Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection
Abstract
:1. Introduction
2. Model Description
3. Homotopy Analysis Transform method
4. CESTAC Method-CADNA Library
Algorithm 1: Algorithm of the CESTAC method. |
Step 1–Make k samples of as by constructing perturbation on the last bit of mantissa. Step 2–Find . Step 3–Compute . Step 4–Find the number of common significant digits between and , using . Step 5–Show if or . |
5. Numerical Illustration
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations and Abbreviations
Abbreviations
Abbreviations
HATM | Homotopy Analysis Transform Method |
FPA | Floating Point Arithmetic |
DSA | Discrete Stochastic Arithmetic |
CESTAC | Controle et Estimation Stochastique des Arrondis de Calculs |
CADNA | Control of Accuracy and Debugging for Numerical Applications |
References
- Noeiaghdam, S.; Sidorov, D. Caputo-Fabrizio Fractional Derivative to Solve the Fractional Model of Energy Supply-Demand System. Math. Model. Eng. Probl. 2020, 7, 359–367. [Google Scholar] [CrossRef]
- Naik, P.A.; Zu, J.; Ghoreishi, M. Stability analysis and approximate solution of SIR epidemic model with Crowley-Martin type functional response and holling type-II treatment rate by using homotopy analysis method. J. Appl. Anal. Comput. 2020, 10, 1482–1515. [Google Scholar]
- Noeiaghdam, S.; Khoshrouye Ghiasi, E. An efficient method to solve the mathematical model of HIV infection for CD8+T cells. Int. J. Math. Model. Comput. 2019, 36, 267–281. [Google Scholar]
- Naik, P.A.; Owolabi, K.M.; Yavuz, M.; Zu, J. Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos Solitons Fractals 2020, 140, 110272. [Google Scholar]
- Naik, P.A.; Zu, J.; Ghoreishi, M. Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method. Chaos Solitons Fractals 2020, 131, 109500. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Kamal Ali, K. Semi-analytical Method to Solve the Non-linear System of Equations to Model of Evolution for Smoking Habit in Spain. Int. J. Ind. Math. 2020, 12, 1377. [Google Scholar]
- Ahmad, A.; Farman, M.; Naik, P.A.; Akgul, A.; Zafar, N.; Saleem, M.U. Modeling and numerical investigation of fractional-order bovine babesiosis disease. Numer. Methods Partial. Differ. Equ. 2021, 37, 1946–1964. [Google Scholar] [CrossRef]
- Noeiaghdam, S. Numerical Approximation of Modified Non-linear SIR Model of Computer Viruses. Contemp. Math. 2019, 1, 10804. [Google Scholar] [CrossRef]
- Noeiaghdam, S. A novel technique to solve the modified epidemiological model of computer viruses. SeMA J. 2019, 76, 97–108. [Google Scholar]
- Noeiaghdam, S.; Suleman, M.; Budak, H. Solving a modified non-linear epidemiological model of computer viruses by homotopy analysis method. Math. Sci. 2018, 12, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Overview. Available online: https://www.who.int/health-topics/malaria#tab=tab_1 (accessed on 15 February 2021).
