# Time-Varying Comovement of Foreign Exchange Markets: A GLS-Based Time-Varying Model Approach

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Model

#### 2.1. Exchange Rate Dynamics and Cointegration

#### 2.2. The Vector Error-Correction Model

#### 2.3. The Time-Varying VEC Model

#### 2.4. The Degree of Market Comovement

#### 2.5. Confirming Our Assumption of Constant Cointegrating Vectors

## 3. Data

## 4. Empirical Results

#### 4.1. Preliminaries

#### 4.2. The Time-Varying Model

## 5. Concluding Remarks

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

ADF | Augmented Dickey-Fuller |

GLS | Generalized least squares |

MAIC | modified Akaike information criterion |

MBIC | Modified Bayesian information criterion |

MCMC | Markov chain Monte Carlo |

OLS | Ordinary least squares |

STAR | Smooth transition autoregressive |

TV-VEC | time-varying vector error correction |

VEC | Vector error correction |

## Appendix A. Vector Error-Correction Model

**Case**

**1:**

**Case**

**2:**

**Case**

**3:**

## Appendix B. Parameter Constancy Test

## Appendix C. Time-Varying VEC Model

## Appendix D. Degree of Market Comovement

## References

- Baillie, R.T.; Bollerslev, T. Common Stochastic Trends in a System of Exchange Rates. J. Financ.
**1989**, 44, 167–181. [Google Scholar] [CrossRef] - Diebold, F.X.; Gardeazabal, J.; Yilmaz, K. On Cointegration and Exchange Rate Dynamics. J. Financ.
**1994**, 49, 727–735. [Google Scholar] [CrossRef] - Engel, C.; Nelson, C.M.; West, K.D. Exchange Rate Models Are Not As Bad As You Think. NBER Macroecon. Annu.
**2007**, 22, 381–441. [Google Scholar] [CrossRef][Green Version] - Engel, C.; West, K.D. Exchange Rates and Fundamentals. J. Political Econ.
**2005**, 113, 485–517. [Google Scholar] [CrossRef][Green Version] - Ito, M.; Noda, A.; Wada, T. International Stock Market Efficiency: A Non-Bayesian Time-Varying Model Approach. Appl. Econ.
**2014**, 46, 2744–2754. [Google Scholar] [CrossRef][Green Version] - Fama, E.F. Efficient Capital Markets: A Review of Theory and Empirical Work. J. Financ.
**1970**, 25, 383–417. [Google Scholar] [CrossRef] - Kapetanios, G.; Shin, Y.; Snell, A. Testing for a Unit Root in the Nonlinear STAR Framework. J. Econom.
**2003**, 112, 359–379. [Google Scholar] [CrossRef] - Clarida, R.H.; Sarno, L.; Taylor, M.P.; Valente, G. The Out-of-Sample Success of Term Structure Models as Exchange Rate Predictors: A Step Beyond. J. Int. Econ.
**2003**, 60, 61–83. [Google Scholar] [CrossRef][Green Version] - Engel, C. A Note of Cointegration and International Capital Market Efficiency. J. Int. Money Financ.
**1996**, 15, 657–660. [Google Scholar] [CrossRef] - Hansen, B.E. Testing for Parameter Instability in Linear Models. J. Policy Model.
**1992**, 14, 517–533. [Google Scholar] [CrossRef] - Hansen, B.E. Tests for Parameter Instability in Regressions with I (1) Processes. J. Bus. Econ. Stat.
**1992**, 10, 321–335. [Google Scholar] - Ito, M.; Noda, A.; Wada, T. An Alternative Estimation Method of a Time-Varying Parameter Model. arXiv
**2017**, arXiv:1707.06837. [Google Scholar] - Qu, Z. Searching for Cointegration in a Dynamic System. Econom. J.
**2007**, 10, 580–604. [Google Scholar] [CrossRef] - Juselius, K. The Cointegrated VAR Model: Methodology and Applications; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Elliott, G.; Rothenberg, T.J.; Stock, J.H. Efficient Tests for an Autoregressive Unit Root. Econometrica
**1996**, 64, 813–836. [Google Scholar] [CrossRef][Green Version] - Ng, S.; Perron, P. Lag Length Selection and the Construction of Unit Root Tests with Good Size and Power. Econometrica
**2001**, 69, 1519–1554. [Google Scholar] [CrossRef][Green Version] - Johansen, S. Statistical Analysis of Cointegration Vectors. J. Econ. Dyn. Control.
**1988**, 12, 231–254. [Google Scholar] [CrossRef] - Johansen, S. Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. Econometrica
**1991**, 59, 1551–1580. [Google Scholar] [CrossRef] - Newey, W.K.; West, K.D. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica
**1987**, 55, 703–708. [Google Scholar] [CrossRef] - Hansen, H.; Johansen, S. Some Tests for Parameter Constancy in Cointegrated VAR-Models. Econom. J.
**1999**, 2, 306–333. [Google Scholar] [CrossRef] - Clark, T.; McCracken, M. Advances in Forecast Evaluation. In Handbook of Economic Forecasting; Elliott, G., Timmermann, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 2B. [Google Scholar]
- Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer: Berlin, Germany, 2005. [Google Scholar]
- Beveridge, S.; Nelson, C.R. A New Approach to Decomposition of Economic Time Series Into Permanent and Transitory Components with Particular Attention to Measurement of the ‘Business Cycle’. J. Monet. Econ.
**1981**, 7, 151–174. [Google Scholar] [CrossRef]

