Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = conic domain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5464 KB  
Article
A Computational Framework for Fully Coupled Time-Domain Aero-Hydro-Servo-Elastic Analysis of Hybrid Offshore Wind and Wave Energy Systems by Deploying Generalized Modes
by Nikos Mantadakis, Eva Loukogeorgaki and Peter Troch
J. Mar. Sci. Eng. 2025, 13(11), 2047; https://doi.org/10.3390/jmse13112047 - 25 Oct 2025
Viewed by 246
Abstract
In this paper, a generic computational framework, based on the generalized-mode approach, is developed for the fully coupled time-domain aero-hydro-servo-elastic analysis of Hybrid Offshore Wind and Wave Energy Systems (HOWiWaESs), consisting of a Floating Offshore Wind Turbine (FOWT) and several wave energy converters [...] Read more.
In this paper, a generic computational framework, based on the generalized-mode approach, is developed for the fully coupled time-domain aero-hydro-servo-elastic analysis of Hybrid Offshore Wind and Wave Energy Systems (HOWiWaESs), consisting of a Floating Offshore Wind Turbine (FOWT) and several wave energy converters (WECs) mechanically connected to it. The FOWT’s platform and the WECs of the HOWiWaES are modeled as a single floating body with conventional rigid-body modes, while the motions of the WECs relative to the FOWT are described as additional generalized modes of motion. A numerical tool is established by appropriately modifying/extending the OpenFAST source code. The frequency-dependent exciting forces and hydrodynamic coefficients, as well as hydrostatic stiffness terms, are obtained using the traditional boundary integral equation method, whilst the generalized-mode shapes are determined by developing appropriate 3D vector shape functions. The tool is applied for a 5 MW FOWT with a spar-type floating platform and a conic WEC buoy hinged on it via a mechanical arm, and results are compared with those of other investigators utilizing the multi-body approach. Two distinctive cases of a pitching and a heaving WEC are considered. A quite good agreement is established, indicating the potential of the developed tool to model floating HOWiWaESs efficiently. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 762 KB  
Article
Starlike Functions with Respect to (, κ)-Symmetric Points Associated with the Vertical Domain
by Daniel Breaz, Kadhavoor R. Karthikeyan and Dharmaraj Mohankumar
Symmetry 2025, 17(6), 933; https://doi.org/10.3390/sym17060933 - 12 Jun 2025
Viewed by 460
Abstract
The study of various subclasses of univalent functions involving the solutions to various differential equations is not totally new, but studies of analytic functions with respect to (,κ)-symmetric points are rarely conducted. Here, using a differential operator which [...] Read more.
The study of various subclasses of univalent functions involving the solutions to various differential equations is not totally new, but studies of analytic functions with respect to (,κ)-symmetric points are rarely conducted. Here, using a differential operator which was defined using the Hadamard product of Mittag–Leffler function and general analytic function, we introduce a new class of starlike functions with respect to (,κ)-symmetric points associated with the vertical domain. To define the function class, we use a Carathéodory function which was recently introduced to study the impact of various conic regions on the vertical domain. We obtain several results concerned with integral representations and coefficient inequalities for functions belonging to this class. The results obtained by us here not only unify the recent studies associated with the vertical domain but also provide essential improvements of the corresponding results. Full article
(This article belongs to the Special Issue Symmetry in Mathematical Analysis and Applications, 2nd Edition)
Show Figures