- Liao, S.J. Beyond Perturbation: Introduction to Homotopy Analysis Method; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Liao, S.J. Homotopy Analysis Method in Nonlinear Differential Equations; Higher Education Press: Beijing, China; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Liao, S.J. The Proposed Homotopy Analysis Techniques for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992. [Google Scholar]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. Homotopy analysis transform method for solving generalized Abel’s fuzzy integral equations of the first kind. Iran. Jt. Congr. Fuzzy Intell. Syst. CFIS 2015, 2016, 7391645. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Fariborzi Araghi, M.A. Homotopy regularization method to solve the singular Volterra integral equations of the first kind. Jordan J. Math. Stat. 2018, 11, 1–12. [Google Scholar]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. A novel technique based on the homotopy analysis method to solve the first kind Cauchy integral equations arising in the theory of airfoils. J. Interpolat. Approx. Sci. Comput. 2016, 2016, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Noeiaghdam, S.; Zarei, E.; Barzegar Kelishami, H. Homotopy analysis transform method for solving Abel’s integral equations of the first kind. Ain Shams Eng. J. 2016, 7, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Khoshrouye Ghiasi, E.; Noeiaghdam, S. Truncating the series expansion for unsteady velocity-dependent Eyring-Powell fluid. Eng. Appl. Sci. Lett. 2020, 3, 28–34. [Google Scholar] [CrossRef]
- Nave, O.; Lehavi, Y.; Gol’dshtein, V.; Ajadi, S. Application of the Homotopy Perturbation Method (HPM) and the Homotopy Analysis Method (HAM) to the Problem of the Thermal Explosion in a Radiation Gas with Polydisperse Fuel Spray. J. Appl. Comput. Math. 2012, 1. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. Validation of Numerical Algorithms: Stochastic Arithmetic; Entekhab Bartar Publisher: Tehran, Iran, 2021; ISBN 978-622-6498-09-8. [Google Scholar]
- Chesneaux, J.M. CADNA, an ADA tool for round–off error analysis and for numerical debugging. In Proceedings of the Congress on ADA, Aerospace, Barcelona, 20–25 May 1990. [Google Scholar]
- Laboratoire d’Informatique de Paris 6. Available online: https://www-pequan.lip6.fr/ (accessed on 10 December 2020).
- Chesneaux, J.M.; Jézéquel, F. Dynamical control of computations using the Trapezoidal and Simpson’s rules. J. Univers. Comput. Sci. 1998, 4, 2–10. [Google Scholar]
- Graillat, S.; Jézéquel, F.; Wang, S.; Zhu, Y. Stochastic arithmetic in multi precision. Math. Comput. Sci. 2011, 5, 359–375. [Google Scholar] [CrossRef]
- Graillat, S.; Jézéquel, F.; Picot, R. Numerical Validation of Compensated Summation Algorithms with Stochastic Arithmetic. Electron. Notes Theor. Comput. Sci. 2015, 317, 55–69. [Google Scholar]
- Jézéquel, F.; Mecanique, C.R. A dynamical strategy for approximation methods. Comptes Rendus Mec. 2006, 334, 362–367. [Google Scholar] [CrossRef] [Green Version]
- Vignes, J. Discrete Stochastic Arithmetic for Validating Results of Numerical Software. Spec. Issue Numer. Algorithms 2004, 7, 377–390. [Google Scholar] [CrossRef]
- Vignes, J. A stochastic arithmetic for reliable scientific computation. Math. Comput. Simul. 1993, 35, 233–261. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Fariborzi Araghi, M.A. A novel algorithm to evaluate definite integrals by the Gauss-Legendre integration rule based on the stochastic arithmetic: Application in the model of osmosis system. Math. Model. Eng. Probl. 2020, 7, 577–586. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. Dynamical control of computations using the Gauss-Laguerre integration rule by applying the CADNA library. Adv. Appl. Math. Sci. 2016, 16, 1–18. [Google Scholar]
