Central and Local Limit Theorems for Numbers of the Tribonacci Triangle
Abstract
:1. Introduction
2. Moment-Generating Function
3. Central Limit Theorem
- (i)
- , with and analytic for and independent of n, ;
- (ii)
- ;
- (iii)
- .
4. Local Limit Theorem
- (i)
- anis continuous and non-zero for,
- (ii)
- anis non-zero and has a bounded third derivative for,
- (iii)
- forandfunction
- (iv)
- for,
- (v)
- is analytic and bounded for
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amrouche, S.; Belbachir, H. Unimodality and linear recurrences associated with rays in the Delannoy triangle. Turk. J. Math. 2020, 44, 118–130. [Google Scholar] [CrossRef]
- Square Array of Delannoy Numbers D(i,j) (i ⩾ 0, j ⩾ 0) Read by Antidiagonals. OEIS Number Sequence A008288. The Online Encyclopedia of Integer Sequences. Available online: https://oeis.org/A008288 (accessed on 15 April 2021).
- Tribonacci Numbers: a(n) = a(n − 1) + a(n − 2) + a(n − 3) for n ⩾ 3 with a(0) = a(1) = 0 and a(2) = 1. OEIS Number Sequence A000073. The Online Encyclopedia of Integer Sequences. Available online: https://oeis.org/A000073 (accessed on 15 April 2021).
- Barry, P. On integer-sequence-based constructions of generalized Pascal triangles. J. Integer Seq. 2006, 9, 06.2.4. [Google Scholar]
- Amrouche, S.; Belbachir, H.; Ramírez, J.L. Unimodality, linear recurrences and combinatorial properties associated to rays in the generalized Delannoy matrix. J. Differ. Equ. 2019, 25, 1200–1215. [Google Scholar] [CrossRef]
- Kuhapatanakul, K. Some connections between a generalized Tribonacci triangle and a generalized Fibonacci sequence. Fibonacci Q. 2012, 50, 44–50. [Google Scholar]
- Mu, L.; Zheng, S. On the total positivity of Delannoy-like triangles. J. Integer Seq. 2006, 20, 17.1.6. [Google Scholar]
- Yang, S.; Zheng, S.; Yuan, S.; He, T. Schröder matrix as inverse of Delannoy matrix. Linear Algebra Appl. 2013, 439, 3605–3614. [Google Scholar] [CrossRef]
- Noble, R. Asymptotics of a family of binomial sums. J. Number Theory 2010, 130, 2561–2585. [Google Scholar] [CrossRef] [Green Version]
- Noble, R. Asymptotics of the weighted Delannoy numbers. Int. J. Number Theory 2012, 8, 175–188. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, S.; Chen, X. Analytic aspects of Delannoy numbers. Discrete Math. 2019, 342, 2270–2277. [Google Scholar] [CrossRef]
- Belovas, I. A central limit theorem for coefficients of the modified Borwein method for the calculation of the Riemann zeta-function. Lith. Math. J. 2019, 59, 17–23. [Google Scholar] [CrossRef]
- Belovas, I. A local limit theorem for coefficients of modified Borwein’s method. Glas. Mat. 2019, 54, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Belovas, I.; Sabaliauskas, M. Series with binomial-like coefficients for the evaluation and 3D visualization of zeta functions. Informatica 2020, 31, 659–680. [Google Scholar] [CrossRef]
- Belovas, I.; Sakalauskas, L. Limit theorems for the coefficients of the modified Borwein method for the calculation of the Riemann zeta-function values. Colloq. Math. 2019, 151, 217–227. [Google Scholar] [CrossRef]
- Alladi, K.; Hoggatt, V.E., Jr. On Tribonacci numbers and related functions. Fibonacci Q. 1977, 15, 42–45. [Google Scholar]
- Hwang, H.-K. On convergence rates in the central limit theorems for combinatorial structures. Eur. J. Comb. 1998, 19, 329–343. [Google Scholar] [CrossRef] [Green Version]
- Bender, E.A. Central and local limit theorems applied to asymptotic enumeration. J. Comb. Theory Ser. A 1973, 15, 91–111. [Google Scholar] [CrossRef] [Green Version]
k | 0 | 1 | 2 | 3 | 4 | 5 | ||
---|---|---|---|---|---|---|---|---|
n | ||||||||
0 | 1 | 0 | 0 | 0 | 0 | 0 | ||
1 | 1 | 1 | 0 | 0 | 0 | 0 | ||
2 | 1 | 3 | 1 | 0 | 0 | 0 | ||
3 | 1 | 5 | 5 | 1 | 0 | 0 | ||
4 | 1 | 7 | 13 | 7 | 1 | 0 | ||
5 | 1 | 9 | 25 | 25 | 9 | 1 | ||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belovas, I. Central and Local Limit Theorems for Numbers of the Tribonacci Triangle. Mathematics 2021, 9, 880. https://doi.org/10.3390/math9080880
Belovas I. Central and Local Limit Theorems for Numbers of the Tribonacci Triangle. Mathematics. 2021; 9(8):880. https://doi.org/10.3390/math9080880
Chicago/Turabian StyleBelovas, Igoris. 2021. "Central and Local Limit Theorems for Numbers of the Tribonacci Triangle" Mathematics 9, no. 8: 880. https://doi.org/10.3390/math9080880
APA StyleBelovas, I. (2021). Central and Local Limit Theorems for Numbers of the Tribonacci Triangle. Mathematics, 9(8), 880. https://doi.org/10.3390/math9080880