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Abstract: Our interest is in time series classification regarding cyber–physical systems (CPSs) with
emphasis in human-robot interaction. We propose an extension of the k nearest neighbor (kNN)
classifier to time-series classification using intervals’ numbers (INs). More specifically, we partition
a time-series into windows of equal length and from each window data we induce a distribution
which is represented by an IN. This preserves the time dimension in the representation. All-order
data statistics, represented by an IN, are employed implicitly as features; moreover, parametric
non-linearities are introduced in order to tune the geometrical relationship (i.e., the distance) between
signals and consequently tune classification performance. In conclusion, we introduce the windowed
IN kNN (WINkNN) classifier whose application is demonstrated comparatively in two benchmark
datasets regarding, first, electroencephalography (EEG) signals and, second, audio signals. The results
by WINkNN are superior in both problems; in addition, no ad-hoc data preprocessing is required.
Potential future work is discussed.

Keywords: audio signal; big data; cyber–physical system (CPS); electroencephalography (EEG)
signal; human-robot interaction (HRI); Intervals’ Number (IN); kNN classification; time-series

1. Introduction

A cyber–physical system (CPS) has been defined as a device with sensing as well as reasoning
capacities [1,2]. Strategic initiatives regarding CPSs include “Industrie 4.0” in Germany, the “Industrial
Internet of Things (IIoT)” in the United States, and “Society 5.0” in Japan [3]. CPSs typically focus on
multidisciplinary applications in healthcare, agriculture, and food supply, manufacturing, energy and
critical infrastructures, transportation, logistics, security, and, lately, education [4]. Our interest here is
in CPSs regarding human-robot interaction.

There is a need for supporting CPSs with mathematical models that involve both sensory data and
structured software data toward improving CPS performance during their interaction with humans.
However, a widely acceptable mathematical modelling framework is currently missing. In response,
the lattice computing (LC) paradigm has been introduced [1,5] for hybrid mathematical modelling
based on mathematical lattice theory that unifies rigorously numerical data and non-numerical data;
the latter may include (lattice ordered) logic values, sets, symbols, and trees/graphs. More specifically,
the cyber and physical components of a CPS are modelled involving non-numerical and numerical
data, respectively, in any combination. An additional advantage of lattice computing is its capacity to
calculate with semantics represented by a lattice (partial) order relation.

Human-robot interaction is, typically, driven by behavioral patterns including auditory and/or
visual signals. Visual stimuli are very common in human-robot interaction applications, and are often
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treated as time-series data. For example, in [6] recognition of time-series segments is used to treat hand
gestures as natural language processing; furthermore, in [7] time series data are used for nod detection.
Recent work has considered electroencephalography (EEG) signals toward improving decision-making,
and the results have been encouraging [8–10]. Another important modality in human-robot interaction
is speech [11]. More specifically, humans use a number of linguistic social cues (i.e., words or phrases
that reveal sympathy, empathy, encouragement etc.,) which could be especially useful toward an
effective human-robot interaction.

Automated emotion recognition is important in human-robot interaction, for instance regarding
the design of smart collaborative or assistive robots. Current aspects and future directions in emotion
recognition using machine learning is shown in [12,13], where different machine learning techniques
are proposed for recognizing emotions from physiological signals (EEG in particular). Note that data
preprocessing and feature selections both are critical as well as computationally expensive. Table 3
in [12] presents some of the most popular features extracted from time-series including temporal,
statistical, spectral, linear, and/or non-linear features. Classifiers used to recognize emotional states,
typically, regard supervised learning including k nearest neighbor (kNN) [14–17], support vector
machine (SVM) [17–19], Naive–Bayes (NB) [17], quadratic discriminant analysis (QDA) [20], artificial
neural networks [21,22]. Furthermore, unsupervised and semi-supervised learning algorithms are also
used [12].

Summarizing the bibliography research, both ad hoc feature extraction and classification of big
data impose large feature dimensions resulting in high computational costs for training. To counter
the aforementioned problems we propose using intervals’ numbers (INs) in the framework of lattice
computing (LC). Recall that LC has been defined as “an evolving collection of tools and methodologies
that process lattice ordered data including logic values, numbers, sets, symbols, graphs, etc.,” [23,24].
We point out that LC is not merely an algorithm but rather it is an information processing paradigm.
LC models are expected to be useful in CPS applications including human-robot interaction because
they can (1) deal with both numerical data (regarding physical system components) as well as with
non-numerical data (regarding cyber system components), (2) compute with semantics, represented
by a partial-order relation, (3) rigorously deal with ambiguity represented by information granules,
(4) naturally engage logic and reasoning, and (5) process data fast. LC suggests useful instruments for
analysis and design of new technologies including formal concepts [25,26], type-2 fuzzy sets [23,27],
and other. In the context of the LC framework, intervals’ numbers, or INs for short, have been studied
as explained next.

