Forecasting of the Prevalence of Dementia Using the LSTM Neural Network in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Preprocessing
2.2. LSTM Network
- (1)
- The input gate allows new information to flow into the network. It has parameters , where i stands for input.
- (2)
- The memory cell preserves the hidden unit information across time steps. It has parameters , where c stands for cell.
- (3)
- The forget gate allows information, which is no longer pertinent, to be discarded. It has parameters , where f stands for forget.
- (4)
- The output gate determines what information should be output to the next neuron and what should be propagated forward as part of the new hidden state. It has parameters , where o stands for output.
- (1)
- Calculate the value of the candidate memory unit , where is the weight matrix and is the bias.
- (2)
- Calculate the value of the input gate . The input gate controls the update of the current input data to the state value of the memory unit, where is the sigmoid function, is the weight matrix, and is the bias.
- (3)
- Calculate the value of the forget gate . The forget gate controls the update of the historical data to the state value of the memory unit, where is the weight matrix and is the bias.
- (4)
- Calculate the value of the current moment memory unit is the state value of the last LSTM unit.
- (5)
- Calculate the value of the output gate . The output gate controls the output of the state value of the memory unit, where is the weight matrix and is the bias.
- (6)
- Calculate the output of the LSTM unit , where tanh is a non-linear activation. It squashes the permissible amplitude range of the output signal to some finite value. The function is shown as
2.3. Statistical Models
2.3.1. ETS (Exponential Smoothing)
2.3.2. ARIMA (Autoregressive Integrated Moving Average)
2.3.3. TBATS (Trigonometric Seasonality, Box–Cox Transformation, ARMA Errors, and Trend Seasonal Components Model)
2.4. Hybrid Models
2.4.1. SVR (Support Vector Regression)
2.4.2. PSOSVR (Particle Swarm Optimization-Based SVR)
2.5. Deep Learning Model (ARTIFICIAL Neural Network ANN)
3. Results
3.1. Parameter Settings
3.2. Model Performance
3.3. Analysis of Individual Data
3.3.1. Patients Aged 60~64 Years
3.3.2. Patients Aged 65~69 Years
3.3.3. Patients Aged 70~74 Years
3.3.4. Patients Aged 75~79 Years
3.3.5. Patients Aged 80~84 Years
3.3.6. Patients Over 85 Years Old
4. Discussion
4.1. Statistical Models: Comparison of the ETS, ARIMA, and TBATS Models
4.2. Hybrid Models: Comparison of the SVR and PSOSVR Models
4.3. Deep Learning Models: Comparison of the ANN and LSTM Network Models
4.4. Dementia Prevention and Interventions.
4.5. Contribution of This Paper
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, G. MOI: Taiwan officially becomes an aged society with people over 65 years old breaking the 14% mark. Taiwan News, 10 April 2018. Available online: https://www.taiwannews.com.tw/en/news/3402395(accessed on 22 February 2021).
- Strong, M. Taiwan will be a super-aged society by 2026. Taiwan News, 12 February 2019. Available online: https://www.taiwannews.com.tw/en/news/3636704(accessed on 22 February 2021).