Figure 1

29 pages, 13959 KB  
Article
Structural Optimization and Fluid–Structure Interaction Analysis of a Novel High-Speed Switching Control Valve
by Hexi Ji, Jiazhen Han, Yong Wang, Yongkang Liu, Yudong Xie, Sen Yang, Derui Shi and Yilong Song
Actuators 2025, 14(4), 163; https://doi.org/10.3390/act14040163 - 24 Mar 2025
Viewed by 821
Abstract
Laver fluffy is an indispensable link in the processing of laver products. After fluffing, the laver acquires an appealing color, which is conducive to better marketability. During the primary mechanical processing of laver, a valve capable of rapid opening and closing is required [...] Read more.
Laver fluffy is an indispensable link in the processing of laver products. After fluffing, the laver acquires an appealing color, which is conducive to better marketability. During the primary mechanical processing of laver, a valve capable of rapid opening and closing is required to ensure that the laver’s surface becomes fluffy and lustrous post-processing. However, valve products that can meet the specific requirements of laver fluffing are scarce. This study proposes a novel principle for a high-speed switching control valve. This valve can quickly turn on or cut off the high-pressure gas path during laver processing while also taking into account the response speed and service life. The structure and principle of the new control valve were introduced. Different flow field models in the valve were designed, and their flow characteristics and flow field performance under various schemes were compared and discussed by using Fluent. Subsequently, an optimized control valve structure model was proposed. Based on this, a strength analysis of the control valve was conducted via fluid–structure interaction, revealing the response characteristics of the valve under the working state. The results indicate that, when different cone angles and bell shapes were selected for the upper chamber inlet of the control valve, the number and intensity of vortices in the upper chamber can be reduced. The height of the upper chamber affected the formation of the throttle between the top and bottom surfaces of the upper chamber. When the height of the upper chamber was 32 mm, the energy loss in the upper chamber remains basically stable. Simultaneously changing the inlet shape and height of the upper chamber can effectively prevent the throttle formed by the height of the upper chamber, which was conducive to increasing the valve outlet flow rate. Through the analysis of the flow field with different valve chamber structures, the improved control valve adopted the bell-shaped inlet, with an upper chamber height of 32 mm and curved transition for the internal flow channel. Compared to the original fluid domain, when the opening was 100%, the outlet flow rate of the 10° conical tube and bell-shaped inlet increased by 12.77% and 12.59%, respectively. The outlet flow rate at the curved transition position rose by 15.35%, and the outlet flow of the improved control valve increased by 32.70%. When the control valve was operating under a preload pressure of 1 MPa, at 20% opening, the maximum equivalent stress of the valve body was 52.51 MPa, and the total deformation was 12.56 microns. When the preload pressure exceeded 1.5 MPa, the equivalent stress and total deformation of the control valve body and T-shaped valve stem exhibited an upward trend with further increases in the preload pressure. Full article
(This article belongs to the Special Issue Design, Hydrodynamics, and Control of Valve Systems)
Show Figures

Figure 1

19 pages, 2373 KB  
Article
Simplifying Data Processing in AFM Nanoindentation Experiments on Thin Samples
by Stylianos Vasileios Kontomaris, Anna Malamou and Andreas Stylianou
Eng 2025, 6(2), 32; https://doi.org/10.3390/eng6020032 - 8 Feb 2025
Viewed by 1089
Abstract
When testing soft biological samples using the Atomic Force Microscopy (AFM) nanoindentation method, data processing is typically based on equations derived from Hertzian mechanics. To account for the finite thickness of the samples, precise extensions of Hertzian equations have been developed for both [...] Read more.
When testing soft biological samples using the Atomic Force Microscopy (AFM) nanoindentation method, data processing is typically based on equations derived from Hertzian mechanics. To account for the finite thickness of the samples, precise extensions of Hertzian equations have been developed for both conical and parabolic indenters. However, these equations are often avoided due to the complexity of the fitting process. In this paper, the determination of Young’s modulus is significantly simplified when testing soft, thin samples on rigid substrates. Using the weighted mean value theorem for integrals, an ‘average value’ of the correction function (symbolized as g(c)) due to the substrate effect for a specific indentation depth is derived. These values (g(c)) are presented for both conical and parabolic indentations in the domain 0 < r/H ≤ 1, where r is the contact radius between the indenter and the sample, and H is the sample’s thickness. The major advantage of this approach is that it can be applied using only the area under the force–indentation curve (which represents the work performed by the indenter) and the correction factor g(c). Examples from indentation experiments on fibroblasts, along with simulated data processed using the method presented in this paper, are also included. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

9 pages, 3220 KB  
Communication
Evolution of Focal Conic Domains in SmA-N Phase Transition
by Vincent Plée, Jordan Lacam, Gianni Pascoli and Claire Meyer
Materials 2025, 18(3), 711; https://doi.org/10.3390/ma18030711 - 6 Feb 2025
Viewed by 835
Abstract
Focal conics are nice geometric structures of liquid crystal phases which present periodicity such as smectic phase, cholesteric phase, etc. Here, we focus on focal conic domains (FCD) in smectic A liquid crystal. During a phase transition from smectic A to nematic, these [...] Read more.
Focal conics are nice geometric structures of liquid crystal phases which present periodicity such as smectic phase, cholesteric phase, etc. Here, we focus on focal conic domains (FCD) in smectic A liquid crystal. During a phase transition from smectic A to nematic, these FCDs evolve as the eccentricity increases until they completely disappear. Here, we present experimental observations of this phenomenon, along with a modeling approach that allows for an interestingly precise description of the phenomenon, revealing, in particular, a coefficient that seems to exhibit the behavior of a critical exponent. Full article
(This article belongs to the Section Soft Matter)
Show Figures

