A Subclass of q-Starlike Functions Defined by Using a Symmetric q-Derivative Operator and Related with Generalized Symmetric Conic Domains
Abstract
:1. Introduction
2. Main Results
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodman, A.W. Univalent Functions; Polygonal Publishing House: Washington, NJ, USA, 1983; Volumes I, II. [Google Scholar]
- Goodman, A.W. On uniformly convex functions. In Annales Polonici Mathematici; Polska Akademia Nauk, Instytut Matematycznys: Warsaw, Poland, 1991; Volume 56, pp. 87–92. [Google Scholar]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Kanas, S.; Wisniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–658. [Google Scholar]
- Kanas, S.; Răducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abstr. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Khan, S.; Zaighum, M.A.; Darus, M. Applications of a q-Salagean type operator on multivalent functions. J. Inequalities Appl. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Khan, S.; Hussain, S.; Zaighum, M.A.; Darus, M. A subclass of uniformly convex functions and a corresponding subclass of starlike function with fixed coefficient associated with q-analogue of Ruscheweyh operator. Math. Slovaca 2019, 69, 825–832. [Google Scholar] [CrossRef]
- Mahmood, S.; Khan, I.; Srivastava, H.M.; Malik, S.N. Inclusion relations for certain families of integral operators associated with conic regions. J. Inequalities Appl. 2019. [Google Scholar] [CrossRef]
- Mahmood, S.; Jabeen, M.; Malik, S.N.; Srivastava, H.M.; Manzoor, R.; Riaz, S.M. Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative. J. Funct. Spaces 2018. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Darus, M. A generalized operator involving the q-hypergeometric function. Mat. Vesn. 2013, 65, 454–465. [Google Scholar]
- Srivastava, H.M.; Khan, S.; Ahmad, Q.Z.; Khan, N.; Hussain, S. The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain g-integral operator. Stud. Univ. Bolyai Math. 2018, 63, 419–436. [Google Scholar] [CrossRef]
- Uçar, H.E. Coefficient inequality for q-starlike functions. Appl. Math. Comput. 2016, 276, 122–126. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-)calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions. In Univalent functions, fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S., Eds.; John Wiley & Sons: New York, NY, USA, 1989; pp. 329–354. [Google Scholar]
- Srivastava, H.M.; Khan, N.; Darus, M.; Rahim, M.T.; Ahmad, Q.Z.; Zeb, Y. Properties of Spiral-Like Close-to-Convex Functions Associated with Conic Domains. Mathematics 2019, 7, 706. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
- Da Cruz, A.M.; Martins, N. The q-symmetric variational calculus. Comput. Math. Appl. 2012, 64, 2241–2250. [Google Scholar] [CrossRef] [Green Version]
- Lavagno, A. Basic-deformed quantum mechanics. Rep. Math. Phys. 2009, 64, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Kamel, B.; Yosr, S. On some symmetric q-special functions. Matematiche 2013, 68, 107–122. [Google Scholar]
- Ismail, M.E.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. Int. J. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Zhang, X.; Khan, S.; Hussain, S.; Tang, H.; Shareef, Z. New subclass of q-starlike functions associated with generalized conic domain. AIMS Math. 2020, 5, 4830–4848. [Google Scholar] [CrossRef]
- Noor, K.I. Applications of certain operators to the classes related with generalized Janowski functions. Integral Transform. Spec. Funct. 2010, 21, 557–567. [Google Scholar] [CrossRef]
- Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
- Noor, K.I.; Malik, S.N.; Arif, M.; Raza, M. On bounded boundary and bounded radius rotation related with Janowski function. World Appl. Sci. J. 2011, 12, 895–902. [Google Scholar]
- Sokół, J. Classes of multivalent functions associated with a convolution operator. Comput. Math. Appl. 2010, 60, 1343–1350. [Google Scholar] [CrossRef] [Green Version]
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Shams, S.; Kulkarni, S.R.; Jahangiri, J.M. Classes of uniformly starlike and convex functions. Int. J. Math. Math. Sci. 2004, 55, 2959–2961. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, S.; Hussain, S.; Naeem, M.; Darus, M.; Rasheed, A. A Subclass of q-Starlike Functions Defined by Using a Symmetric q-Derivative Operator and Related with Generalized Symmetric Conic Domains. Mathematics 2021, 9, 917. https://doi.org/10.3390/math9090917
Khan S, Hussain S, Naeem M, Darus M, Rasheed A. A Subclass of q-Starlike Functions Defined by Using a Symmetric q-Derivative Operator and Related with Generalized Symmetric Conic Domains. Mathematics. 2021; 9(9):917. https://doi.org/10.3390/math9090917
Chicago/Turabian StyleKhan, Shahid, Saqib Hussain, Muhammad Naeem, Maslina Darus, and Akhter Rasheed. 2021. "A Subclass of q-Starlike Functions Defined by Using a Symmetric q-Derivative Operator and Related with Generalized Symmetric Conic Domains" Mathematics 9, no. 9: 917. https://doi.org/10.3390/math9090917
APA StyleKhan, S., Hussain, S., Naeem, M., Darus, M., & Rasheed, A. (2021). A Subclass of q-Starlike Functions Defined by Using a Symmetric q-Derivative Operator and Related with Generalized Symmetric Conic Domains. Mathematics, 9(9), 917. https://doi.org/10.3390/math9090917