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Cerejeira, J.; Lagarto, L.; Mukaetova-Ladinska, E. Behavioral and psychological symptoms of dementia. Front. Neurol. 2012, 3, 73. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.P.; Curran, E.A.; Duggan, Á.; Cryan, J.F.; Chorcorain, A.N.; Dinan, T.G.; Molloy, D.W.; Kearney, P.M.; Clarke, G. A systematic review of the psychobiological burden of informal caregiving for patients with dementia: Focus on cognitive and biological markers of chronic stress. Neurosci. Biobehav. Rev. 2017, 73, 123–164. [Google Scholar] [CrossRef]
- Sabat, S.R. Dementia in developing countries: A tidal wave on the horizon. Lancet 2009, 374, 1805–1806. [Google Scholar] [CrossRef]
- Patterson, C. World Alzheimer Report 2018; Alzheimer’s Disease International: London, UK, 2018. [Google Scholar]
- Kelley, A.S.; McGarry, K.; Gorges, R.; Skinner, J.S. The burden of health care costs for patients with dementia in the last 5 years of life. Ann. Intern. Med. 2015, 163, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Ory, M.G.; Hoffman, R.R., III; Yee, J.L.; Tennstedt, S.; Schulz, R. Prevalence and impact of caregiving: A detailed comparison between dementia and nondementia caregivers. Gerontologist 1999, 39, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Baumgarten, M.; Hanley, J.A.; Infante-Rivard, C.; Battista, R.N.; Becker, R.; Gauthier, S. Health of family members caring for elderly persons with dementia: A longitudinal study. Ann. Intern. Med. 1994, 120, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, R.; Regan, C.; Katona, C.; Livingston, G. Anxiety and depression in family caregivers of people with Alzheimer disease: The LASER-AD study. Am. J. Geriatr. Psychiatry 2005, 13, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Stall, N.M.; Kim, S.J.; Hardacre, K.A.; Shah, P.S.; Straus, S.E.; Bronskill, S.E.; Lix, L.M.; Bell, C.M.; Rochon, P.A. Association of informal caregiver distress with health outcomes of community-dwelling dementia care recipients: A systematic review. J. Am. Geriatr. Soc. 2019, 67, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.; Jenkins, G.M. Time Series Analysis: Forecasting and Control San Francisco; Holden-Day: San Francisco, CA, USA, 1976. [Google Scholar]
- Brown, R.G. Exponential Smoothing for Predicting Demand; Operations Research, Inst Operations Research Management Sciences: Linthicum, MD, USA, 1957; p. 145. [Google Scholar]
- Katimon, A.; Shahid, S.; Mohsenipour, M. Modeling water quality and hydrological variables using ARIMA: A case study of Johor River, Malaysia. Sustain. Water Resour. Manag. 2018, 4, 991–998. [Google Scholar] [CrossRef]
- Smyl, S. A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. Int. J. Forecast. 2020, 36, 75–85. [Google Scholar] [CrossRef]
- Khashei, M.; Bijari, M.; Ardali, G.A.R. Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing. 2009, 72, 956–967. [Google Scholar] [CrossRef]