An IN is a mathematical object that can represent either a fuzzy interval or a distribution of
samples [2,28–30]. Applications of INs have been reported to neural networks (NNs) as well as to
fuzzy inference systems (FIS) [23,31–35]. INs are engaged here for massive data representation in
time-series as explained in the following.

An advantage of an IN is its capacity to represent data statistics of all-orders using few numbers;
more specifically, L numbers are used to define L intervals; hence, a significant data reduction may
result in a capacity to process big data fast. Furthermore, no feature extraction is necessary since
the all-order statistics, represented by an IN, are implicitly employed as features. An IN-based k
nearest neighbor (kNN) scheme was introduced for classification by fuzzy lattice reasoning (FLR)
in [5]. However, a drawback of the latter work, regarding classification of time-series using INs, has
been the suppression of the “time dimension” because of the representation of a whole time-series by a
single IN. A novelty of this work is a recovery of the “time dimension” by the windowed IN-based k
nearest neighbor classifier, or WINkNN for short, which is applied comparatively on two different
datasets, namely (a) a human brain EEG dataset for emotion recognition, and (b) an audio dataset for
word classification.

The remainder of the paper is structured as follows. Section 2 summarizes the useful mathematical
instruments. Section 3 presents the methods as well as the datasets used in our experiments. Section 4
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presents experiments and results as well as a discussion. Finally, Section 5 concludes by summarizing
the contribution of this work; potential future work is also delineated.

2. Mathematical Background

This section summarizes instrumental mathematical results published elsewhere [23,30,31,34,36].
Given a lattice (L,v), a valuation is defined as a real function v: L→R that satisfies v(xuy) + v(xty)

= v(x) + v(y), x,y∈L. A valuation is called monotone if x ≤ y⇒ v(x) ≤ v(y), and positive if x < y⇒ v(x) <

v(y). A positive valuation function v: L→R in (L,v) defines a metric distance function d : L× L→ R+
0

given by d(x,y) = v(xty) − v(xuy). Extensions to Cartesian products follow.
A lattice (L,v) may be the Cartesian product of N constituent lattices (Li,v), i = 1, . . . ,N, i.e., (L,v) =

(L1,v) × . . . × (LN,v), where (x1, . . . ,xN) = x v y = (y1, . . . ,yN)⇔ x1vy1, . . . ,xNvyN. Positive valuation
functions vi: Li→R in the constituent lattices (Li,v), i = 1, . . . ,N, respectively, define a parametric
Minkowski metric function d(; p) : L× L→ R+

0 in the product lattice (L,v) = (L1,v) × . . . × (LN,v)
given by

d(x, y; p) =
[
(d1(x1, y1))

p + · · ·+ (dN(xN, yN))
p
]1/p

, with parameter p ∈ R (1)

where xi, yi∈Li, i = 1, . . . ,N, x = (x1, . . . ,xN), y = (y1, . . . yN). Next, we consider metrics in a
lattice hierarchy.

A hierarchy of lattices in three levels is presented next, resulting in the lattice of Intervals’
Numbers [34,36,37]. For each level, metric distance functions are introduced.

Level-0; The Lattice (R, ≤) of Real Numbers: Assume the lattice (R,≤) of real numbers.
The greatest lower bound of two numbers x and y is the smallest of the two, denoted by x∧y, whereas
the least upper bound of two numbers is the greatest of the two, denoted by x∨y. Positive valuation
function v: R→R in lattice (R,≤) is any strictly increasing function. For instance, choosing v(x) = x it
follows that the distance between two real numbers x and y equals d(x,y) = v(x∨y) − v(x∧y) = x∨y − x∧y
= |x−y|. Extending to the N-dimensional Euclidean space (RN,v), with v(x) = x in every dimension, from

Equation (1) there follows the Minkowski metric d(x,y;p) =
[
(d1(x1, y1))

p + · · ·+ (dN(xN, yN))
p
]1/p

known in the literature as Lp metric. In particular, the L1 metric d(x,y;1) =
∣∣∣x1 − y1