- Noeiaghdam, S.; Fariborzi Araghi, M.A.; Abbasbandy, S. Finding optimal convergence control parameter in the homotopy analysis method to solve integral equations based on the stochastic arithmetic. Numer. Algorithms 2019, 81, 237–267. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Fariborzi Araghi, M.A. Application of the CESTAC Method to Find the Optimal Iteration of the Homotopy Analysis Method for Solving Fuzzy Integral Equations. Adv. Intell. Syst. Comput. 2021, 1301. [Google Scholar] [CrossRef]
- Noeiaghdam, L.; Noeiaghdam, S.; Sidorov, D. Dynamical Control on the Homotopy Analysis Method for Solving Nonlinear Shallow Water Wave Equation. J. Phys. Conf. Ser. 1847, 012010. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Dreglea, A.; He, J.H.; Avazzadeh, Z.; Suleman, M.; Fariborzi Araghi, M.A.; Sidorov, D.; Sidorov, N. Error estimation of the homotopy perturbation method to solve second kind Volterra integral equations with piecewise smooth kernels: Application of the CADNA library. Symmetry 2020, 12, 1730. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Sidorov, D.; Wazwaz, A.M.; Sidorov, N.; Sizikov, V. The numerical validation of the Adomian decomposition method for solving Volterra integral equation with discontinuous kernel using the CESTAC method. Mathematics 2021, 9, 260. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Fariborzi Araghi, M.A.; Abbasbandy, S. Valid implementation of Sinc-collocation method to solve the fuzzy Fredholm integral equation. J. Comput. Appl. Math. 2020, 370, 112632. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Sidorov, D.; Sizikov, V.; Sidorov, N. Control of accuracy on Taylor-collocation method to solve the weakly regular Volterra integral equations of the first kind by using the CESTAC method. Appl. Comput. Math. Int. J. 2020, 19, 81–105. [Google Scholar]
- Noeiaghdam, S.; Fariborzi Araghi, M.A. Valid implementation of the Sinc-collocation method to solve the linear integral equations by CADNA library. J. Math. Model. 2019, 7, 63–84. [Google Scholar] [CrossRef]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. Finding the optimal step of fuzzy Newton-Cotes integration rules by using CESTAC method. J. Fuzzy Set Valued Anal. 2017, 2, 62–85. [Google Scholar]
- Fariborzi Araghi, M.A.; Noeiaghdam, S. A valid scheme to evaluate fuzzy definite integrals by applying the CADNA library. Int. J. Fuzzy Syst. Appl. 2017, 6, 1–20. [Google Scholar]
- Noeiaghdam, S.; Sidorov, D.; Muftahov, I.; Zhukov, A.V. Control of Accuracy on Taylor-Collocation Method for Load Leveling Problem. Bull. Irkutsk State Univ. Ser. Math. 2019, 30, 59–72. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Sidorov, D.; Zamyshlyaeva, A.; Tynda, A.; Dreglea, A. A valid dynamical control on the reverse osmosis system using the CESTAC method. Mathematics 2021, 9, 48. [Google Scholar] [CrossRef]
- Noeiaghdam, S.; Fariborzi Araghi, M.A. A novel approach to find optimal parameter in the homotopy-regularization method for solving integral equations. Appl. Math. Inf. Sci. 2020, 14, 105–113. [Google Scholar] [CrossRef]
- Yakob, L. Endectocide-treated cattle for malaria control: A coupled entomological-epidemiological model. Parasite Epidemiol. Control 2016, 1, 2–9. [Google Scholar] [CrossRef] [Green Version]
Parameters | Meaning | Values |
---|---|---|
Transmission coefficient (vectors → hosts) = bite rate × transmission probability | ||
Transmission coefficient (hosts → vectors) = bite rate × transmission probability | ||
Clearance rate of symptomatic infection | ||
Birth and death rate of humans (i.e., stable population) | ||
k | Clearance rate of asymptomatic infection | |
Asymptomatic secondary infection rate | 0.5 | |