- Nasser, I.M.; Abu-Naser, S.S. Predicting Tumor Category Using Artificial Neural Networks. Int. J. Acad. Health Med. Res. 2019, 3, 1–7. [Google Scholar]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst. 1997, 9, 155–161. [Google Scholar]
- Liu, H.-H.; Chang, L.-C.; Li, C.-W.; Yang, C.-H. Particle swarm optimization-based support vector regression for tourist arrivals forecasting. Comput. Intell. Neurosci. 2018, 2018, 6076475. [Google Scholar] [CrossRef]
- Aljarah, I.; Faris, H.; Mirjalili, S. Optimizing connection weights in neural networks using the whale optimization algorithm. Soft Comput. 2018, 22, 1–15. [Google Scholar] [CrossRef]
- Al-Fugara, A.K.; Ahmadlou, M.; Al-Shabeeb, A.R.; AlAyyash, S.; Al-Amoush, H.; Al-Adamat, R. Spatial mapping of groundwater springs potentiality using grid search-based and genetic algorithm-based support vector regression. Geocarto Int. 2020, 1–20. [Google Scholar] [CrossRef]
- Kawakami, K. Supervised Sequence Labelling with Recurrent Neural Networks. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2008. [Google Scholar]
- Lipton, Z.C.; Berkowitz, J.; Elkan, C. A critical review of recurrent neural networks for sequence learning. arXiv 2015, arXiv:1506.00019. [Google Scholar]
- Cui, R.; Liu, M.; Initiative, A.S.D.N. RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Comput. Med. Imaging Graph. 2019, 73, 1–10. [Google Scholar] [CrossRef]
- Maragatham, G.; Devi, S. LSTM model for prediction of heart failure in big data. J. Med. Syst. 2019, 43, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzel, R. Learning to diagnose with LSTM recurrent neural networks. arXiv 2015, arXiv:1511.03677. [Google Scholar]
- Wang, L.; Sha, L.; Lakin, J.R.; Bynum, J.; Bates, D.W.; Hong, P.; Zhou, L. Development and validation of a deep learning algorithm for mortality prediction in selecting patients with dementia for earlier palliative care interventions. JAMA Netw. Open 2019, 2, e196972. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Goldenberg, M.; Grantcharov, T.; Taati, B.; Rudzicz, F. Evaluation of Deep Learning Models for Identifying Surgical Actions and Measuring Performance. JAMA Netw. Open 2020, 3, e201664. [Google Scholar] [CrossRef] [PubMed]
- Brookmeyer, R.; Abdalla, N.; Kawas, C.H.; Corrada, M.M. Forecasting the prevalence of preclinical and clinical Alzheimer’s disease in the United States. Alzheimer’s Dement. 2018, 14, 121–129. [Google Scholar] [CrossRef] [Green Version]
- Fisher, C.K.; Smith, A.M.; Walsh, J.R. Machine learning for comprehensive forecasting of Alzheimer’s Disease progression. Sci. Rep. 2019, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aschwanden, D.; Aichele, S.; Ghisletta, P.; Terracciano, A.; Kliegel, M.; Sutin, A.R.; Brown, J.; Allemand, M. Predicting cognitive impairment and dementia: A machine learning approach. J. Alzheimer’s Dis. 2020, 1–12, Preprint. [Google Scholar] [CrossRef]
