Brain Signals Classification Based on Fuzzy Lattice Reasoning
Abstract
:1. Introduction
2. Related Work
2.1. Feature Extraction
2.2. Classification
2.3. Channel Selection
3. The Proposed Scheme for Classification
3.1. IN Induction
3.2. Classification
3.3. Optimization
4. Experiments, Results, and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Abbreviation | Definition |
---|---|
ANN | Artificial Neural Network |
BCI | Brain-Computer Interface |
CCA | Canonical Correlation Analysis |
CPS | Cyber-Physical System |
DEEP | Database for Emotion Analysis using Physiological Signals |
DL | Deep Learning |
DASM | Differential Asymmetry |
DWT | Discrete Wavelet Transform |
ECG | ElectroCardioGram |
EEG | ElectroEncephaloGraphy |
EMG | ElectroMyGram |
ELM | Extreme Learning Machine |
ERD/ERS | Event-Related De/Synchronization |
ERP | Event-Related Potentials |
FIS | Fuzzy Inference System |
FLR | Fuzzy Lattice Reasoning |
GA | Genetic Algorithm |
G | Group |
GSCCA | Group Sparse Canonical Correlation Analysis |
HHT | Hilbert Huang transform |
HR | Heart Rate |
IN | Intervals’ Number |
IMF | Intrinsic Mode Function |
kNN | k Nearest Neighbor |
LVL | Lattice-Valued Logic |
MF | Membership Function |
NN | Neural Network |
PSD | Power Spectral Density |
PD | Pupillary Diameter |
RASM | Rational Asymmetry |
SC | Skin Conductance |
SVM | Support Vector Machine |
TQWT | Tunable-Q Wavelet Transform |
WINkNN | Windowed IN kNN |
Symbol | Property |
---|---|
Β | Confusion matrix |
Cost function | |
θ(.) | Dual isomorphic function |
Dual isomorphic function | |
δ | EEG frequency band |
θ | EEG frequency band |
α | EEG frequency band |
β | EEG frequency band |
γ | EEG frequency band |
FT8 | EEG channel |
FP1 | EEG channel |
T8 | EEG channel |
T7 | EEG channel |
TP7 | EEG channel |
FC2 | EEG channel |
PO7 | EEG channel |
F8 | EEG channel |
FPZ | EEG channel |
σ | Fuzzy order function |
σ-join | |
σ-meet | |
L | Intervals number |
Fh | IN interval representation |
F | IN membership function representation |
N | Number of EEG channels |
A | Logistic function parameter |
λ | Logistic function parameter |
μ | Logistic function parameter |
C | Logistic function parameter |
R | Set of real numbers |
Set of real positive numbers |
Symbol | Meaning |
---|---|
[.,.] | Closed interval |
(.,.) | Open interval |
× | Vector product |
Implies | |
Belongs to | |
< | Less than |
= | Equals |
Properly contains as subset | |
Empty set | |
Lattice join | |
Lattice meet | |
Or/max | |
And/min |
References
- Kaburlasos, V.G.; Vrochidou, E.; Panagiotopoulos, F.; Aitsidis, C.; Jaki, A. Time Series Classification in Cyber-Physical System Applications by Intervals’ Numbers Techniques. In Proceedings of the 2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), New Orleans, LA, USA, 23–26 June 2019; pp. 1–6. [Google Scholar]
- Kaburlasos, V.G.; Vrochidou, E. Social Robots for Pedagogical Rehabilitation: Trends and Novel Modeling Principles. In Cyber-Physical Systems for Social Applications; IGI Global: Hershey, PA, USA, 2019; pp. 1–12. [Google Scholar]
- Xu, Y.; Qin, K.; Ruan, D.; Liu, J. Lattice-Valued Logic; Xu, Y., Ed.; Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2003; Volume 132, ISBN 978-3-642-07279-6. [Google Scholar]