Mean | SD | Min | Max | ADF-GLS | Lags | $\widehat{\mathit{\varphi}}$ | $\mathcal{N}$ | ||
---|---|---|---|---|---|---|---|---|---|

Level | |||||||||

${S}_{CA}$ | $0.2175$ | $0.1452$ | $-0.0454$ | $0.4697$ | $-1.2364$ | 1 | $0.9948$ | 308 | |

${F}_{CA}$ | $0.2180$ | $0.1449$ | $-0.0447$ | $0.4699$ | $-1.2470$ | 1 | $0.9947$ | ||

${S}_{JP}$ | $4.6918$ | $0.1486$ | $4.3396$ | $5.0352$ | $-1.6915$ | 1 | $0.9902$ | ||

${F}_{JP}$ | $4.6899$ | $0.1483$ | $4.3393$ | $5.0344$ | $-1.6844$ | 1 | $0.9903$ | ||

${S}_{UK}$ | $-0.4965$ | $0.0905$ | $-0.7279$ | $-0.3387$ | $-2.9910$ ** | 1 | $0.9700$ | ||

${F}_{UK}$ | $-0.4953$ | $0.0900$ | $-0.7269$ | $-0.3373$ | $-2.9969$ ** | 1 | $0.9698$ | ||

First Difference | |||||||||

$\Delta {S}_{CA}$ | $0.0005$ | $0.0167$ | $-0.0626$ | $0.1083$ | $-11.8715$ *** | 0 | $0.3648$ | 307 | |

$\Delta {F}_{CA}$ | $0.0005$ | $0.0167$ | $-0.0626$ | $0.1077$ | $-11.8337$ *** | 0 | $0.3676$ | ||

$\Delta {S}_{JP}$ | $-0.0007$ | $0.0261$ | $-0.1095$ | $0.0823$ | $-11.5044$ *** | 0 | $0.3948$ | ||

$\Delta {F}_{JP}$ | $-0.0007$ | $0.0261$ | $-0.1094$ | $0.0831$ | $-11.5039$ *** | 0 | $0.3948$ | ||

$\Delta {S}_{UK}$ | $0.0004$ | $0.0228$ | $-0.0583$ | $0.1066$ | $-12.2763$ *** | 0 | $0.3385$ | ||

$\Delta {F}_{UK}$ | $0.0004$ | $0.0227$ | $-0.0585$ | $0.1080$ | $-12.2221$ *** | 0 | $0.3424$ |

Eigenvalues | Max Eigen | Trace | |
---|---|---|---|

None | 0.1352 | 44.45 ** | 100.19 * |

At most 1 | 0.0826 | 26.39 | 55.74 |

${\mathit{S}}_{\mathit{C}\mathit{A}}$ | ${\mathit{F}}_{\mathit{C}\mathit{A}}$ | ${\mathit{S}}_{\mathit{J}\mathit{P}}$ | ${\mathit{F}}_{\mathit{J}\mathit{P}}$ | ${\mathit{S}}_{\mathit{U}\mathit{K}}$ | ${\mathit{F}}_{\mathit{U}\mathit{K}}$ | ||
---|---|---|---|---|---|---|---|

Difference | |||||||

${S}_{CA}$ | $-0.4209$ | $-0.2370$ | $6.0713$ | $6.1933$ | $2.0254$ | $2.1560$ | |

$\left[1.8453\right]$ | $\left[1.8414\right]$ | $\left[4.5597\right]$ | $\left[4.5475\right]$ | $\left[4.4885\right]$ | $\left[4.4183\right]$ | ||

${F}_{CA}$ | $0.7703$ | $0.5885$ | $-6.0537$ | $-6.1739$ | $-1.6558$ | $-1.7854$ | |

$\left[1.8608\right]$ | $\left[1.8560\right]$ | $\left[4.5810\right]$ | $\left[4.5684\right]$ | $\left[4.4883\right]$ | $\left[4.4181\right]$ | ||

${S}_{JP}$ | $1.6242$ | $1.6664$ | $-0.7974$ | $-0.5514$ | $1.0198$ | $0.9973$ | |

$\left[1.8997\right]$ | $\left[1.8902\right]$ | $\left[3.3395\right]$ | $\left[3.3475\right]$ | $\left[3.0337\right]$ | $\left[3.0269\right]$ | ||

${F}_{JP}$ | $-1.6031$ | $-1.6460$ | $1.1054$ | $0.8580$ | $-0.9913$ | $-0.9692$ | |

$\left[1.9188\right]$ | $\left[1.9093\right]$ | $\left[3.3492\right]$ | $\left[3.3573\right]$ | $\left[3.0485\right]$ | $\left[3.0412\right]$ | ||

