Fractional Generalizations of Rodrigues-Type Formulas for Laguerre Functions in Function Spaces
Abstract
:1. Introduction
2. Weyl and Riemann–Liouville Fractional Calculi
3. Fractional Rodrigues’ Formulae for Confluent Hypergeometric Functions
- (i)
- , for .
- (ii)
- , for .
4. Fractional Rodrigues’ Formulae for Laguerre Polynomials
5. Fractional Lebesgue Spaces
- (i)
- The operator defined by
- (ii)
- .
- (iii)
- If and satisfies , then the dual of is , where the duality is given by
- (i)
- Note that for due to does not belong to .
- (ii)
- For and , it is well known that ; see, for example, [20] [p. 201]. With this formula, it is easy to check thatWrite and then
- (iii)
- We define functions for It is easy to check that for . Then, if and only if .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists. A Comprehensive Guide, 12th ed.; Academic Press: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Magnus, W.; Oberhettinger, F.; Soni, R.P. Formulas and Theorems for the Special Functions of Mathematical Physics; Springer: New York, NY, USA, 1966. [Google Scholar]
- Campos, L.M.B.C. On a concept of derivative of complex order with applications to special functions. IMA J. Appl. Math. 1984, 33, 109–133. [Google Scholar] [CrossRef]
- Lavoi, J.L.; Trembay, R.; Osler, T.J. Fundamental properties of fractional derivatives and special functions. SIAM Rev. 1976, 18, 240–268. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A. Laguerre polynomials of arbitrary (fractional) orders. Appl. Math. Comp. 2000, 109, 1–9. [Google Scholar] [CrossRef]
- Bin-Saad, M.G. Fractional generalization of Rodrigues-type formulas for certain class of special functions. Eur. J. Pure Appl. Math. 2018, 8, 271–282. [Google Scholar]
- Rida, S.Z.; El-Sayed, A.M.A. Fractional calculus and generalized Rodrigues formula. Appl. Math. Comp. 2004, 147, 29–43. [Google Scholar] [CrossRef]
- Mirevski, S.P.; Boyadjiev, L. On some fractional generalizations of the Laguerre polynomials and the Kummer function. Comp. Math. Appl. 2020, 59, 1271–1277. [Google Scholar] [CrossRef] [Green Version]
- Arendt, W.; Kellerman, H. Integrated solutions of Volterra integrodifferential equations and applications. In Volterra Integrodifferential Equations in Banach Spaces and Applications, Treinto, 1987; Da Prato, G., Iannelli, M., Eds.; Pitman Research Notes in Mathematics Series; Longman Scientific & Technical: Harlow, UK, 1989; Volume 190, pp. 21–51. [Google Scholar]
- Galé, J.E.; Miana, P.J. One-parameter groups of regular quasimultipliers. J. Funct. Anal. 2006, 237, 1–53. [Google Scholar] [CrossRef] [Green Version]
- Lizama, C.; Miana, P.J.; Ponce, R.; Sánchez-Lajusticia, L. On the boundedness of generalized Cesàro operators on Sobolev Spaces. J. Math. Anal. Appl. 2014, 419, 373–394. [Google Scholar] [CrossRef]
- Miana, P.J. α-times integrated semigroups and fractional derivation. Forum Math. 2002, 14, 23–46. [Google Scholar] [CrossRef]
- Royo, J. Convolution Algebras and Modules on R+ Defined by Fractional Derivative. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2008. (In spanish). [Google Scholar]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Theory and Applications; Gordon-Breach: New York, NY, USA, 1993. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus. Models and Numerical Methods; World Scientific: Hackensack, NJ, USA, 2012. [Google Scholar]
- Doetsch, G. Introduction to the Theory and Applications of the Laplace Transformation; Springer: New York, NY, USA, 1974. [Google Scholar]
- Hardy, G.; Littlewood, J.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1964. [Google Scholar]
- Miana, P.J.; Royo, J.J.; Sánchez-Lajusticia, L. Convolution algebraic structures defined by Hardy-type operators. J. Funct. Spaces 2013, 2013, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms, Volume II; McGraw-Hill: New York, NY, USA, 1954. [Google Scholar]
- Rudin, W. Real and Complex Analysis; International Edition; McGraw-Hill: Singapore, 1987. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miana, P.J.; Romero, N. Fractional Generalizations of Rodrigues-Type Formulas for Laguerre Functions in Function Spaces. Mathematics 2021, 9, 984. https://doi.org/10.3390/math9090984
Miana PJ, Romero N. Fractional Generalizations of Rodrigues-Type Formulas for Laguerre Functions in Function Spaces. Mathematics. 2021; 9(9):984. https://doi.org/10.3390/math9090984
Chicago/Turabian StyleMiana, Pedro J., and Natalia Romero. 2021. "Fractional Generalizations of Rodrigues-Type Formulas for Laguerre Functions in Function Spaces" Mathematics 9, no. 9: 984. https://doi.org/10.3390/math9090984
APA StyleMiana, P. J., & Romero, N. (2021). Fractional Generalizations of Rodrigues-Type Formulas for Laguerre Functions in Function Spaces. Mathematics, 9(9), 984. https://doi.org/10.3390/math9090984