- Kingston, A.; Comas-Herrera, A.; Jagger, C. Forecasting the care needs of the older population in England over the next 20 years: Estimates from the Population Ageing and Care Simulation (PACSim) modelling study. Lancet Public Health 2018, 3, e447–e455. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi-Abhari, S.; Bandosz, P.; Shipley, M.J.; Whittaker, H.; Middleton, L.T.; Kivipelto, M.; Brunner, E.; Kivimaki, M. Forecasts for numbers of people living with dementia to 2050 and estimates for impact of smoking cessation: A modelling study in four European countries: Epidemiology/Prevalence, incidence, and outcomes of MCI and dementia. Alzheimer’s Dement. 2020, 16, e046674. [Google Scholar] [CrossRef]
- Chimmula, V.K.R.; Zhang, L. Time series forecasting of COVID-19 transmission in Canada using LSTM networks. Chaossolitons Fractals 2020, 135, 109864. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Y.; Lu, J.; Xu, J.; Xiao, G. A novel time series forecasting model with deep learning. Neurocomputing 2020, 396, 302–313. [Google Scholar] [CrossRef]
- Bengio, Y.; Simard, P.; Frasconi, P. Learning Long-Term Dependencies with Gradient Descent Is Difficult. IEEE Trans. Neural Netw. 1994, 5, 157–166. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Fagerström, J.; Bång, M.; Wilhelms, D.; Chew, M.S. LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graves, A.; Jaitly, N. Towards End-to-End Speech Recognition with Recurrent Neural Networks. In Proceedings of the International Conference on Machine Learning, Beijing, China, 21–26 June 2014; pp. 1764–1772. [Google Scholar]
- Huang, K.-Y.; Wu, C.-H.; Su, M.-H. Attention-based convolutional neural network and long short-term memory for short-term detection of mood disorders based on elicited speech responses. Pattern Recognit. 2019, 88, 668–678. [Google Scholar] [CrossRef]
- Nejedly, P.; Kremen, V.; Sladky, V.; Cimbalnik, J.; Klimes, P.; Plesinger, F.; Viscor, I.; Pail, M.; Halamek, J.; Brinkmann, B. Exploiting graphoelements and convolutional neural networks with long short term memory for classification of the human electroencephalogram. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Brown, R.G.; Meyer, R.F. The fundamental theorem of exponential smoothing. Oper. Res. 1961, 9, 673–685. [Google Scholar] [CrossRef]
- De Livera, A.M.; Hyndman, R.J.; Snyder, R.D. Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 2011, 106, 1513–1527. [Google Scholar] [CrossRef] [Green Version]
- Vapnik, V.N. The Nature of Statistical LearningTheory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Eberhart, R. Particle Swarm Optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Moscoso-López, J.-A.; Turias, I.T.; Come, M.; Ruiz-Aguilar, J.; Cerbán, M. Short-term forecasting of intermodal freight using ANNs and SVR: Case of the Port of Algeciras Bay. Transp. Res. Procedia 2016, 18, 108–114. [Google Scholar] [CrossRef]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Cauchy, A. Méthode générale pour la résolution des systemes d’équations simultanées. Comp. Rend. Sci. Paris 1847, 25, 536–538. [Google Scholar]