∣∣∣+ · · ·+ ∣∣∣xN − yN)
∣∣∣ is

known as Hamming distance; the L2 metric d(x,y;2) =

√
(d1(x1, y1))

2 + · · ·+ (dN(xN, yN))
2 is known as

Euclidean distance; furthermore; the L∞ metric equals d(x,y;∞) = max{|x1 − y1|, . . . ,|xN − yN|}.
Level-1; The Lattice (I1,≤) of Intervals: In the lattice (R,≤) of real numbers, any strictly decreasing

function is a dual isomorphic function. Consider the partially ordered lattice (I1, v) of intervals in the
lattice (R,≤). The greatest lower bound of two intervals [a, b] and [c, e] is given by [a, b]u[c, e] = [a∨c,
b∧e] if a∨c ≤ b∧e, and [a, b]u[c, e] = ∅ = [+∞, −∞] if a∨c > b∧e; whereas, the corresponding least upper
bound is given by [a, b]t[c, e] = [a∧c, b∨e].

Given (a) a positive valuation function v: R→R, and (b) a dual isomorphic function θ: R→R in
(R,≤), a positive valuation v1: R×R→R in the corresponding lattice (R×R,≥×≤) of generalized intervals is
defined by v1([a, b]) = v(θ(a)) + v(b). Therefore, a metric distance in (R×R,≥×≤) is given by:

d1([a, b],[c, e]) = v1([a, b]t[c, e]) − v1([a, b]u[c, e]) = v(θ(a)∨θ(c)) − v(θ(a)∧θ(c)) + v(b∨e) − v(b∧e) (2)

In conclusion, the metric d1(.,.), given by Equation (2), is valid in sublattice (I1,v), which is
embedded to the superlattice (R×R,≥×≤).

Level-2; The Lattice (F1, ≤) of Intervals’ Number (INs): A Generalized Intervals’ Number, or GIN
for short, is defined as a function f : [0, 1]→(R×R,≥×≤) where (R×R,≥×≤) is a lattice of Generalized
Intervals. Let G be the set of GINs; then, the (G,v) is a lattice, as a (non-numerable) Cartesian product
of complete lattices (R×R,≥×≤). Next, the interest focuses on the sublattice of INs.

An intervals’ number, or IN for short, is defined as a function F: [0, 1]→I1 that satisfies:

h1 ≤ h2 ⇒ Fh1 w Fh2 , and
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∀X ⊆ [0, 1] :
⋂

h∈X
Fh = F∨X

The set F1 of INs is a partially ordered lattice denoted as (F1,�). An IN is interpreted as a grain
of information [36]. In particular, it has been shown that (F1,�) is a metric lattice [38] whose metric
function D1 : F1 × F1 → R+

0 is given by

D1(F, G) =

∫ 1

0
d1(Fh, Gh)dh (3)

where the integrable function d1 : I1 × I1 → R+
0 is defined by Equation (2). For L = FN

1 there follows a
Minkowski metric given by Equation (1).

Parametric functions v(.) and θ(.) may introduce tunable non-linearities whose parameters can
be estimated optimally. In this work, toward reducing complexity during optimization, we consider
functions v(.) and θ(.) with only two parameters per function; in particular, we consider exclusively
linear parametric functions v(.) and θ(.):

v(x) = v1x + v0, (4)

θ(x) = θ1x + θ0, (5)

3. Methods and Datasets

This section deals with data representation issues as well as the windowed IN kNN, or WINkNN
for short, classifier. It also presents the datasets to be employed in the next section.

3.1. Intervals’ Numbers (INs) and Time-Series Representation Based on INs

Probability and possibility distributions have been studied comparatively in the literature [39,40].
Furthermore, a possibilistic interpretation has been proposed for an IN [38] followed by a probabilistic
interpretation [37]. In conclusion, an IN was established as a mathematical object, which can be
interpreted either probabilistically or possibilistically [30].