- Liu, Y.; Kaburlasos, V.; Hatzimichailidis, A.; Xu, Y. Toward a Synergy of a Lattice Implication Algebra with Fuzzy Lattice Reasoning—A Lattice Computing Approach; Science Gate Publishing: Thrace, Greece, 2016; pp. 23–42. [Google Scholar]
- Pandey, P.; Seeja, K.R. Emotional State Recognition with EEG Signals Using Subject Independent Approach. In Data Science and Big Data Analytics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 117–124. [Google Scholar]
- Qiu, J.-L.; Zhao, W.-Y. Data Encoding Visualization Based Cognitive Emotion Recognition with AC-GAN Applied for Denoising. In Proceedings of the 2018 IEEE 17th International Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Berkeley, CA, USA, 16–18 July 2018; pp. 222–227. [Google Scholar]
- Sharma, R.; Pachori, R.B.; Sircar, P. Automated emotion recognition based on higher order statistics and deep learning algorithm. Biomed. Signal Process. Control 2020, 58, 101867. [Google Scholar] [CrossRef]
- Kaburlasos, V.G.; Papadakis, S.E.; Papakostas, G.A. Lattice Computing Extension of the FAM Neural Classifier for Human Facial Expression Recognition. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1526–1538. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, S.E.; Kaburlasos, V.G.; Papakostas, G.A. Two Fuzzy Lattice Reasoning (FLR) Classifiers and their Application for Human Facial Expression Recognition. Mult. Log. Soft Comput. 2014, 22, 561–579. [Google Scholar]
- Spencer, C.; Koc, I.A.; Suga, C.; Lee, A.; Dhareshwar, A.M.; Franzén, E.; Iozzo, M.; Morrison, G.; McKeown, G. Assessing the Use of Physiological Signals and Facial Behaviour to Gauge Drivers’ Emotions as a UX Metric in Automotive User Studies. In Proceedings of the 12th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, New York, NY, USA, 21–22 September 2020; pp. 78–81. [Google Scholar]
- Shan, K.; Guo, J.; You, W.; Lu, D.; Bie, R. Automatic facial expression recognition based on a deep convolutional-neural-network structure. In Proceedings of the 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA), London, UK, 7–9 June 2017; pp. 123–128. [Google Scholar]
- Majid Mehmood, R.; Du, R.; Lee, H.J. Optimal Feature Selection and Deep Learning Ensembles Method for Emotion Recognition From Human Brain EEG Sensors. IEEE Access 2017, 5, 14797–14806. [Google Scholar] [CrossRef]
- Zeng, N.; Zhang, H.; Song, B.; Liu, W.; Li, Y.; Dobaie, A.M. Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 2018, 273, 643–649. [Google Scholar] [CrossRef]
- Akçay, M.B.; Oğuz, K. Speech emotion recognition: Emotional models, databases, features, preprocessing methods, supporting modalities, and classifiers. Speech Commun. 2020, 116, 56–76. [Google Scholar] [CrossRef]
- Semwal, N.; Kumar, A.; Narayanan, S. Automatic speech emotion detection system using multi-domain acoustic feature selection and classification models. In Proceedings of the 2017 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), New Delhi, India, 23–24 February 2017; pp. 1–6. [Google Scholar]
- Jiang, Y.; Li, W.; Hossain, M.S.; Chen, M.; Alelaiwi, A.; Al-Hammadi, M. A snapshot research and implementation of multimodal information fusion for data-driven emotion recognition. Inf. Fusion 2020, 53, 209–221. [Google Scholar] [CrossRef]
- Ma, J.; Tang, H.; Zheng, W.-L.; Lu, B.-L. Emotion Recognition using Multimodal Residual LSTM Network. In Proceedings of the Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 176–183. [Google Scholar]