- Chuang, L.-Y.; Lin, Y.-D.; Chang, H.-W.; Yang, C.-H. An improved PSO algorithm for generating protective SNP barcodes in breast cancer. PLoS ONE 2012, 7, e37018. [Google Scholar] [CrossRef]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef] [Green Version]
- Barnes, D.E.; Yaffe, K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011, 10, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Brodaty, H.; Breteler, M.M.; DeKosky, S.T.; Dorenlot, P.; Fratiglioni, L.; Hock, C.; Kenigsberg, P.A.; Scheltens, P.; De Strooper, B. The world of dementia beyond 2020. J. Am. Geriatr. Soc. 2011, 59, 923–927. [Google Scholar] [CrossRef] [PubMed]
- Daviglus, M.L.; Bell, C.C.; Berrettini, W.; Bowen, P.E.; Connolly Jr, E.S.; Cox, N.J.; Dunbar-Jacob, J.M.; Granieri, E.C.; Hunt, G.; McGarry, K. NIH state-of-the-science conference statement: Preventing Alzheimer’s disease and cognitive decline. NIH Consens. State Sci. Statements 2010, 27, 1–30. [Google Scholar]
- Health, N.I.F.; Excellence, C. Dementia, Disability and Frailty in Later Life-Mid-Life Approaches to Delay or Prevent Onset; National Institute for Health and Care Excellence (NICE): Raanana, Israel, 2015. [Google Scholar]
- Borenstein, A.; Mortimer, J. Alzheimer’s Disease: Life Course Perspectives on Risk Reduction; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Tang, H.; Yin, Y.; Shen, H. A model for vessel trajectory prediction based on long short-term memory neural network. J. Mar. Eng. Technol. 2019, 1–10. [Google Scholar] [CrossRef]
- Yang, C.-H.; Wu, C.-H.; Hsieh, C.-M. Long Short-Term Memory Recurrent Neural Network for Tidal Level Forecasting. IEEE Access 2020, 8, 159389–159401. [Google Scholar] [CrossRef]
- Bukhari, A.H.; Raja, M.A.Z.; Sulaiman, M.; Islam, S.; Shoaib, M.; Kumam, P. Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting. IEEE Access 2020, 8, 71326–71338. [Google Scholar] [CrossRef]
- Li, P.; Abdel-Aty, M.; Yuan, J. Real-time crash risk prediction on arterials based on LSTM-CNN. Accid. Anal. Prev. 2020, 135, 105371. [Google Scholar] [CrossRef]
Years Old | Sex | Min | Max | Mean | Med | Q1 | Q3 | IQR | SD | COV |
---|---|---|---|---|---|---|---|---|---|---|
60~64 | M | 1003 | 2092 | 1392.67 | 2092 | 1088 | 1675 | 587 | 322.38 | 0.23 |
F | 925 | 2319 | 1390.62 | 2319 | 1053.5 | 1690 | 636.5 | 385.44 | 0.28 | |
65~69 | M | 3459 | 9747 | 5020.86 | 4258 | 3832.5 | 5324.5 | 1492 | 1714.18 | 0.34 |
F | 3050 | 11,572 | 5825.67 | 3621 | 3646 | 6937 | 3291 | 2379.33 | 0.41 | |
70~74 | M | 5794 | 11,094 | 8059 | 5794 | 7033 | 9625.5 | 2592.5 | 1533.13 | 0.19 |
F | 4613 | 15,353 | 9734.86 | 4613 | 5995.5 | 13,676.5 | 7681 | 3642.94 | 0.37 | |
75~79 | M | 5198 | 17,196 | 11,469.9 | 5198 | 8578.5 | 13,370.5 | 4792 | 3318.71 | 0.29 |
F | 4644 | 27,538 | 14,564.6 | 4644 | 7846 | 20,566.5 | 12,720.5 | 6973.84 | 0.48 | |
80~84 | M | 3635 | 18,941 | 12,231.9 | 3635 | 6564 | 17,755 | 11,191 | 5428.23 | 0.44 |
F | 3837 | 33,385 | 15,857.2 | 3837 | 7379 | 23,432 | 16,053 | 8964.56 | 0.57 | |
85 and above | M | 1959 | 33,696 | 13,619.6 | 1959 | 4626 | 21,380 | 16,754 | 10,091 | 0.74 |
