, e21279. [Google Scholar] [CrossRef]
- Al Khatib, H.K.; Hall, W.L.; Creedon, A.; Ooi, E.; Masri, T.; McGowan, L.; Harding, S.V.; Darzi, J.; Pot, G.K. Sleep Extension Is a Feasible Lifestyle Intervention in Free-Living Adults Who Are Habitually Short Sleepers: A Potential Strategy for Decreasing Intake of Free Sugars? A Randomized Controlled Pilot Study. Am. J. Clin. Nutr. 2018, 107, 43–53. [Google Scholar] [CrossRef]
- Gwin, J.A.; Leidy, H.J. Breakfast Consumption Augments Appetite, Eating Behavior, and Exploratory Markers of Sleep Quality Compared with Skipping Breakfast in Healthy Young Adults. Curr. Dev. Nutr. 2018, 2, nzy074. [Google Scholar] [CrossRef]
- Theodoro, H.; Bassani, D.G.; da Silva, J.C.; Mendes, K.G.; Cibeira, G.H.; Schenkel, J.C.; Olinto, M.T.A. Behavioural Characteristics and Abdominal Obesity among Brazilian Shift Working Women. Public Health Nutr. 2021, 24, 253–259. [Google Scholar] [CrossRef]
- Hawley, J.A.; Sassone-Corsi, P.; Zierath, J.R. Chrono-Nutrition for the Prevention and Treatment of Obesity and Type 2 Diabetes: From Mice to Men. Diabetologia 2020, 63, 2253–2259. [Google Scholar] [CrossRef] [PubMed]
- Wattick, R.A.; Hagedorn, R.L.; Olfert, M.D. Relationship between Diet and Mental Health in a Young Adult Appalachian College Population. Nutrients 2018, 10, 957. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, R.J. Psychological Correlates of Habitual Diet in Healthy Adults. Psychol. Bull. 2017, 143, 53. [Google Scholar] [CrossRef] [PubMed]
- Meegan, A.P.; Perry, I.J.; Phillips, C.M. The Association between Dietary Quality and Dietary Guideline Adherence with Mental Health Outcomes in Adults: A Cross-Sectional Analysis. Nutrients 2017, 9, 238. [Google Scholar] [CrossRef] [PubMed]
- Stefańska, E.; Wendołowicz, A.; Cwalina, U.; Kowzan, U.; Konarzewska, B.; Szulc, A.; Ostrowska, L. Assessment of Dietary Habits of Patients with Recurrent Depressive Disorders. Arch. Psychiatry Psychother. 2014, 4, 39–46. [Google Scholar] [CrossRef]
- Ohmori, Y.; Ito, H.; Morita, A.; Deura, K.; Miyachi, M. Associations between Depression and Unhealthy Behaviours Related to Metabolic Syndrome: A Cross Sectional Study. Asia Pac. J. Clin. Nutr. 2017, 26, 130–140. [Google Scholar]
- Nanri, A.; Mizoue, T.; Poudel-Tandukar, K.; Noda, M.; Kato, M.; Kurotani, K.; Goto, A.; Oba, S.; Inoue, M.; Tsugane, S. Dietary Patterns and Suicide in Japanese Adults: The Japan Public Health Center-Based Prospective Study. Br. J. Psychiatry 2013, 203, 422–427. [Google Scholar] [CrossRef]
- Dipnall, J.F.; Pasco, J.A.; Meyer, D.; Berk, M.; Williams, L.J.; Dodd, S.; Jacka, F.N. The Association between Dietary Patterns, Diabetes and Depression. J. Affect. Disord. 2015, 174, 215–224. [Google Scholar] [CrossRef]
- Flórez, K.R.; Dubowitz, T.; Ghosh-Dastidar, M.B.; Beckman, R.; Collins, R.L. Associations between Depressive Symptomatology, Diet, and Body Mass Index among Participants in the Supplemental Nutrition Assistance Program. J. Acad. Nutr. Diet. 2015, 115, 1102–1108. [Google Scholar] [CrossRef]
- Schneider, K.L.; Panza, E.; Appelhans, B.M.; Whited, M.C.; Oleski, J.L.; Pagoto, S.L. The Emotional Eating Scale. Can a Self-Report Measure Predict Observed Emotional Eating? Appetite 2012, 58, 563–566. [Google Scholar] [CrossRef]
