# Factorization à la Dirac Applied to Some Equations of Classical Physics

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Basic Tools

#### 2.1. Dirac Like Method

#### 2.2. Fractional Calculus

#### 2.3. Governing Equations

#### 2.3.1. Wave Equation

#### 2.3.2. Diffusion Equation

#### 2.3.3. Telegraph Equation

## 3. Application of DM to Diffusion Equation and Wave Equation

#### 3.1. Diffusion Equation

#### 3.1.1. $j=1$ and $k=2$

#### 3.1.2. $j=3$ and $k=2$

#### 3.2. Wave Equation in a Non-Dissipative Medium

#### 3.2.1. $j=1$, $k=2$

#### 3.2.2. $j=3$ and $k=2$

#### 3.2.3. Case $j=2$ and $k=3$

#### 3.3. Wave Equation in a Dissipative Medium

#### 3.3.1. Case $j=3$, $k=2$, $l=1$

#### 3.3.2. Case $j=1$, $k=2$, $l=3$

## 4. Discussion and Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Matsuura, S. Factorization of Differential Operators and decomposition of solution of Homogeneous Equations. Osaka Math. J.
**1963**, 15, 213–231. [Google Scholar] - Schrödinger, E. A method of determining quantum-mechanical eigenvalues and eigenfunctions. Proc. R. Irish Acad.
**1940**, 46, 9–16. [Google Scholar] - Schrödinger, E. Further studies on solving eigenvalue problems by factorization. Proc. R. Irish Acad.
**1940**, 46, 183–206. [Google Scholar] - Dirac, P.A.M. Principles of Quantum Mechanics, 2nd ed.; Clarendon Press: Oxford, UK, 1935. [Google Scholar]
- Infeld, L. A new treatment of some eigenvalue problems. Phys. Rev.
**1941**, 59, 737–747. [Google Scholar] [CrossRef] - Infeld, L. A generalization of the factorization method of solving eigenvalue problems. Trans. R. Soc. Can.
**1942**, 36, 7–18. [Google Scholar] - Infeld, L.; Schild, A. A note on the Kepler problemin a space of constant negative curvature. Phys. Rev.
**1945**, 67, 121–122. [Google Scholar] [CrossRef] - Infeld, L. Recurrence formulas for coulomb wave function. Phys. Rev.
**1947**, 72, 1125. [Google Scholar] [CrossRef] - Hull, T.E.; Infeld, L. The factorization method, hydrogen intensities and related problems. Phys. Rev.
**1948**, 74, 905–909. [Google Scholar] [CrossRef] - Infeld, L. The factorization method and its application to differential equations in theoretical physics. Proc. Symp. Appl. Math. Am. Math. Soc.
**1950**, II, 58–65. [Google Scholar] - Infeld, L.; Hull, T.E. The factorization method. Rev. Mod. Phys.
**1951**, 23, 21–68. [Google Scholar] [CrossRef] - Mielnik, B. Factorization method and new potentials with the oscillator spectrum. J. Math. Phys.
**1984**, 25, 3387–3389. [Google Scholar] [CrossRef] [Green Version] - Mielnik, B.; Rosas-Ortiz, O. Factorization: Little or great algorithm? J. Phys. Math. Gen.
**2004**, 37, 10007–10035. [Google Scholar] [CrossRef] - Gendenshtein, L.E. Derivation of exact spectra of the Schrödinger equation by means of SUSY. JETP Lett.
**1983**, 38, 356–359. [Google Scholar] - Smirnov, Y.F. On factorization and algebrization of difference equations of hypergeometric type. In Proceedings of the International Workshop on Orthogonal Polynomials in Matematical Physics, Leganes, Spain, 24–26 June 1996. [Google Scholar]
- Smirnov, Y.F. Factorization method: New aspects. Rev. Mex. Fis.
**1999**, 45, 1–6. [Google Scholar] - Rosu, H.C. One-parameter families of supersymmetric isospectral potentials from Riccati solutions in function composition form. Ann. Phys.
**2014**, 343, 87–102. [Google Scholar] [CrossRef] [Green Version] - Rosu, H.C.; Mancas, S.C.; Chen, P. The classical harmonic oscillator with Dirac-like parameters and possible applications. J. Phys. A Math. Gen.
**2004**, 37, 11699–11710. [Google Scholar] [CrossRef] [Green Version] - Dirac, P.A.M. The quantum theory of the electron. Proc. R. Soc. Lond. A
**1928**, 117, 610–624. [Google Scholar] - Babusci, D.; Dattoli, G.; Quattromini, M. Relativistic equations with fractional and pseudodifferential operators. Phys. Rev. A
**2011**, 83, 062109. [Google Scholar] [CrossRef] [Green Version] - Babusci, D.; Dattoli, G.; Quattromini, M. A note on the extension of the Dirac method. Appl. Math. Comput.