- Zhang, J.; Yin, Z.; Chen, P.; Nichele, S. Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Inf. Fusion 2020, 59, 103–126. [Google Scholar] [CrossRef]
- Yee Chung, J.W.; Fuk So, H.C.; Tak Choi, M.M.; Man Yan, V.C.; Shing Wong, T.K. Artificial Intelligence in education: Using heart rate variability (HRV) as a biomarker to assess emotions objectively. Comput. Educ. Artif. Intell. 2021, 2, 100011. [Google Scholar] [CrossRef]
- Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A Review of Emotion Recognition Using Physiological Signals. Sensors 2018, 18, 2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabiano, D.; Canavan, S. Emotion Recognition Using Fused Physiological Signals. In Proceedings of the 2019 8th International Conference on Affective Computing and Intelligent Interaction (ACII), Cambridge, UK, 3–6 September 2019; pp. 42–48. [Google Scholar]
- Mohammadi, Z.; Frounchi, J.; Amiri, M. Wavelet-based emotion recognition system using EEG signal. Neural Comput. Appl. 2017, 28, 1985–1990. [Google Scholar] [CrossRef]
- Saxena, A.; Tripathi, K.; Khanna, A.; Gupta, D.; Sundaram, S. Emotion Detection Through EEG Signals Using FFT and Machine Learning Techniques. In Advances in Intelligent Systems and Computing; Springer: Singapore, 2020; pp. 543–550. ISBN 9789811512858. [Google Scholar]
- García-Martínez, B.; Fernández-Caballero, A.; Zunino, L.; Martínez-Rodrigo, A. Recognition of Emotional States from EEG Signals with Nonlinear Regularity- and Predictability-Based Entropy Metrics. Cognit. Comput. 2021, 13, 403–417. [Google Scholar] [CrossRef]
- Ozel, P.; Akan, A.; Yilmaz, B. Synchrosqueezing transform based feature extraction from EEG signals for emotional state prediction. Biomed. Signal Process. Control 2019, 52, 152–161. [Google Scholar] [CrossRef]
- Gómez, A.; Quintero, L.; López, N.; Castro, J.; Villa, L.; Mejía, G. An approach to emotion Recognition in Single-channel EEG Signals using Stationary Wavelet Transform. In IFMBE Proceedings; Springer: Singapore, 2017; pp. 654–657. ISBN 9789811040856. [Google Scholar]
- Kaburlasos, V.G.; Athanasiadis, I.N.; Mitkas, P.A. Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation. Int. J. Approx. Reason. 2007, 45, 152–188. [Google Scholar] [CrossRef] [Green Version]
- Kaburlasos, V.G. The Lattice Computing (LC) Paradigm. In Proceedings of the The 15th International Conference on Concept Lattices and Their Applications CLA, Tallinn, Estonia, 29 June–1 July 2020; pp. 1–8. [Google Scholar]
- Papakostas, G.A.; Kaburlasos, V.G. Modeling in Cyber-Physical Systems by Lattice Computing Techniques: The Case of Image Watermarking Based on Intervals’ Numbers. In Proceedings of the 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–6. [Google Scholar]
- Kaburlasos, V.G.; Kehagias, A. Fuzzy Inference System (FIS) Extensions Based on the Lattice Theory. IEEE Trans. Fuzzy Syst. 2014, 22, 531–546. [Google Scholar] [CrossRef]
- Kaburlasos, V.G.; Papakostas, G.A. Learning Distributions of Image Features by Interactive Fuzzy Lattice Reasoning in Pattern Recognition Applications. IEEE Comput. Intell. Mag. 2015, 10, 42–51. [Google Scholar] [CrossRef]
- Lytridis, C.; Lekova, A.; Bazinas, C.; Manios, M.; Kaburlasos, V.G. WINkNN: Windowed Intervals’ Number kNN Classifier for Efficient Time-Series Applications. Mathematics 2020, 8, 413. [Google Scholar] [CrossRef] [Green Version]