- Braden, A.; Musher-Eizenman, D.; Watford, T.; Emley, E. Eating When Depressed, Anxious, Bored, or Happy: Are Emotional Eating Types Associated with Unique Psychological and Physical Health Correlates? Appetite 2018, 125, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Richard, A.; Rohrmann, S.; Pestoni, G.; Strippoli, M.-P.F.; Lasserre, A.; Marques-Vidal, P.; Preisig, M.; Vandeleur, C.L. Associations between Anxiety Disorders and Diet Quality in a Swiss Cohort Study. Compr. Psychiatry 2022, 118, 152344. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Categories | Total; n (%) | Diet Quality | p Values | |
---|---|---|---|---|---|
Poor; n (%) | Good; n (%) | ||||
Sex | Male | 199 (45.2) | 67 (33.7) | 132 (66.3) | 0.042 |
Female | 241 (54.8) | 104 (43.2) | 137 (56.9) | ||
Age in years | 18–21 | 228 (51.8) | 100 (43.7) | 128 (56.1) | 0.037 * |
22–25 | 196 (44.6) | 68 (34.7) | 128 (65.3) | ||
>25 | 16 (3.6) | 3 (18.8) | 13 (81.2) | ||
Education level | Under-graduate | 162 (36.8) | 60 (37.0) | 102 (63.0) | 0.548 |
Post-graduate | 278 (63.2) | 96 (34.5) | 182 (65.5) | ||
Study course | Science/engineering | 115 (26.1) | 40 (34.8) | 75 (65.2) | 0.009 |
Arts/social science | 68 (15.5) | 35 (51.5) | 33 (48.5) | ||
Business and law | 230 (52.3) | 80 (34.8) | 150 (65.2) | ||
Others # | 27 (6.1) | 16 (59.3) | 11 (40.7) | ||
Residence | Rural | 126 (28.6) | 63 (50.0) | 63 (50.0) | 0.010 |
Semi-urban | 87 (19.8) | 31 (35.6) | 56 (64.4) | ||
Urban | 227 (51.6) | 77 (33.9) | 150 (66.1) | ||
Living situation during lockdown | Alone | 21 (4.8) | 8 (38.1) | 13 (61.9) | 0.970 |
With partner | 27 (6.1) | 11 (40.7) | 16 (59.3) | ||
With family | 354 (80.5) | 136 (38.4) | 218 (61.6) | ||
With friends/others | 38 (8.6) | 16 (42.1) | 22 (57.9) | ||
Diet quality | Poor | 171 (38.9) | - | - | - |
Good | 269 (61.1) | - | - |
Characteristics | Categories | Total; n (%) | Diet Quality | p Values | |
---|---|---|---|---|---|
Poor; n (%) | Good; n (%) | ||||
Smoking status | More than before | 21 (4.8) | 7 (33.3) | 14 (66.7) | 0.926 * |
Less than before | 15 (3.4) | 7 (46.7) | 8 (53.3) | ||
Same as before | 7 (1.6) | 3 (42.9) | 4 (57.1) | ||
Quit smoking | 9 (2.1) | 4 (44.4) | 5 (55.6) | ||
Do not smoke | 388 (88.2) | 150 (38.7) | 238 (61.3) | ||
Level of physical activity | Low (0.5 h/day) | 126 (28.6) | 53 (42.1) | 73 (57.9) | 0.641 |
Moderate (0.5–2 h/day) | 256 (58.2) | 95 (37.1) | 161 (62.9) | ||
High (>2 h/day) | 58 (13.2) | 23 (39.7) | 35 (60.3) | ||
Changes in physical activity | Decreased | 109 (24.8) | 39 (35.8) | 70 (64.2) | 0.739 |
No change | 214 (48.6) | 86 (40.2) | 128 (59.8) | ||
Increased | 117 (26.6) | 46 (39.3) | 71 (60.7) | ||
Sleep duration | Short (<6 h/day) | 43 (9.8) | 16 (37.2) | 27 (62.8) | 0.277 |
Normal (6–8 h/day) | 181 (41.1) | 63 (34.8) | 118 (65.2) | ||
Long (>8 h/day) | 216 (49.1) | 92 (42.6) | 124 (57.4) | ||
Changes in sleep duration | Decreased | 95 (21.6) | 45 (47.4) | 50 (52.6) | 0.023 |
No change | 150 (34.1) | 46 (30.7) | 104 (69.3) | ||
Increased | 195 (44.3) | 80 (41.0) | 115 (59.0) | ||
Alcohol use | Never | 322 (73.2) | 131 (40.7) | 191 (59.3) | 0.433 |