Graphical abstract

32 pages, 11054 KB  
Article
Reconstructing the Magnetic Field in an Arbitrary Domain via Data-Driven Bayesian Methods and Numerical Simulations
by Georgios E. Pavlou, Vasiliki Pavlidou and Vagelis Harmandaris
Computation 2025, 13(2), 37; https://doi.org/10.3390/computation13020037 - 5 Feb 2025
Cited by 1 | Viewed by 885
Abstract
Inverse problems are prevalent in numerous scientific and engineering disciplines, where the objective is to determine unknown parameters within a physical system using indirect measurements or observations. The inherent challenge lies in deducing the most probable parameter values that align with the collected [...] Read more.
Inverse problems are prevalent in numerous scientific and engineering disciplines, where the objective is to determine unknown parameters within a physical system using indirect measurements or observations. The inherent challenge lies in deducing the most probable parameter values that align with the collected data. This study introduces an algorithm for reconstructing parameters by addressing an inverse problem formulated through differential equations underpinned by uncertain boundary conditions or variant parameters. We adopt a Bayesian approach for parameter inference, delineating the establishment of prior, likelihood, and posterior distributions, and the subsequent resolution of the maximum a posteriori problem via numerical optimization techniques. The proposed algorithm is applied to the task of magnetic field reconstruction within a conical domain, demonstrating precise recovery of the true parameter values. Full article
Show Figures

Figure 1

12 pages, 264 KB  
Article
Subclasses of q-Uniformly Starlike Functions Obtained via the q-Carlson–Shaffer Operator
by Qiuxia Hu, Rizwan Salim Badar and Muhammad Ghaffar Khan
Axioms 2024, 13(12), 842; https://doi.org/10.3390/axioms13120842 - 29 Nov 2024
Viewed by 742
Abstract
This article investigates the applications of the q-Carlson–Shaffer operator on subclasses of q-uniformly starlike functions, introducing the class STq(m,c,d,β). The study establishes a necessary condition for membership in this class [...] Read more.
This article investigates the applications of the q-Carlson–Shaffer operator on subclasses of q-uniformly starlike functions, introducing the class STq(m,c,d,β). The study establishes a necessary condition for membership in this class and examines its behavior within conic domains. The article delves into properties such as coefficient bounds, the Fekete–Szegö inequality, and criteria defined via the Hadamard product, providing both necessary and sufficient conditions for these properties. Full article
(This article belongs to the Special Issue New Developments in Geometric Function Theory, 3rd Edition)
9 pages, 5882 KB  
Article
Topological Defect Evolutions Guided by Varying the Initial Azimuthal Orientation
by Yanchun Shen, Jinbing Wu, Jingge Wang, Saibo Wu and Wei Hu
Appl. Sci. 2024, 14(21), 9869; https://doi.org/10.3390/app14219869 - 29 Oct 2024
Viewed by 1380
Abstract
Topological defects are a key concern in numerous branches of physics. It is meaningful to exploit the topological defect evolutions during the phase transitions of condensed matter. Here, via varying the initial azimuthal orientation of the square alignment lattice in a hybrid cell, [...] Read more.
Topological defects are a key concern in numerous branches of physics. It is meaningful to exploit the topological defect evolutions during the phase transitions of condensed matter. Here, via varying the initial azimuthal orientation of the square alignment lattice in a hybrid cell, the topological defect evolution of liquid crystal during the nematic (N)–smectic A (SmA) phase transition is investigated. The director fields surrounding ±1 point defects are manipulated by predesigning the initial azimuthal orientation. When further cooled to the SmA phase, spiral toric focal conic domain (TFCD) arrays are formed as a result of twisted deformation suppression and unique symmetry breaking after the phase transition. The variation in the azimuthal orientation causes the TFCDs to degenerate from infinite rotational symmetry to quadruple rotational symmetry, thus releasing new textures for the SmA phase. Landau–de Gennes numerical modeling is adopted to reproduce the director distributions in the N phase and reveal the evolution of the topological defects. This work enriches the knowledge on the self-organization of soft matter, enhances the capability for the manipulations of topological defects, and may inspire new intriguing applications. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