Recall that an IN can be represented either as a function F(x) = ∨
h∈[0,1]

{h : x ∈ Fh}, namely

membership-function-representation or, equivalently, as set of intervals Fh, h∈[0, 1], namely
interval-representation. We point out the potential of an IN to represent time-series big data.
More specifically, the big data here regards the (time-series) samples. For instance, consider the
EEG time-series signal shown in Figure 1a. Figure 1b shows the corresponding distribution function,
regarding the time-series samples values, induced by algorithm distrIN [2]. Figure 1c displays the
membership-function-representation of IN F; note that the latter matches the distribution function
in Figure 1b. Finally, Figure 1d shows the equivalent, interval-representation of IN F using L = 32
intervals, where the reason for using L = 32 is explained in [30]. In conclusion, using only L = 32
numbers that define L = 32 intervals, we can potentially represent a distribution of samples. In the
aforementioned sense, an IN with fairly few (i.e., L = 32) numbers can represent the distribution of
orders of magnitude more numbers.

In all previous works, a whole time-series signal has been represented by a single IN, e.g., [2,5].
However, the latter representation suppresses the “time dimension” which constitutes a significant
information content. To recover the “time dimension,” two alternatives have been examined here,
namely Alternative 1 (AL1) and Alternative 2 (AL2), respectively, as explained in the following.

First, Alternative AL1 computes the cumulative sum (over time) of the samples’ magnitude,
normalized to [0, 1]. Figure 2 displays two INs induced from two EEG signals in two different classes,
respectively, by Alternative AL1. Although time has been taken into account, there is no significant
difference between the two INs in Figure 2 because the large number of involved samples resulted
in very similar IN shapes. Hence, the distance between the two INs (computed by Equation (3)) is
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negligible. The latter explains the poor classification results recorded in experiments we have carried
out using AL1. Therefore, Alternative AL1 was abandoned.

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 14 

 

  

(a) (b) 

  

(c) (d) 

Figure 1. Induction of IN F from an electroencephalography (EEG) signal: (a) An EEG signal. (b) The 

corresponding distribution function. (c) The membership-function-representation of the induced IN 

F matches its distribution function. (d) The interval-representation of IN F is shown for L = 32 

intervals. 

 

Figure 2. Plots of two different INs induced from two different EEG signals, respectively, both with 

47,001 samples. The x-axis displays the number of samples, whereas the y-axis displays the 

normalized cumulative sum of the corresponding EEG amplitude samples. The intervals of the two 

INs are shown slightly displayed along the y-axis for comparison reasons. 

Second, Alternative AL2 recovers (partly) the time dimension by partitioning the original time-

series signal into consecutive windows; then, computing one IN per window. More specifically, the 

time-series signal is partitioned in a number N of windows of equal length; then, from all the data in 

a window, one IN is induced per window by algorithm distrIN [2]. For instance, from the EEG signal 

Figure 1. Induction of IN F from an electroencephalography (EEG) signal: (a) An EEG signal. (b) The
corresponding distribution function. (c) The membership-function-representation of the induced IN F
matches its distribution function. (d) The interval-representation of IN F is shown for L = 32 intervals.

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 14 

 

  

(a) (b) 

  

(c) (d) 

Figure 1. Induction of IN F from an electroencephalography (EEG) signal: (a) An EEG signal. (b) The 

corresponding distribution function. (c) The membership-function-representation of the induced IN 

F matches its distribution function. (d) The interval-representation of IN F is shown for L = 32 

intervals. 

 

Figure 2. Plots of two different INs induced from two different EEG signals, respectively, both with 

47,001 samples. The x-axis displays the number of samples, whereas the y-axis displays the 

normalized cumulative sum of the corresponding EEG amplitude samples. The intervals of the two 

INs are shown slightly displayed along the y-axis for comparison reasons. 

Second, Alternative AL2 recovers (partly) the time dimension by partitioning the original time-

series signal into consecutive windows; then, computing one IN per window. More specifically, the 

time-series signal is partitioned in a number N of windows of equal length; then, from all the data in 

a window, one IN is induced per window by algorithm distrIN [2]. For instance, from the EEG signal 

Figure 2. Plots of two different INs induced from two different EEG signals, respectively, both with
47,001 samples. The x-axis displays the number of samples, whereas the y-axis displays the normalized
cumulative sum of the corresponding EEG amplitude samples. The intervals of the two INs are shown
slightly displayed along the y-axis for comparison reasons.

Second, Alternative AL2 recovers (partly) the time dimension by partitioning the original
time-series signal into consecutive windows; then, computing one IN per window. More specifically,
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the time-series signal is partitioned in a number N of windows of equal length; then, from all the data
in a window, one IN is induced per window by algorithm distrIN [2]. For instance, from the EEG signal
in Figure 1a, using N = 10 windows, the ten INs of Figure 3 were induced. Such a (partial) recovery of
time has improved classification performance as demonstrated below.
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3.2. The Datasets

Two different datasets have been engaged regarding, first, electroencephalography (EEG) data
and, second, audio data, as explained in the following.