- Musha, T.; Terasaki, Y.; Haque, H.A.; Ivamitsky, G.A. Feature extraction from EEGs associated with emotions. Artif. Life Robot. 1997, 1, 15–19. [Google Scholar] [CrossRef]
- Zheng, W. Multichannel EEG-Based Emotion Recognition via Group Sparse Canonical Correlation Analysis. IEEE Trans. Cogn. Dev. Syst. 2017, 9, 281–290. [Google Scholar] [CrossRef]
- Dabas, H.; Sethi, C.; Dua, C.; Dalawat, M.; Sethia, D. Emotion Classification Using EEG Signals. In Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence–CSAI ’18, Shenzhen, China, 8–10 December 2018; pp. 380–384. [Google Scholar]
- Krishna, A.H.; Sri, A.B.; Priyanka, K.Y.V.S.; Taran, S.; Bajaj, V. Emotion classification using EEG signals based on tunable-Q wavelet transform. IET Sci. Meas. Technol. 2019, 13, 375–380. [Google Scholar] [CrossRef]
- Ang, A.Q.-X.; Yeong, Y.Q.; Wee, W. Emotion Classification from EEG Signals Using Time-Frequency-DWT Features and ANN. J. Comput. Commun. 2017, 5, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Garg, A.; Kapoor, A.; Bedi, A.K.; Sunkaria, R.K. Merged LSTM Model for emotion classification using EEG signals. In Proceedings of the 2019 International Conference on Data Science and Engineering (ICDSE), Patna, India, 26–28 September 2019; pp. 139–143. [Google Scholar]
- Mohammadpour, M.; Hashemi, S.M.R.; Houshmand, N. Classification of EEG-based emotion for BCI applications. In Proceedings of the 2017 Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran, 9 April 2017; pp. 127–131. [Google Scholar]
- Zeng, H.; Wu, Z.; Zhang, J.; Yang, C.; Zhang, H.; Dai, G.; Kong, W. EEG Emotion Classification Using an Improved SincNet-Based Deep Learning Model. Brain Sci. 2019, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Ren, F.; Dong, Y.; Wang, W. Emotion recognition based on physiological signals using brain asymmetry index and echo state network. Neural Comput. Appl. 2019, 31, 4491–4501. [Google Scholar] [CrossRef]
- Kant, P.; Hazarika, J.; Laskar, S.H. Wavelet transform based approach for EEG feature selection of motor imagery data for braincomputer interfaces. In Proceedings of the 2019 Third International Conference on Inventive Systems and Control (ICISC), Pichanur, India, 10–11 January 2019; pp. 101–105. [Google Scholar]
- Bastos-Filho, T.F.; Ferreira, A.; Atencio, A.C.; Arjunan, S.; Kumar, D. Evaluation of feature extraction techniques in emotional state recognition. In Proceedings of the 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI), Kharagpur, India, 27–29 December 2012; pp. 1–6. [Google Scholar]
- Liu, Y.; Sourina, O. Real-Time Fractal-Based Valence Level Recognition from EEG. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2013; pp. 101–120. ISBN 9783642388026. [Google Scholar]
- Wang, X.-W.; Nie, D.; Lu, B.-L. EEG-Based Emotion Recognition Using Frequency Domain Features and Support Vector Machines. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2011; pp. 734–743. ISBN 9783642249549. [Google Scholar]
- Zheng, W.-L.; Lu, B.-L. Investigating Critical Frequency Bands and Channels for EEG-Based Emotion Recognition with Deep Neural Networks. IEEE Trans. Auton. Ment. Dev. 2015, 7, 162–175. [Google Scholar] [CrossRef]