22 pages, 4799 KB  
Article
SmartISM 2.0: A Roadmap and System to Implement Fuzzy ISM and Fuzzy MICMAC
by Naim Ahmad
Sustainability 2024, 16(20), 8873; https://doi.org/10.3390/su16208873 - 13 Oct 2024
Cited by 3 | Viewed by 2647
Abstract
Interpretive structural modeling (ISM) is a widely used technique to establish hierarchical relationships among a set of variables in diverse domains, including sustainability. This technique is generally coupled with MICMAC (Matrice d’Impacts Croisés Multiplication Appliquée á un Classement (cross-impact matrix multiplication applied to [...] Read more.
Interpretive structural modeling (ISM) is a widely used technique to establish hierarchical relationships among a set of variables in diverse domains, including sustainability. This technique is generally coupled with MICMAC (Matrice d’Impacts Croisés Multiplication Appliquée á un Classement (cross-impact matrix multiplication applied to classification)) to classify variables in four clusters, although the manual application of the technique is complex and prone to error. In one of the previous works, a novel concept of reduced conical matrix was introduced, and the SmartISM software was developed for the user-friendly implementation of ISM and MICMAC. The web-based SmartISM software has been used more than 48,123 times in 87 countries to generate ISM models and MICMAC diagrams. This work attempts to identify existing approaches to fuzzy ISM and fuzzy MICMAC and upscale the SmartISM to incorporate fuzzy approaches. The fuzzy set theory proposed by Zadeh 1965 and Goguen 1969 helps the decision makers to provide their input with the consideration of vagueness in the real environment. The systematic review of 32 studies identified five significant approaches that have used different linguistic scales, fuzzy numbers, and defuzzification methods. Further, the approaches have differences in either using single or double defuzzification, and the aggregation of inputs of decision makers either before or after defuzzification, as well as the incorporation of transitivity either before or after defuzzification. A roadmap was devised to aggregate and generalize different approaches. Further, two of the identified approaches have been implemented in SmartISM 2.0 and the results have been reported. Finally, the comparative analysis of different approaches using SmartISM 2.0 in the area of digital transformation shows that, with a wide flexibility of fuzzy scales, the results converge and improve the confidence in the final model. The roadmap and SmartISM 2.0 will help in the implementation of fuzzy ISM and fuzzy MICMAC in a more robust and informed way. Full article
Show Figures

Figure 1

17 pages, 5426 KB  
Article
An Empirical Study on the Upcycling of Glass Bottles into Hydrocyclone Separators
by Thomas Senfter, Thomas Neuner, Christian Bachmann, Manuel Berger, Christian Mayerl, Tobias Kofler, Michael Kraxner and Martin Pillei
Separations 2024, 11(8), 230; https://doi.org/10.3390/separations11080230 - 26 Jul 2024
Cited by 1 | Viewed by 1516
Abstract
Cyclones are pivotal in mechanical process engineering and crucial in the complex field of separation technology. Their robustness and compact spatial requirements render them universally applicable and versatile across various industrial domains. Depending on the utilized fluid and field of application, both gas-based [...] Read more.
Cyclones are pivotal in mechanical process engineering and crucial in the complex field of separation technology. Their robustness and compact spatial requirements render them universally applicable and versatile across various industrial domains. Depending on the utilized fluid and field of application, both gas-based cyclones and hydrocyclones (HCs) are well established. Regarding HC design, enduring elongated flat cones have seen minimal alterations in shape and structure since their introduction over more than a hundred years ago. Experimental investigations regarding unconventional cone designs within scientific studies remain the exception. Therefore, this study focuses on alternative geometric configurations of the separation chambers and highlights their impact on separation and energy efficiency. To achieve this objective, different geometric shapes are investigated and retrofitted into HCs. The geometric foundation is derived from upcycled glass bottles. The repurposed bottles with a volume of 750 mL are used in conjunction with an inlet part, following the established Rietema design. Experimental tests are conducted with dilute phase separation, using 0.1–200 µm test particles in water. Comparisons between a bottle-based HC and a conventional Rietema design were conducted, establishing a benchmark against the standard. The findings revealed a noticeable correlation between separation efficiency and cone geometry. Conical designs demonstrated enhanced separation, particularly at lower volume flows. At the highest volume flow of 75 L min−1, the best performing bottle cyclones showed separation efficiencies of 78.5%, 78.4% and 77.9% and therefore are in a competitive range with 78.0% efficiency, achieved using the commercial Rietema design. Minimal disparities in cut sizes were observed in terms of separation grade efficiency among the models tested. Variations in separation efficiency and fractional efficiency curves indicated nuanced differences in classification efficiency. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Figure 1