3.2.1. Electroencephalography (EEG) Dataset

We considered the SEED dataset [41,42], which contains EEG data signals collected from 15 subjects
(7 males and 8 females aged between 22 and 24 years old) while watching movie clips designed to elicit
three types of emotions, namely “positive”, “neutral,” and “negative.” More specifically, each subject
watched five clips for each types of emotion. The experiment was repeated three times. Therefore,
the dataset included 3*5*15 = 225 trials per emotion. Note that the recording device was an EEG cap
conforming to the international 10–20 system (for 62 channels); hence, for each trial (i.e., for each movie
clip) there were 62 signals corresponding to the 62 channels, respectively. An EEG signal was sampled
at 200 Hz resulting in time-series with 37,001 to 47,001 samples per time-series. Our objective was
to recognize the emotional state, namely “positive,” “neutral,” or “negative,” of individuals using
EEG signals.

Of the 62 channels recorded by the EEG cap’s electrodes, not all were used in our emotion
recognition computational experiments. Efficient emotion recognition calls for prior channel selection
in order to reduce computational complexity. More specifically, channel selection depends on the brain
region involved in processing, given the stimulus. Previous studies have identified appropriate channel
groups [42,43]. For comparison purposes, the five groups of channels proposed in [44], including four
channels per group, were used in this work. More specifically, Table 1 shows the channel groups used
in our classification experiments. In addition to the aforementioned five channel groups, the set-union
of the channels in the five groups was also considered resulting in nine channels, namely FP1, FT8,
T7,T8, TP7, PO7, FC2, FPZ, F8. We point out that each signal was decomposed into delta (δ), theta (θ),
alpha (α), beta (β), and gamma (γ) frequency bands [45].

Table 1. Groups of channels used in the classification experiments.

Group 1 Group 2 Group 3 Group 4 Group 5

FP1, FT8, T7, T8 FT8, T7, T8, TP7 FT8, T7, T8, PO7 FP1, FC2, T8, TP7 FP1, FPZ, F8, T7
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3.2.2. Audio Dataset

The objective here is spoken word classification using the Spoken Digits dataset [46], which
contains 2000 recordings of English utterances of the ten digits “zero” to “nine” by four native English
speakers. This dataset includes 200 signals per digit. Moreover, note that an audio signal was sampled
at 8 KHz resulting in time-series with 1148 to 18,262 samples per time-series. Minimal silence was
ensured by trimming the audio signal both at the beginning and at the end.

3.3. The Windowed Intervals’ Number kNN (WINkNN) Classifier

We assume a dataset including ntrn and ntst subjects for training and testing, respectively.
In particular, the data regarding a single subject includes nch time-series (i.e., channels). A time-series
is optimally partitioned, as described below, in N parts, or equivalently windows, of equal length.

Algorithm 1 describes the windowed intervals’ number kNN (WINkNN) classifier for training.
In particular, an optimal set of parameters is computed in Algorithm 1 using the GENETIC optimization
detailed in the next section. Note that Algorithm 1 implements “leave-one-out” training per individual
chromosome. Next, Algorithm 2 details testing by the WINkNN classifier.

Algorithm 1 Windowed Intervals’ Number kNN (WINkNN) classifier for training

0. Let k be the (integer) parameter of the kNN classifier; let ncl be the total number of classes; let ntrn be
the number of subjects for training; let nch be the number of channels per subject; let N be the
number of windows per channel; a time-series in a channel is represented by an element F∈FN

1 ; let
NG be the number of generations of the GENETIC algorithm;

1. m = 1;
2. while m < NG do
3. for i = 1 to ntrn do %this loop is executed per chromosome r∈{1, . . . ,nr};
4. Initialize (i.e., set to zero) the vector ClassCounter(1, . . . ,ncl)← (0, . . . ,0);
5. for l = 1 to nch do
6. Calculate the set: kWinners(i,l) = kargmin

j∈{1,...,,ntrn}, j,i
D(Fi,l,Fj,l) that holds the indices of the k nearest

neighbors to Fi,l∈FN
1 for j , i;

7. Using the class labels of the k winners in the set kWinners(i,l), update (i.e., increase the
corresponding entries of) vector ClassCounter(1, . . . ,ncl);