F | 2524 | 49,558 | 18,865.5 | 2524 | 6831.5 | 28,351 | 21,519.5 | 13,967.5 | 0.74 | |
Total | M | 25,108 | 94,040 | 52,790.7 | 26,079 | 31,968 | 69,794.5 | 37,826.5 | 21,466 | 0.41 |
F | 25,322 | 140,253 | 67,047.5 | 26,008 | 33,068 | 95,259.5 | 62,191.5 | 35,588.5 | 0.53 |
Years Old | ε | C | σ |
---|---|---|---|
60~64 | 0.0625 | 8 | 0.5 |
65~69 | 0.015625 | 4 | 0.25 |
70~74 | 0.03125 | 16 | 0.5 |
75~79 | 0.0078125 | 32 | 0.5 |
80~84 | 0.000976563 | 4 | 0.5 |
85 and above | 0.00390625 | 4 | 0.125 |
Total | 0.00390625 | 8192 | 0.001953125 |
Input | LSTM_1 | LSTM_2 | Hidden_1 | Hidden_2 | Output | Activation Function | Learning Rate | Epochs |
---|---|---|---|---|---|---|---|---|
300 | 250 | 200 | 100 | 50 | 1 | Adam | 1 × 10−5 | 2000 |
Years Old | Criteria | ETS | ARIMA | TBATS | SVR | PSOSVR | ANN | LSTM |
---|---|---|---|---|---|---|---|---|
60~64 | MAE | 233.60 | 248.71 | 60.78 | 966.21 | 138.20 | 336.99 | 14.17 |
MAPE (%) | 16.26 | 17.02 | 3.65 | 52.10 | 8.89 | 5.57 | 0.90 | |
RMSE | 327.64 | 322.56 | 76.59 | 890.08 | 142.76 | 87.44 | 14.66 | |
65~69 | MAE | 911.40 | 976.72 | 653.48 | 2638.68 | 995.69 | 910.94 | 89.09 |
MAPE (%) | 10.15 | 10.99 | 7.04 | 26.40 | 11.96 | 10.15 | 1.18 | |
RMSE | 1013.54 | 1064.55 | 853.48 | 2891.80 | 1210.74 | 1013.20 | 84.49 | |
70~74 | MAE | 331.20 | 363.88 | 262.77 | 637.62 | 1045.12 | 179.15 | 159.58 |
MAPE (%) | 3.49 | 3.84 | 5.08 | 5.43 | 2.72 | 2.00 | 1.55 | |
RMSE | 391.49 | 423.19 | 525.92 | 749.69 | 293.18 | 203.18 | 189.58 | |
75~79 | MAE | 809.40 | 865.17 | 955.47 | 2870.72 | 2618.90 | 959.79 | 671.39 |
MAPE (%) | 4.80 | 5.19 | 8.10 | 15.77 | 4.46 | 4.67 | 2.75 | |
RMSE | 859.95 | 908.05 | 1233.16 | 2911.56 | 802.91 | 702.17 | 483.70 | |
80~84 | MAE | 520.20 | 547.82 | 618.75 | 5000.10 | 480.66 | 2247.28 | 527.91 |
MAPE (%) | 2.74 | 2.87 | 4.56 | 3.14 | 2.72 | 12.43 | 2.66 | |
RMSE | 541.61 | 565.18 | 1027.30 | 726.64 | 612.25 | 2281.82 | 526.43 | |
85 and above | MAE | 2667.20 | 2768.72 | 3593.13 | 4782.60 | 1727.15 | 3106.78 | 1644.49 |
MAPE (%) | 8.58 | 8.86 | 8.36 | 14.66 | 7.13 | 10.57 | 4.61 | |
RMSE | 3283.61 | 3318.90 | 3557.40 | 5066.09 | 2427.37 | 3137.09 | 2524.63 | |
Total | MAE | 4945.60 | 5172.84 | 5532.69 | 3529.23 | 3116.40 | 4116.68 | 3175.42 |
MAPE (%) | 6.97 | 5.78 | 5.47 | 5.22 | 4.19 | 4.71 | 3.88 | |
RMSE | 6260.40 | 6430.58 | 6940.69 | 4137.92 | 4127.25 | 4388.69 | 4007.95 | |
Average | MAE | 1488.37 * | 1563.41 * | 1596.72 * | 2917.88 * | 1446.02 * | 1693.94 * | 897.44 |
MAPE (%) | 7.56 * | 7.79 * | 6.04 * | 17.53 * | 6.01 * | 7.16 * | 2.50 | |
RMSE | 1811.18 * | 1861.86 * | 2030.65 * | 2481.97 * | 1373.78 | 1687.66 * | 1118.78 |
Years Old | Criteria | ETS | ARIMA | TBATS | SVR | PSOSVR | ANN | LSTM |
---|---|---|---|---|---|---|---|---|
60~64 | MAE | 128.24 | 97.49 | 39.82 | 577.79 | 152.94 | 278.21 | 6.60 |
MAPE (%) | 6.35 | 7.49 | 6.14 | 34.04 | 12.25 | 15.66 | 2.33 | |
RMSE | 131.97 | 175.97 | 273.88 | 611.82 | 229.06 | 324.11 | 46.27 | |
65~69 | MAE | 1215.29 | 882.27 | 2927.21 | 1147.67 | 1368.60 | 541.18 | 429.07 |