10 pages, 4163 KB  
Case Report
EDA Missense Variant in a Cat with X-Linked Hypohidrotic Ectodermal Dysplasia
by Stefan J. Rietmann, Noëlle Cochet-Faivre, Helene Dropsy, Vidhya Jagannathan, Lucie Chevallier and Tosso Leeb
Genes 2024, 15(7), 854; https://doi.org/10.3390/genes15070854 - 28 Jun 2024
Cited by 1 | Viewed by 2413
Abstract
Hypohidrotic ectodermal dysplasia is a developmental defect characterized by sparse or absent hair, missing or malformed teeth and defects in eccrine glands. Loss-of-function variants in the X-chromosomal EDA gene have been reported to cause hypohidrotic ectodermal dysplasia in humans, mice, dogs and cattle. [...] Read more.
Hypohidrotic ectodermal dysplasia is a developmental defect characterized by sparse or absent hair, missing or malformed teeth and defects in eccrine glands. Loss-of-function variants in the X-chromosomal EDA gene have been reported to cause hypohidrotic ectodermal dysplasia in humans, mice, dogs and cattle. We investigated a male cat exhibiting diffuse truncal alopecia with a completely absent undercoat. The cat lacked several teeth, and the remaining teeth had an abnormal conical shape. Whole-genome sequencing revealed a hemizygous missense variant in the EDA gene, XM_011291781.3:c.1042G>A or XP_011290083.1:p.(Ala348Thr). The predicted amino acid exchange is located in the C-terminal TNF signaling domain of the encoded ectodysplasin. The corresponding missense variant in the human EDA gene, p.Ala349Thr, has been reported as a recurring pathogenic variant in several human patients with X-linked hypohidrotic ectodermal dysplasia. The identified feline variant therefore represents the likely cause of the hypohidrotic ectodermal dysplasia in the investigated cat, and the genetic investigation confirmed the suspected clinical diagnosis. This is the first report of an EDA-related hypohidrotic ectodermal dysplasia in cats. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 32065 KB  
Article
Prediction of Time Domain Vibro-Acoustic Response of Conical Shells Using Jacobi–Ritz Boundary Element Method
by Cong Gao, Jiajun Zheng, Fuzhen Pang, Jiawei Xu, Haichao Li and Jibing Yan
Acoustics 2024, 6(2), 523-540; https://doi.org/10.3390/acoustics6020028 - 31 May 2024
Cited by 1 | Viewed by 1872
Abstract
Considering the lack of studies on the transient vibro-acoustic properties of conical shell structures, a Jacobi–Ritz boundary element method for forced vibro-acoustic behaviors of structure is proposed based on the Newmark-β integral method and the Kirchhoff time domain boundary integral equation. Based on [...] Read more.
Considering the lack of studies on the transient vibro-acoustic properties of conical shell structures, a Jacobi–Ritz boundary element method for forced vibro-acoustic behaviors of structure is proposed based on the Newmark-β integral method and the Kirchhoff time domain boundary integral equation. Based on the idea of the differential element method and the first-order shear deformation theory (FSDT), the vibro-acoustic model of conical shells is established. The axial and circumferential displacement tolerance functions are expressed using Jacobi polynomials and the Fourier series. The time domain response of the forced vibration of conical shells is calculated based on the Rayleigh–Ritz method and Newmark-β integral method. On this basis, the time domain response of radiated noise is solved based on the Kirchhoff integral equation, and the acoustic radiation characteristics of conical shells from forced vibration are analyzed. Compared with the coupled FEM/BEM method, the numerical results demonstrate the high accuracy and great reliability of this method. Furthermore, the semi-vertex angle, load characteristics, and boundary conditions related to the vibro-acoustic response of conical shells are examined. Full article
(This article belongs to the Special Issue Duct Acoustics)
Show Figures