8. end for
9. The subject i is classified to the class: argmax ClassCounter(1, . . . ,ncl);
10. Update the success rate (fitness) Qr per chromosome r∈{1, . . . ,nr};
11. end for
12. GENETIC optimization of the “2*2*N*nch + 1” parameters v0, v1, θ0, θ1 per window per channel as

well as parameter k of the WINkNN classifier;
13. m←m + 1;
14. end while
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Algorithm 2 Windowed Intervals’ Number kNN (WINkNN) classifier for testing

0. Let k be the (integer) parameter of the kNN classifier; let ncl be the total number of classes; let nch be
the number of channels per subject; let N be the number of windows per channel; a time-series in a
channel is represented by an element F∈FN

1 ; consider a subject F0∈FN
1 l∈{1, . . . , nch} for classification;

1. Initialize (i.e., set to zero) the vector ClassCounter(1, . . . ,ncl)← (0, . . . ,0);
2. for l = 1 to nch do
3. Calculate the set: kWinners(l) = kargmin

j∈{1,...,,ntrn}

D(F0,l,Fj,l) that holds the indices of the k nearest neighbors

to F0∈FN
1 l∈{1, . . . , nch};

4. Update (i.e., increase the corresponding entries of) vector ClassCounter(1, . . . ,ncl) by considering
the class labels of the k winners in the set kWinners(l);

5. end for
6. The subject F0 is classified to the class: argmax ClassCounter(1, . . . ,ncl).

3.4. GENETIC Optimization

As mentioned above, the distance between two INs is calculated based on the two parametric
functions ν(x) and θ(x) per window per channel. The parameter values of the aforementioned functions
affect the metric distance, and as a result, the classification performance changes. To determine an
optimal set of parameters that maximizes classification performance, a GENETIC algorithm was
employed as detailed next.

During an initialization step, a population of nr chromosomes was considered. Each chromosome
represented the set of parameters for classification. More specifically, for linear ν(x) and θ(x) functions,
there were two parameters per function (v1/v0 and θ1/θ0, respectively) that define slope and position.
To enhance flexibility in tuning, we considered different pairs of functions ν(x) and θ(x) per window
per channel. For example, to classify EEG signals with 9 channels, where each signal was partitioned
in N = 5 windows, we used 2*2*5*9 = 180 parameters. Moreover, an additional parameter was used for
the k value of the kNN classifier. Figure 4 shows the structure of a chromosome for nch channels and N
windows per (time-series) signal.
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An initial population of nr chromosomes (i.e., individuals) was randomly generated under
constraints, namely the parametric functions ν(x) and θ(x) must be monotonically increasing and
decreasing, respectively. Then, the fitness (i.e., cost) function of the GENETIC algorithm was computed
as follows. Given ncl classes, the result of a classification cycle, regarding all the ntst subjects for testing,
is a ncl × ncl confusion matrix B including classification percentages. In conclusion, the following
fitness function was used per chromosome:

Qr = 100−
(
B11 + B22 + . . .+ Bnclncl

)
/ncl, where r ∈ {1, . . . , nr} (6)

The cost function Qr indicates how well a set of parameters defines distances that improve
classification. Initially, all individuals are evaluated and they are sorted according to cost. To speed
up data processing, parallel processing was applied for the evaluation of the individuals. Next, the
individual selection procedure was applied to replace the parental population using tournament
selection followed by genetic crossover and mutation; in particular, crossover was applied with
probability cxpb = 0.7, whereas mutation was applied with probability mutpb = 0.02.
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4. Experiments and Results

Two different sets of experiments have been conducted to demonstrate the capacity of the proposed
WINkNN classifier regarding, first, an emotion classification task using EEG signals and, second, a
word classification task using auditory signals. In each experiment, a single subject was left out for
testing; eventually, every subject was left out exactly once for testing. In the aforementioned manner
we estimated the generalization capacity of the WINkNN classifier. For both datasets, during the
GENETIC optimization, the parameter values nr = 200 and NG = 50 were selected empirically.

4.1. Electroencephalography (EEG) Signal Classification

An optimal number N of windows was estimated, in the first place. In particular, before any
optimization, classification experiments were carried out for an increasing number of 2, 3, 4, 5, 10,
15, and 20 windows. Table 2 shows the corresponding classification results. It was observed that
when signals were partitioned to more than 5 windows, there was no significant improvement in
classification performance; moreover, the computational cost was increasing rapidly for more than 5
windows. In conclusion, we decided to use N = 5 windows.