Monthly or less | 68 (15.5) | 23 (33.8) | 45 (66.2) | ||
≥2 times a month | 50 (11.4) | 17 (34.0) | 33 (66.0) | ||
Meal size | Decreased | 133 (30.2) | 60 (45.1) | 73 (54.9) | 0.017 |
No change | 210 (47.7) | 67 (31.9) | 143 (68.1) | ||
Increased | 97 (22.1) | 44 (45.4) | 53 (54.6) | ||
Appetite | Worse than before | 14 (3.2) | 11 (78.6) | 3 (21.4) | 0.000 |
Poorer than before | 88 (20.0) | 47 (53.4) | 41 (46.6) | ||
No change | 204 (46.4) | 66 (32.4) | 138 (67.6) | ||
Better than before | 90 (20.5) | 25 (27.8) | 65 (72.2) | ||
Do not know | 44 (10.0) | 22 (50.0) | 22 (50.0) | ||
Depressive symptoms | Yes | 118 (26.8) | 66 (55.9) | 52 (44.1) | 0.000 |
No | 322 (73.2) | 105 (32.6) | 217 (67.4) | ||
Anxiety symptoms | Yes | 101 (22.9) | 56 (55.5) | 45 (44.5) | 0.000 |
No | 339 (77.1) | 115 (33.9) | 224 (66.1) |
Variables | Block-0 | Block-1 | Block-2 | Block-3 |
---|---|---|---|---|
COR (95% CI) | AOR (95% CI) | AOR (95% CI) | AOR (95% CI) | |
Socio-demographic characteristics | ||||
Sex | ||||
Male | 1.50 * (1.01, 2.21) | 1.29 (0.83, 1.99) | 1.21 (0.72, 2.04) | |
Female | Ref | Ref | Ref | |
Age in years | ||||
18–21 | Ref | Ref | Ref | |
22–25 | 1.47 (0.99, 2.18) | 1.52 (0.97, 2.41) | 1.72 (1.03, 2.87) | |
>25 | 3.39 (0.94, 12.20) | 3.28 (0.85, 12.68) | 3.59 (0.80, 16.09) | |
Education level | ||||
Under-graduate | Ref | Ref | Ref | |
Post-graduate | 1.89 (1.59, 2.32) | 1.62 (1.38, 2.01) | 1.42 ** (1.24, 2.73) | |
Study course | ||||
Science/engineering | Ref | Ref | Ref | |
Arts/social science | 0.50 * (0.27, 0.93) | 0.51 (0.26, 1.02) | 0.35 * (0.16, 0.81) | |
Business and law | 1.0 (0.63, 1.60) | 0.89 (0.52, 1.50) | 0.92 (0.51, 1.68) | |
Others # | 0.37 * (0.16, 0.86) | 0.29 ** (0.12, 0.71) | 0.18 ** (0.07, 0.49) | |
Residence | ||||
Rural | Ref | Ref | Ref | |
Semi-urban | 1.81 * (1.03, 3.16) | 1.52 (0.83, 2.78) | 1.42 (0.72, 2.82) | |
Urban | 1.95 ** (1.25, 3.04) | 1.74 * (1.08, 2.80) | 1.93 * (1.13, 3.31) | |
Living situation | ||||
Alone | Ref | Ref | Ref | |
With partner | 0.90 (0.28, 2.88) | 1.48 (0.42, 5.13) | 1.63 (0.39, 6.84) | |
With family | 0.99 (0.40, 2.44) | 1.35 (0.51, 3.56) | 1.27 (0.41, 3.92) | |
With friends/others | 0.85 (0.28, 2.52) | 0.84 (0.27, 2.62) | 1.47 (0.39, 5.60) | |
Health and lifestyle characteristics and their changes during the COVID-19 lockdown | ||||
Smoking status | ||||
More than before | Ref | Ref | Ref | |
Less than before | 0.57 (0.15, 2.23) | 0.46 (0.10, 2.10) | 0.36 (0.07, 1.81) | |
Same as before | 0.67 (0.12, 3.84) | 0.60 (0.09, 4.02) | 0.39 (0.05, 2.72) | |
Quit smoking | 0.63 (0.13, 3.09) | 0.66 (0.11, 3.81) | 0.48 (0.08, 3.01) | |
Do not smoke | 0.79 (0.31, 2.01) | 0.99 (0.36, 2.80) | 0.90 (0.29, 2.76) | |
Level of physical activity | ||||
Low (0.5 h/day) | Ref | Ref | Ref | |
Moderate (0.5–2 h/day) | 1.23 (0.80, 1.90) | 0.90 (0.54, 1.48) | 1.19 (0.69, 2.06) | |
High (>2 h/day) | 1.10 (0.59, 2.08) | 1.04 (0.50, 2.15) | 1.22 (0.56, 2.66) | |
Changes in physical activity | ||||
Decreased | Ref | Ref | Ref | |
No change | 0.83 (0.51, 1.34) | 0.84 (0.49, 1.43) | 0.95 (0.54, 1.68) | |
Increased | 0.86 (0.50, 1.47) | 0.69 (0.37, 1.27) | 0.67 (0.35, 1.29) | |
Sleep duration | ||||
Short (<6 h/day) | Ref | Ref | Ref | |