MAPE (%) | 10.84 | 8.45 | 30.48 | 17.24 | 14.76 | 5.06 | 4.42 | |
RMSE | 1203.70 | 903.06 | 2734.10 | 2386.27 | 1397.15 | 776.41 | 634.07 | |
70~74 | MAE | 614.80 | 623.69 | 730.62 | 2014.93 | 777.74 | 754.69 | 609.49 |
MAPE (%) | 4.38 | 4.54 | 5.49 | 11.59 | 5.50 | 5.33 | 4.34 | |
RMSE | 766.84 | 703.18 | 832.89 | 2160.61 | 1020.11 | 945.34 | 710.01 | |
75~79 | MAE | 1321.81 | 4630.01 | 1567.16 | 2139.77 | 955.08 | 994.06 | 893.49 |
MAPE (%) | 5.03 | 19.47 | 6.48 | 7.45 | 3.82 | 4.03 | 3.61 | |
RMSE | 1409.63 | 4566.97 | 1542.58 | 2181.50 | 1033.29 | 1106.36 | 1014.32 | |
80~84 | MAE | 2354.40 | 1763.74 | 2456.60 | 3955.26 | 887.86 | 1462.82 | 654.31 |
MAPE (%) | 7.41 | 5.23 | 9.37 | 10.90 | 3.43 | 5.02 | 2.37 | |
RMSE | 2454.16 | 1685.58 | 2547.80 | 3187.92 | 1085.27 | 1645.63 | 812.76 | |
85 and above | MAE | 4734.00 | 3584.35 | 3496.61 | 1899.59 | 8248.37 | 9350.43 | 1173.70 |
MAPE (%) | 10.06 | 8.83 | 8.87 | 4.75 | 4.12 | 8.48 | 2.88 | |
RMSE | 5341.83 | 3556.22 | 3641.71 | 3128.78 | 1997.94 | 3639.94 | 1678.02 | |
Total | MAE | 9577.40 | 8370.13 | 11891.27 | 3165.95 | 4105.93 | 4295.60 | 2392.24 |
MAPE (%) | 7.66 | 6.82 | 9.16 | 2.70 | 3.56 | 2.89 | 1.99 | |
RMSE | 8952.33 | 8343.87 | 10896.10 | 3733.22 | 4564.03 | 3101.85 | 2764.75 | |
Average | MAE | 2849.42 * | 2850.24 * | 3301.33 * | 2128.71 * | 2356.65 * | 2048.20 * | 879.84 |
MAPE (%) | 7.39 * | 8.69 * | 10.86 * | 12.67 * | 6.78 * | 6.64 * | 3.13 | |
RMSE | 2894.35 * | 2847.84 * | 3209.87 * | 2322.75 * | 1618.12 * | 1648.52 * | 1094.32 |
Age | ETS | ARIMA | TBATS | SVR | PSOSVR | ANN | LSTM |
---|---|---|---|---|---|---|---|
60~64 | 0.7022 | 0.7854 | 0.8510 | 0.9868 | 0.4920 | 0.1022 | 0.9971 |
65~69 | 0.8606 | 0.8627 | 0.8193 | 0.8994 | 0.8812 | 0.8606 | 1.0000 |
70~74 | 0.9116 | 0.9111 | 0.9799 | 0.9237 | 0.9116 | 0.9116 | 0.9259 |
75~79 | 0.8941 | 0.8953 | 0.9131 | 0.3873 | 0.4873 | 0.9112 | 0.9441 |
80~84 | 0.7545 | 0.8330 | 0.7861 | 0.6721 | 0.0881 | 0.1545 | 0.9545 |
85 and above | 0.7692 | 0.7757 | 0.9297 | 0.8665 | 0.9273 | 0.7692 | 0.9692 |
Average | 0.6153 | 0.6272 | 0.8915 | 0.6772 | 0.6312 | 0.6330 | 0.9368 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Chen, H.-C.; Wu, C.-H.; Wu, M.-N.; Yang, C.-H. Forecasting of the Prevalence of Dementia Using the LSTM Neural Network in Taiwan. Mathematics 2021, 9, 488. https://doi.org/10.3390/math9050488
Yang S, Chen H-C, Wu C-H, Wu M-N, Yang C-H. Forecasting of the Prevalence of Dementia Using the LSTM Neural Network in Taiwan. Mathematics. 2021; 9(5):488. https://doi.org/10.3390/math9050488
Chicago/Turabian StyleYang, Stephanie, Hsueh-Chih Chen, Chih-Hsien Wu, Meng-Ni Wu, and Cheng-Hong Yang. 2021. "Forecasting of the Prevalence of Dementia Using the LSTM Neural Network in Taiwan" Mathematics 9, no. 5: 488. https://doi.org/10.3390/math9050488
APA StyleYang, S., Chen, H.-C., Wu, C.-H., Wu, M.-N., & Yang, C.-H. (2021). Forecasting of the Prevalence of Dementia Using the LSTM Neural Network in Taiwan. Mathematics, 9(5), 488. https://doi.org/10.3390/math9050488