Figure 1

35 pages, 9724 KB  
Article
The Vibro-Acoustic Characteristics Analysis of the Coupled System between Composite Laminated Rotationally Stiffened Plate and Acoustic Cavities
by Hong Zhang, Yiqun Ding, Lin He, Changgeng Shuai and Chao Jiang
Appl. Sci. 2024, 14(3), 1002; https://doi.org/10.3390/app14031002 - 24 Jan 2024
Cited by 6 | Viewed by 1815
Abstract
In order to study vibro-acoustic characteristics between composite laminated rotationally stiffened plate and acoustic cavities in the coupled system, first-order shear deformation theory (FSDT) and modified Fourier series are used to construct a unified analysis model. The involved coupled systems primarily encompass three [...] Read more.
In order to study vibro-acoustic characteristics between composite laminated rotationally stiffened plate and acoustic cavities in the coupled system, first-order shear deformation theory (FSDT) and modified Fourier series are used to construct a unified analysis model. The involved coupled systems primarily encompass three types: the coupled system between composite laminated rotationally stiffened plate and cylindrical-cylindrical cavities, spherical-cylindrical cavities, and conical-cylindrical cavities. First, the first-order shear deformation theory and the modified Fourier series are applied to construct the allowable displacement function of the composite laminated rotationally stiffened plate and the allowable sound pressure function of the acoustic cavities. Second, the energy functionals for the structural domain and the acoustic field domain are established, respectively. According to the continuity condition of the particle vibration velocity at the coupling boundary between the composite, laminated cylindrical shell and the enclosed cavity, the coupling potential energy between the stiffened plate and two acoustic cavities is introduced to obtain the energy functional of the coupled system. Third, the Rayleigh-Ritz method is utilized to solve the energy functional and, when combined with artificial virtual spring technology, the suggested theory may be used to study the vibro-acoustic characteristics of a coupled system with arbitrary elastic boundary conditions. Finally, based on validating the fast convergence and correctness of the model, this paper will analyze the impact of crucial parameters on vibro-acoustic characteristics. Furthermore, by incorporating internal point forces and point-sound source stimulation, a steady-state response analysis of the coupled system will be conducted. This research can give a theoretical foundation for the vibration and noise reduction of a vibro-acoustic coupling system. Full article
Show Figures

Figure 1

20 pages, 368 KB  
Article
Applications of Fractional Differential Operator to Subclasses of Uniformly q-Starlike Functions
by Nazar Khan, Kashif Khan, Ferdous M. Tawfiq, Jong-Suk Ro and Isra Al-shbeil
Fractal Fract. 2023, 7(10), 715; https://doi.org/10.3390/fractalfract7100715 - 28 Sep 2023
Cited by 7 | Viewed by 1446
Abstract
In this paper, we use the concept of quantum (or q-) calculus and define a q-analogous of a fractional differential operator and discuss some of its applications. We consider this operator to define new subclasses of uniformly q-starlike and q [...] Read more.
In this paper, we use the concept of quantum (or q-) calculus and define a q-analogous of a fractional differential operator and discuss some of its applications. We consider this operator to define new subclasses of uniformly q-starlike and q-convex functions associated with a new generalized conic domain, Λβ,q,γ. To begin establishing our key conclusions, we explore several novel lemmas. Furthermore, we employ these lemmas to explore some important features of these two classes, for example, inclusion relations, coefficient bounds, Fekete–Szego problem, and subordination results. We also highlight many known and brand-new specific corollaries of our findings. Full article
17 pages, 3846 KB  
Article
Optimal Design and Performance Analysis of a Hybrid System Combining a Semi-Submersible Wind Platform and Point Absorbers
by Binzhen Zhou, Jianjian Hu, Qi Zhang, Lei Wang, Fengmei Jing and Maurizio Collu
J. Mar. Sci. Eng. 2023, 11(6), 1190; https://doi.org/10.3390/jmse11061190 - 8 Jun 2023
Cited by 8 | Viewed by 2506
Abstract
Integrating point absorber wave energy converters (PAWECs) and an offshore floating wind platform provide a cost-effective way of joint wind and wave energy exploitation. However, the coupled dynamics of the complicated hybrid system and its influence on power performance are not well understood. [...] Read more.
Integrating point absorber wave energy converters (PAWECs) and an offshore floating wind platform provide a cost-effective way of joint wind and wave energy exploitation. However, the coupled dynamics of the complicated hybrid system and its influence on power performance are not well understood. Here, a frequency-domain-coupled hydrodynamics, considering the constraints and the power output through the relative motion between the PAWECs and the semi-submersible platform, is introduced to optimize the size, power take-off damping, and layout of the PAWECs. Results show that the annual wave power generation of a PAWEC can be improved by 30% using a 90° conical or a hemispherical bottom instead of a flat bottom. Additionally, while letting the PAWECs protrude out the sides of the triangular frame of the platform by a distance of 1.5 times the PAWEC radius, the total power generation can be improved by up to 18.2% without increasing the motion response of the platform. The PAWECs can reduce the resonant heave motion of the platform due to the power take-off damping force. This study provides a reference for the synergistic use of wave and wind energy. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Edition)
Show Figures

Figure 1

Back to TopTop