Normal (6–8 h/day) | 1.11 (0.56, 2.21) | 0.99 (0.46, 2.15) | 1.29 (0.56, 2.96) | |
Long (>8 h/day) | 0.80 (0.41, 1.57) | 0.83 (0.38, 1.82) | 1.14 (0.49, 2.68) | |
Changes in sleep duration | ||||
Decreased | Ref | Ref | Ref | |
No change | 2.03 ** (1.20. 3.46) | 1.96 * (1.06, 3.64) | 2.45 ** (1.26, 4.77) | |
Increased | 1.29 (0.79, 2.12) | 1.39 (0.77, 2.50) | 1.61 (0.86, 3.00) | |
Alcohol use | ||||
Never | Ref | Ref | Ref | |
Monthly or less | 1.34 (0.77, 2.32) | 1.39 (0.75, 2.56) | 1.03 (0.52, 2.03) | |
≥2 times a month | 1.33 (0.71, 2.49) | 1.34 (0.64, 2.81) | 0.82 (0.37. 1.83) | |
Meal size | ||||
Decreased | Ref | Ref | Ref | |
No change | 1.75 * (1.12, 2.75) | 0.85 (0.47, 1.56) | 0.78 (0.41, 1.49) | |
Increased | 0.99 (0.59, 1.67) | 0.67 (0.35, 1.28) | 0.59 (0.29, 1.17) | |
Appetite | ||||
Worse than before | Ref | Ref | Ref | |
Poorer than before | 3.20 (0.83, 12.26) | 2.88 (0.67, 12.36) | 3.73 (0.78, 17.74) | |
No change | 7.67 ** (2.07, 10.41) | 6.44 * (2.47, 11.18) | 7.53 * (2.56, 16.34) | |
Better than before | 9.53 ** (5.45, 17.05) | 9.73 ** (5.18, 17.47) | 12.98 ** (5.63, 18.0) | |
Do not know | 3.67 (0.90, 14.97) | 3.18 (0.68, 14.90) | 2.91 (0.57, 14.72) | |
Depressive symptoms | ||||
Yes | Ref | Ref | Ref | |
No | 2.62 *** (1.70, 4.04) | 1.82 * (1.07, 3.10) | 2.15 ** (1.20, 3.84) | |
Anxiety symptoms | ||||
Yes | Ref | Ref | Ref | |
No | 2.42 *** (1.54, 3.81) | 1.79 * (1.02, 3.12) | 1.96 * (1.07, 3.59) | |
Goodness-of-fit test | ||||
LR chi2 (p value) | 29.71 (0.003) | 57.98 (0.000) | 95.72 (0.000) | |
Hosmer-Lemeshow chi2 (p-value) | 3.30 (0.914) | 7.41 (0.116) | 13.53 (0.095) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kundu, S.; Rejwana, N.; Al Banna, M.H.; Kawuki, J.; Ghosh, S.; Alshahrani, N.Z.; Dukhi, N.; Kundu, S.; Dey, R.; Hagan, J.E., Jr.; et al. Linking Depressive and Anxiety Symptoms with Diet Quality of University Students: A Cross-Sectional Study during the COVID-19 Pandemic in India. Healthcare 2022, 10, 1848. https://doi.org/10.3390/healthcare10101848
Kundu S, Rejwana N, Al Banna MH, Kawuki J, Ghosh S, Alshahrani NZ, Dukhi N, Kundu S, Dey R, Hagan JE Jr., et al. Linking Depressive and Anxiety Symptoms with Diet Quality of University Students: A Cross-Sectional Study during the COVID-19 Pandemic in India. Healthcare. 2022; 10(10):1848. https://doi.org/10.3390/healthcare10101848
Chicago/Turabian StyleKundu, Satyajit, Najneen Rejwana, Md. Hasan Al Banna, Joseph Kawuki, Susmita Ghosh, Najim Z. Alshahrani, Natisha Dukhi, Subarna Kundu, Rakhi Dey, John Elvis Hagan, Jr., and et al. 2022. "Linking Depressive and Anxiety Symptoms with Diet Quality of University Students: A Cross-Sectional Study during the COVID-19 Pandemic in India" Healthcare 10, no. 10: 1848. https://doi.org/10.3390/healthcare10101848
APA StyleKundu, S., Rejwana, N., Al Banna, M. H., Kawuki, J., Ghosh, S., Alshahrani, N. Z., Dukhi, N., Kundu, S., Dey, R., Hagan, J. E., Jr., Nsiah-Asamoah, C. N. A., & Malini, S. S. (2022). Linking Depressive and Anxiety Symptoms with Diet Quality of University Students: A Cross-Sectional Study during the COVID-19 Pandemic in India. Healthcare, 10(10), 1848. https://doi.org/10.3390/healthcare10101848