Full susceptibility reversion rate | ||
Adjustment factor for asymptomatic transmissibility to vector | 0.25 | |
Birth (or maturation) and death rate of vectors (i.e., stable population) | 0.1 | |
Rate of parasite development within vector | 0.1 |
m | t | |||||
---|---|---|---|---|---|---|
5 | 0 | |||||
10 | 0 | |||||
m | Approximate Solutions | Difference between Two Iterations |
---|---|---|
1 | 4.639822 | 4.639822 |
1 | 14.9726900999999 | 14.9726900999999 |
1 | 10.0361684000000 | 10.0361684 |
1 | 82.2954000000000 | 82.2954 |
1 | 59.4999999999999 | 59.4999999999999 |
2 | 4.629057 | |
2 | 14.96842946 | |
2 | 10.0395420499999 | |
2 | 83.6913999999999 | |
2 | 58.3897699999999 | |
3 | 4.63148439 | |
3 | 14.969013999 | |
3 | 10.0389410029999 | |
3 | 83.6331745 | |
3 | 58.4733108 | |
4 | 4.631329451 | |
4 | 14.9689820983999 | |
4 | 10.0389757918999 | |
4 | 83.6336787849999 | |
4 | 58.46976664 |
Small Values | Large Values | |||||
---|---|---|---|---|---|---|
m | 10 | 10 | 5 | 2 | 1 | 1 |
m | Approximate Solutions | Difference between Two Iterations |
---|---|---|
1 | 4.63982200000000 | 0.4.63982200000000 |
1 | 14.9726900999999 | 0.14.9726900999999 |
1 | 10.0361684000000 | 0.10.0361684000000 |
1 | 82.2954000000000 | 0.82.2954000000000 |
1 | 59.4999999999999 | 0.59.4999999999999 |
2 | 4.62905700000000 | 0.1076499999999 |
2 | 14.9684294600000 | 0.426063999999 |
2 | 10.0395420499999 | 0.337364999999 |
2 | 83.6913999999999 | 1.3959999999999 |
2 | 58.3897699999999 | 1.1102299999999 |
3 | 4.63148439000000 | 0.242738999999 |
3 | 14.9690139990000 | 0.58453899999 |
3 | 10.0389410029999 | 0.60104699999 |
3 | 83.6331745000000 | 0.582255000000 |
3 | 58.4733108000000 | 0.8354079999999 |
4 | 4.63132945100000 | 0.15493900000 |
4 | 14.9689820983999 | 0.3190060000 |
4 | 10.0389757918999 | 0.3478889999 |
4 | 83.6336787849999 | 0.5042850000 |
4 | 58.4697666400000 | 0.354415999999 |
5 | 4.63133024369753 | 0.79269753 |
5 | 14.9689830315129 | 0.93311300 |
5 | 10.0389756223766 | 0.1695233 |
5 | 83.6337848460000 | 0.106061000 |
5 | 58.4698476088000 | 0.809688000 |
6 | 4.63133025286105 | 0.916351 |
6 | 14.9689830309158 | 0.59716 |
6 | 10.0389756224041 | 0.2748 |
6 | 83.6337836044895 | 0.1241510 |
6 | 58.4698480269969 | 0.4181970 |
7 | 4.63133024345624 | 0.940480 |
7 | 14.9689830309063 | 0.944 |
7 | 10.0389756224136 | 0.950 |
7 | 83.6337838482735 | 0.2437839 |
7 | 58.4698479078530 | 0.1191439 |
8 | 4.63133024430048 | 0.84423 |
8 | 14.9689830310048 | 0.98461 |
8 | 10.0389756223075 | 0.1061 |
8 | 83.6337838483026 | 0.291 |
8 | 58.4698479078797 | 0.267 |
9 | 4.63133024427004 | 0.3043 |
9 | 14.9689830310043 | 0.47 |
9 | 10.0389756223080 | 0.5 |
9 | 83.6337838482963 | 0.63 |
9 | 58.4698479078804 | 0.68 |
10 | 4.63133024427030E+001 | 0.25 |
10 | 14.9689830310043 | 0.2 |
10 | 10.0389756223080 | 0.4 |
10 | 83.6337838483671 | 0.708 |
10 | 58.4698479078696 | 0.10 |
11 | 4.63133024427036 | 0.6 |
11 | 14.9689830310043 | |
11 | 10.0389756223080 | |
11 | 83.6337838483667 | 0.4 |
11 | 58.4698479078703 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noeiaghdam, S.; Micula, S. Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection. Mathematics 2021, 9, 1031. https://doi.org/10.3390/math9091031
Noeiaghdam S, Micula S. Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection. Mathematics. 2021; 9(9):1031. https://doi.org/10.3390/math9091031
Chicago/Turabian StyleNoeiaghdam, Samad, and Sanda Micula. 2021. "Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection" Mathematics 9, no. 9: 1031. https://doi.org/10.3390/math9091031
APA StyleNoeiaghdam, S., & Micula, S. (2021). Dynamical Strategy to Control the Accuracy of the Nonlinear Bio-Mathematical Model of Malaria Infection. Mathematics, 9(9), 1031. https://doi.org/10.3390/math9091031