- Akin, M. Comparison of wavelet transform and FFT methods in the analysis of EEG signals. J. Med. Syst. 2002, 26, 241–247. [Google Scholar] [CrossRef]
- Uzun, S.S.; Yildirim, S.; Yildirim, E. Emotion primitives estimation from EEG signals using Hilbert Huang Transform. In Proceedings of the 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong and Shenzhen, China, 2–7 January 2012; pp. 224–227. [Google Scholar]
- Nawaz, R.; Cheah, K.H.; Nisar, H.; Yap, V.V. Comparison of different feature extraction methods for EEG-based emotion recognition. Biocybern. Biomed. Eng. 2020, 40, 910–926. [Google Scholar] [CrossRef]
- Duan, R.N.; Zhu, J.Y.; Lu, B.L. Differential entropy feature for EEG-based emotion classification. In Proceedings of the International IEEE/EMBS Conference on Neural Engineering, San Diego, CA, USA, 6–8 November 2013. [Google Scholar]
- Alarcao, S.M.; Fonseca, M.J. Emotions Recognition Using EEG Signals: A Survey. IEEE Trans. Affect. Comput. 2019, 10, 374–393. [Google Scholar] [CrossRef]
- Vrochidou, E.; Alvanitopoulos, P.F.; Andreadis, I.; Elenas, A. Structural damage estimation in mid-rise reinforced concrete structure based on time–frequency analysis of seismic accelerograms. IET Sci. Meas. Technol. 2016, 10, 900–909. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Wang, C.-H.; Jung, T.-P.; Wu, T.-L.; Jeng, S.-K.; Duann, J.-R.; Chen, J.-H. EEG-Based Emotion Recognition in Music Listening. IEEE Trans. Biomed. Eng. 2010, 57, 1798–1806. [Google Scholar]
- Myroniv, B.; Wu, C.-W.; Ren, Y.; Christian, A.; Bajo, E.; Tseng, Y.-C. Analyzing User Emotions via Physiology Signals. Data Sci. Pattern Recognit. 2017, 1, 11–25. [Google Scholar]
- Asghar, M.A.; Khan, M.J.; Amin, Y.; Rizwan, M.; Rahman, M.; Badnava, S.; Mirjavadi, S.S. EEG-Based Multi-Modal Emotion Recognition using Bag of Deep Features: An Optimal Feature Selection Approach. Sensors 2019, 19, 5218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, R.; Tian, Y.; Bao, T.; Meng, Z.; Shi, P. Improvement Motor Imagery EEG Classification Based on Regularized Linear Discriminant Analysis. J. Med. Syst. 2019, 43, 169. [Google Scholar] [CrossRef]
- Soleymani, M.; Asghari-Esfeden, S.; Fu, Y.; Pantic, M. Analysis of EEG Signals and Facial Expressions for Continuous Emotion Detection. IEEE Trans. Affect. Comput. 2016, 7, 17–28. [Google Scholar] [CrossRef]
- Tang, H.; Liu, W.; Zheng, W.-L.; Lu, B.-L. Multimodal Emotion Recognition Using Deep Neural Networks. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2017; pp. 811–819. ISBN 9783319700922. [Google Scholar]
- Craik, A.; He, Y.; Contreras-Vidal, J.L. Deep learning for electroencephalogram (EEG) classification tasks: A review. J. Neural Eng. 2019, 16, 031001. [Google Scholar] [CrossRef]
- Özerdem, M.S.; Polat, H. Emotion recognition based on EEG features in movie clips with channel selection. Brain Inform. 2017, 4, 241–252. [Google Scholar] [CrossRef]
- Peng, H.; Wang, Y.; Chao, J.; Huo, X.; Majoe, D. Stability study of the optimal channel selection for emotion classification from EEG. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomed. (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 2031–2036. [Google Scholar]
- BCMI Shangai Jiao Tong University SEED Dataset. A Dataset Collection for Various Purposes Using EEG Signals. Available online: https://bcmi.sjtu.edu.cn/home/seed/seed.html (accessed on 29 April 2021).