Table 3 displays the results obtained by the WINkNN classifier comparatively with the results by
alternative classification methods from the literature.

Table 2. Optimal empirical estimation of the number N of windows.

No. of Windows: 1 2 3 4 5 10 15 20

Classification with v(x) = x and θ(x) = −x 48.9% 56.4% 57.0% 58.7% 61.6% 63.1% 61.5% 63.4%

Table 3. Results of the WINkNN classifier on the SEED dataset comparatively with alternative methods
from the literature.

Method No. of Channels
Frequency Bands α + β + γ + δ + θ

δ θ α β γ

GSCCA [44] 4 49.68 57.80 59.57 60.32 63.56 80.20

GSCCA [44] 12 56.31 65.88 69.98 78.06 78.48 83.72

GSCCA [44] 20 57.70 66.31 73.94 80.07 78.22 82.45

GSCCA [47] 62 52.36 60.59 65.52 71.63 72.19 74.84

CCA [48] 62 52.14 60.43 65.20 71.28 71.80 74.76

SVM [49] 62 56.04 63.23 67.07 74.95 75.97 85.23

SVM [42] 62 60.50 60.95 66.64 80.76 79.56 83.99

DNN [42] 62 64.32 60.77 64.01 78.92 79.19 86.08

INkNN with σn (k) 4 72.60 (k = 7) 74.50 (k = 6) 74.60 (k = 6) 73.80 (k = 9) 76.00 (k = 6) 80.59 (k = 10)

INkNN with
distance (k) 4 67.11 (k = 6) 69.93 (k = 5) 67.41 (k = 6) 66.37 (k = 5) 68.59 (k = 7) 74.67 (k = 8)

WINkNN with
distance (k) 4 76.00 (k = 4) 77.33 (k = 5) 79.55 (k = 5) 77.19 (k = 5) 77.33 (k = 7) 82.67 (k = 6)

It can be seen that the classification performance of our proposed WINkNN classifier is comparable
to more complex (therefore more computationally expensive) classification techniques that make use
of the entire set of available cap electrodes and, in some cases, it is superior, especially when a small
number of channels is used. Even though alternative approaches are based on feature extraction,
our method operates on raw data—in other words, no ad hoc feature extraction has been carried
out whatsoever. The windowed IN approach is also superior to the authors’ previous work where
a single IN was used to represent the entire signal [5]. It was also observed during the experiments
that WINkNN was robust in terms of the consistency of classification results. Despite the fact that
EEG signals stemming even from the same subject in response to same stimuli are not repeatable,
the aforementioned consistency of the WINkNN classifier was remarkable and attributed to the
representation of a data distribution by an IN.
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During GENETIC optimization, the parameter ranges v1∈[0,10], v0∈[−1500,1500], θ1∈[0,10],
θ0∈[−1500,1500], k∈[4,10] were used; moreover, nch was either nch = 4 or nch = 9. Figure 5 shows
an example of the improvement in classification performance resulting from the application of the
GENETIC algorithm. Furthermore, Table 4 displays a set of optimal parameter values computed by
GENETIC optimization for channel group G1, for all windows in all channels.
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Table 4. Typical, optimal parameters computed for the channel group G1 for k = 5.

Window 1 Window 2 Window 3 Window 4 Window 5

Channel
1

v1 9.792 7.809 1.993 2.240 7.277
vo −1461.384 61.865 −1038.853 −464.432 −1111.372
θ1 6.728 3.710 3.190 8.952 7.908
θ0 −465.901 −331.331 1414.876 −462.023 760.318

Channel
2

v1 5.955 0.010 0.895 3.953 2.289
vo −601.800 1296.741 1321.715 −654.458 −1313.372
θ1 6.548 5.942 0.063 2.614 9.439
θ0 −1138.014 −844.781 333.440 1180.064 1419.705

Channel
3

v1 6.837 10 10 5.107 0.639
vo −1292.576 22.847 1035.796 816.906 353.922
θ1 8.260 9.918 10 7.265 2.313
θ0 −1075.657 88.849 −839.725 −159.621 −1079.277

Channel
4

v1 6.802 2.444 0.061 8.133 1.581
vo −987.327 1093.856 −377.266 −187.907 1181.140
θ1 1.065 −0.006 7.706 7.656 1.597
θ0 −936.397 1448.139 115.220 −179.689 −941.193

4.2. Audio Signal Classification

An optimal number N = 15 of windows was estimated by trial-and-error as in the previous section
regarding EEGs; furthermore, one IN was induced per window. Three different experiments were
carried out including: (a) 3 classes (spoken digits “0”, “5” and “9”), (b) 5 classes (spoken digits “0”, “3”,
“5”, “7” and “9”), and (c) 10 classes for all ten spoken digits.