**2011**, 218, 1495–1497. [Google Scholar] [CrossRef] [Green Version] - Babusci, D.; Dattoli, G. Dirac factorization method and the harmonic oscillator. arXiv
**2012**, arXiv:1203.2526. [Google Scholar] - Babusci, D.; Dattoli, G. Dirac factorization and fractional calculus. arXiv
**2012**, arXiv:1209.2276. [Google Scholar] - Dattoli, G.; Torre, A. Root operators and “evolution” equations. Mathematics
**2015**, 3, 690–726. [Google Scholar] [CrossRef] [Green Version] - Torre, A.; Dattoli, G.; Quattromini, M.; Babusci, P.E.R.D. Extension of the Dirac Factorization and relevant Applications. Bull. TICMI
**2014**, 18, 52–66. [Google Scholar] - Depollier, C.; Allard, J.F.; Lauriks, W. Biot Theory and stress-strain equations in porous sound-absorbing. J. Acoust. Soc. Am.
**1988**, 83, 2277–2279. [Google Scholar] [CrossRef] - Bogoliubov, N.N.; Shirkov, D.V. Introduction to the Theory of Quantized Fields. In Interscience Monographs in Physics and Astronomy; John Wiley & Sons: Hoboken, NJ, USA, 1959. [Google Scholar]
- Johnson, D.L.; Plona, T.J. Recents developpments in the acoustic properties of porous media. In Enrico Fermi School: Frontiers of Physical Acoustics; Sette, T., Ed.; Cours XCII: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Temkin, S. Elements of Acoustics; John Wiley & Sons: New York, NY, USA, 1981. [Google Scholar]
- Kress, R. Linear Integral Equations; Springer: New York, NY, USA, 1999. [Google Scholar]
- Heaviside, O. Electromagnetic Theory; Ernest Benn Limited: London, UK, 1893. [Google Scholar]
- Cattaneo, C. Sulla conduzione del calore. Atti Semin. Mat. E Fis. Modena
**1948**, 3, 83–101. [Google Scholar] - Zhang, D.; Ostoja-Strarzewski, M. Telegraph equation: Two types of harmonic waves, a discontinuity wave, and a spectral finite element. Acta Mech.
**2019**, 230, 1725–1743. [Google Scholar] [CrossRef] - Kulish, V.V.; Lage, J.L. Application of Fractional Calculus to Fluid Mechanics. J. Fluids Eng.
**2002**, 124, 803–806. [Google Scholar] [CrossRef] - Raghavan, R. Fractional diffusion: Performance of fractured wells. J. Pet. Sci. Eng.
**2012**, 92, 167–173. [Google Scholar] [CrossRef] - Johnson, D.L.; Koplik, J.; Dashen, R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech.
**1987**, 176, 379–402. [Google Scholar] [CrossRef] - Champoux, Y.; Allard, J.-F. Dynamic tortuosity and bulk modulus in air-saturated porous media. J. Appl. Phys.
**1991**, 70, 1975–1979. [Google Scholar] [CrossRef] - Lafarge, D.; Lemarinier, P.; Allard, J.-F.; Tarnow, V. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am.
**1997**, 102, 1995–2006. [Google Scholar] [CrossRef] [Green Version] - Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. J. Acoust. Soc. Am.
**1956**, 28, 168–178. [Google Scholar] [CrossRef] - Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. J. Acoust. Soc. Am.
**1956**, 28, 179–191. [Google Scholar] [CrossRef] - Zwikker, C.; Kosten, C.W. Sound Absorbing Materials; Elsevier: Amsterdam, The Netherlands, 1949. [Google Scholar]
- Basset, A.B. Treatise on Hydrodynamics; Deighton, Bell and Co.: Cambridge, UK, 1888. [Google Scholar]
- Boussinesq, J.V. Sur la résistance qu’oppose un fluide indéfini au repos, sans pesanteur, au mouvement varié d’une sphère solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables. Comptes Rendus L’AcadÉmie Des Sci.
**1885**, 100, 935–937. [Google Scholar] - Michaelides, E.E. Hydrodynamic Force and Heat/Mass Transfer >From Particles, Bubbles, and Drop-The Freeman Scholar Lecture. J. Fluids Eng.
**2003**, 125, 209–238. [Google Scholar] [CrossRef] - Buonocore, S.; Sen, M.; Semperlotti, F. A fractional-order approach for transient creeping flow of spheres. AIP Adv.
**2019**, 9, 085323. [Google Scholar] [CrossRef] [Green Version]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fellah, Z.E.A.; Ogam, E.; Fellah, M.; Depollier, C.
Factorization à la Dirac Applied to Some Equations of Classical Physics. *Mathematics* **2021**, *9*, 899.
https://doi.org/10.3390/math9080899

**AMA Style**

Fellah ZEA, Ogam E, Fellah M, Depollier C.
Factorization à la Dirac Applied to Some Equations of Classical Physics. *Mathematics*. 2021; 9(8):899.
https://doi.org/10.3390/math9080899

**Chicago/Turabian Style**

Fellah, Zine El Abiddine, Erick Ogam, Mohamed Fellah, and Claude Depollier.
2021. "Factorization à la Dirac Applied to Some Equations of Classical Physics" *Mathematics* 9, no. 8: 899.
https://doi.org/10.3390/math9080899