- Lin, D.; Zhang, J.; Li, J.; Calhoun, V.D.; Deng, H.W.; Wang, Y.P. Group sparse canonical correlation analysis for genomic data integration. BMC Bioinform. 2013, 14, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, W.; Zhou, X.; Zou, C.; Zhao, L. Facial expression recognition using kernel canonical correlation analysis (KCCA). IEEE Trans. Neural Netw. 2006, 17, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
Channel 1 | Channel 2 | Channel 3 | Channel 4 | |
---|---|---|---|---|
AνλνμνCνAθλθμθCθ | AνλνμνCνAθλθμθCθ | AνλνμνCνAθλθμθCθ | AνλνμνCνAθλθμθCθ | k |
Group | Channels Involved |
---|---|
G1 | PO7–FT8–T7–T8 |
G2 | TP7–FC2–FP1–T8 |
G3 | T7–F8–FPZ–FP1 |
G4 | FT8–FP1–T8–T7 |
G5 | TP7–T8–FT8–T7 |
Method | Number of Channels | Frequency Bands | |||||
---|---|---|---|---|---|---|---|
δ | θ | α | β | γ | Δ + θ + α + β + γ | ||
GSCCA [34] | 4 | 49.68 | 57.80 | 59.57 | 60.32 | 63.56 | 80.20 |
kNN (with) | 4 | 72.60 | 74.50 | 76.40 | 73.80 | 76.00 | 72.90 |
k = 4 | k = 4 | k = 7 | k = 4 | k = 7 | k = 9 | ||
kNN (with) | 4 | 66.20 | 61.80 | 62.70 | 61.60 | 68.70 | 69.30 |
k = 6 | k = 7 | k = 4 | k = 6 | k = 9 | k = 6 | ||
kNN (with) | 4 | 69.4 | 61.33 | 64.00 | 69.33 | 71.26 | 74.96 |
k = 5 | k = 10 | k = 5 | k = 6 | k = 5 | k = 6 | ||
kNN (with) | 4 | 71.60 | 66.70 | 72.10 | 75.80 | 72.60 | 80.59 |
k = 7 | k = 6 | k = 6 | k = 9 | k = 6 | k = 10 | ||
GSCCA [34] | 12 | 56.31 | 65.88 | 69.98 | 78.06 | 78.48 | 83.72 |
GSCCA [34] | 20 | 57.70 | 66.31 | 73.94 | 80.07 | 78.22 | 82.45 |
GSCCA [63] | 62 | 52.36 | 60.59 | 65.52 | 71.63 | 72.19 | 74.84 |
CCA [64] | 62 | 52.14 | 60.43 | 65.20 | 71.28 | 71.80 | 74.76 |
SVM [65] | 62 | 56.04 | 63.23 | 67.07 | 74.95 | 75.97 | 85.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrochidou, E.; Lytridis, C.; Bazinas, C.; Papakostas, G.A.; Wagatsuma, H.; Kaburlasos, V.G. Brain Signals Classification Based on Fuzzy Lattice Reasoning. Mathematics 2021, 9, 1063. https://doi.org/10.3390/math9091063
Vrochidou E, Lytridis C, Bazinas C, Papakostas GA, Wagatsuma H, Kaburlasos VG. Brain Signals Classification Based on Fuzzy Lattice Reasoning. Mathematics. 2021; 9(9):1063. https://doi.org/10.3390/math9091063
Chicago/Turabian StyleVrochidou, Eleni, Chris Lytridis, Christos Bazinas, George A. Papakostas, Hiroaki Wagatsuma, and Vassilis G. Kaburlasos. 2021. "Brain Signals Classification Based on Fuzzy Lattice Reasoning" Mathematics 9, no. 9: 1063. https://doi.org/10.3390/math9091063
APA StyleVrochidou, E., Lytridis, C., Bazinas, C., Papakostas, G. A., Wagatsuma, H., & Kaburlasos, V. G. (2021). Brain Signals Classification Based on Fuzzy Lattice Reasoning. Mathematics, 9(9), 1063. https://doi.org/10.3390/math9091063