During GENETIC optimization, the parameter ranges v1∈[0,10], v0∈[−1000,1000], θ1∈[0,10],
θ0∈[−1000,1000], k∈[4,10] were used; moreover, nch = 1. Table 5 shows the classification results by the
WINkNN classifier compared to the authors’ previous results [50] (in brackets), where a time-series
was represented by a single IN. For all aforementioned three class groups, the WINkNN classifier
resulted in a superior improvement.
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Table 5. Results by the WINkNN classifier compared to results by the “1 IN kNN classifier” (within
parentheses) on the Spoken Digits dataset. The corresponding optimal “k” value is also shown.

3 Classes 5 Classes 10 Classes

Default parameters (k = 4) 88.3%
(70.5%)

81.9%
(51.3%)

69.4%
(34.45%)

Optimized parameters 92.5%, k = 6
(81%, k = 4)

86.4%, k = 6
(70.7%, k = 4)

75.7%, k = 8
(54%, k = 8)

4.3. Discussion

The use of a single IN to represent a time-series ignores the “time dimension” of a time-series
signal; more specifically, it considers solely the distribution of the signal samples. Nevertheless,
with the proposed WINkNN classifier, the “time dimension” is (partly) recovered toward improving
classification performance. The classification results here have confirmed a consistent improvement in
classification performance because of the partition of a time-series to more than 1 window.

It is observed that the improvement is larger for the experiments with the audio signals than with
the EEG signals. This was explained by the fact that the information content in audio signals is more
dependent on time, as opposed to the EEG signals which are significantly affected by a number of
concurrent brain activations. Note also that not only EEG signals are subject-specific, but also the data
in the trials, even per subject, are not repeatable, resulting in a decrease of classification performance
for the EEG signals in comparison to audio signals.

Partitioning the signals to N time windows multiplies the total number of parameters of the
WINkNN classifier. The latter increases the search space for the GENETIC algorithm and makes
convergence to an optimal set of parameters slower. However, significant benefits are retained with N
time windows including: (a) Substantial data reduction, compared to the raw data, because of the
employment of “N” INs per channel; hence, the proposed techniques emerge promising for big data
applications. (b) Time consuming, ad hoc feature extraction is not necessary; instead, all-order statistics
are used implicitly as features for tunable classification using the optimizable, parametric WINkNN
classifier. (c) Fairly heavy computational overhead is required only once, during training.

We remark that recently published classification techniques from the literature have reported
higher classification results than the WINkNN classifier on the SEED (EEG) dataset but at the expense
of considerably more time for computation, using all 64 channels as well as all frequency bands;
moreover, ad hoc features had to be defined [14].

5. Conclusions

The interest of this work was in time-series classification regarding human-robot interaction.
Our proposed novelty was to represent “time” by an N-tuple of INs instead of by a single IN. A novel
windowed IN-based kNN, namely WINkNN, classifier was introduced and applied to two different
benchmark classification datasets, namely the SEED dataset and the Spoken Digit dataset regarding
the recognition of emotional states based on EEG signals and the recognition of spoken digits based on
audio signals, respectively. Extensive computational experiments have demonstrated, comparatively,
a superior performance of the WINkNN classifier.

The proposed WINkNN classifier used raw (time-series) data; in other words, no ad hoc feature
extraction was necessary. The latter is considered to be a major advantage toward transferring IN-based
techniques to a wide range of applications. Moreover, the performance of the proposed method can be
optimized, parametrically. The capability of the WINkNN classifier was attributed (a) to the capacity
of an IN to represent statistics of all-orders; the latter are the “features” engaged implicitly, (b) to the
capacity to optimize, parametrically, the distance function, and (c) to the consideration of time.

Because of its capacity for representing a distribution of samples, an IN can potentially represent
big data. Hence, IN-based techniques emerge promising in big data applications. Potential future
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work may include various time-series applications to different domains such as medicine, physics,
economics, agriculture, and elsewhere. The implicit employment of “all-order statistics” should also
be studied. Further future work will pursue an engagement of INs with alternative architectures such
as neural networks etc.
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