${S}_{UK}$ | $0.1174$ | $0.0667$ | $-3.9585$ | $-4.1291$ | $-6.0241$ | $-5.8113$ | |

$\left[2.1271\right]$ | $\left[2.1253\right]$ | $\left[3.1513\right]$ | $\left[3.1505\right]$ | $\left[3.5704\right]$ | $\left[3.5750\right]$ | ||

${F}_{UK}$ | $-0.1774$ | $-0.1263$ | $3.9517$ | $4.1228$ | $6.2729$ | $6.0556$ | |

$\left[2.1210\right]$ | $\left[2.1200\right]$ | $\left[3.1599\right]$ | $\left[3.1593\right]$ | $\left[3.6079\right]$ | $\left[3.6115\right]$ | ||

Level | |||||||

Constant | $-0.0334$ | $-0.0334$ | $0.2006$ | $0.1995$ | $0.1467$ | $0.1452$ | |

$\left[0.0470\right]$ | $\left[0.0468\right]$ | $\left[0.0680\right]$ | $\left[0.0680\right]$ | $\left[0.0470\right]$ | $\left[0.0467\right]$ | ||

${S}_{CA}$ | $0.8047$ | $0.9465$ | $3.3757$ | $3.3233$ | $2.2904$ | $2.2845$ | |

$\left[1.1232\right]$ | $\left[1.1317\right]$ | $\left[2.6344\right]$ | $\left[2.6460\right]$ | $\left[2.2176\right]$ | $\left[2.2168\right]$ | ||

${F}_{CA}$ | $-0.8390$ | $-0.9808$ | $-3.3467$ | $-3.2952$ | $-2.2552$ | $-2.2494$ | |

$\left[1.1254\right]$ | $\left[1.1337\right]$ | $\left[2.6427\right]$ | $\left[2.6543\right]$ | $\left[2.2191\right]$ | $\left[2.2181\right]$ | ||

${S}_{JP}$ | $1.3304$ | $1.2953$ | $-1.0766$ | $-0.9938$ | $-1.5576$ | $-1.5626$ | |

$\left[1.0113\right]$ | $\left[1.0109\right]$ | $\left[1.3641\right]$ | $\left[1.3615\right]$ | $\left[1.1244\right]$ | $\left[1.1277\right]$ | ||

${F}_{JP}$ | $-1.3189$ | $-1.2837$ | $1.0302$ | $0.9477$ | $1.5173$ | $1.5226$ | |

$\left[1.0135\right]$ | $\left[1.0131\right]$ | $\left[1.3695\right]$ | $\left[1.3668\right]$ | $\left[1.1194\right]$ | $\left[1.1226\right]$ | ||

${S}_{UK}$ | $-2.0125$ | $-2.0557$ | $-1.4713$ | $-1.4990$ | $-1.8191$ | $-1.7604$ | |

$\left[1.5610\right]$ | $\left[1.5579\right]$ | $\left[2.2110\right]$ | $\left[2.2115\right]$ | $\left[2.3796\right]$ | $\left[2.3631\right]$ | ||

${F}_{UK}$ | $2.0478$ | $2.0910$ | $1.4478$ | $1.4764$ | $1.7452$ | $1.6862$ | |

$\left[1.5691\right]$ | $\left[1.5658\right]$ | $\left[2.2266\right]$ | $\left[2.2271\right]$ | $\left[2.3855\right]$ | $\left[2.3688\right]$ | ||

${\overline{R}}^{2}$ | $0.0984$ | $0.1005$ | $0.1032$ | $0.1026$ | $0.1918$ | $0.1900$ | |

${L}_{C}$ | $65.5233$ *** |

^{2}, and “L

_{C}” denotes the Hansen [10,11] joint L

_{C}statistic with variance. (2) Newey andWest [19] robust standard errors are in brackets. (3) “***” indicates statistically significant at 1% level. (4) R version 4.0.5 was used to compute the estimates and the statistics.

${\mathit{S}\mathit{u}\mathit{p}\mathit{Q}}^{1}$ | ${\mathit{S}\mathit{u}\mathit{p}\mathit{Q}}^{2}$ | WQ | SQ | |
---|---|---|---|---|

Test Stats | 8.55 *** | 10.81 *** | 8.55 *** | 15.94 *** |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ito, M.; Noda, A.; Wada, T.
Time-Varying Comovement of Foreign Exchange Markets: A GLS-Based Time-Varying Model Approach. *Mathematics* **2021**, *9*, 849.
https://doi.org/10.3390/math9080849

**AMA Style**

Ito M, Noda A, Wada T.
Time-Varying Comovement of Foreign Exchange Markets: A GLS-Based Time-Varying Model Approach. *Mathematics*. 2021; 9(8):849.
https://doi.org/10.3390/math9080849

**Chicago/Turabian Style**

Ito, Mikio, Akihiko Noda, and Tatsuma Wada.
2021. "Time-Varying Comovement of Foreign Exchange Markets: A GLS-Based Time-Varying Model Approach" *Mathematics* 9, no. 8: 849.
https://doi.org/10.3390/math9080849