# DNA-Guided Assembly for Fibril Proteins

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### DNA-Guided Assembly of Nanocellulose Meshes

## 3. Results

#### 3.1. Coarse-Grained Computational Modeling of the DNA-Fibril Dynamical System

#### 3.2. Tailored Stochastic Modeling of Assembly Formation and Dynamics

zone 1 | zone 2 | zone 3 | zone 4 |

zone 5 | zone 6 | zone 7 | zone 8 |

zone 9 | zone 10 | zone 11 | zone 12 |

zone 13 | zone 14 | zone 15 | zone 16 |

## 4. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A

#### Appendix A.1. Table of Reference Distributions

**Table A1.**List of the fifteen reference distributions with positive support used to test the goodness of fit for the empirical distribution of the trimmed mean gap size.

Distribution | Acronym | Parameters | |
---|---|---|---|

Beta | beta | $f\left(x\right)=\frac{\Gamma (\alpha +\beta )}{\Gamma \left(\alpha \right)\Gamma \left(\beta \right)}{x}^{\alpha -1}{(1-x)}^{\beta -1}$ | $\alpha ,\beta >0$ |

Burr | burr | $f\left(x\right)=\frac{\alpha k{\left(\frac{x}{\beta}\right)}^{\alpha -1}}{\beta {\left[1+{\left(\frac{x}{\beta}\right)}^{\alpha}\right]}^{k+1}}$ | $x\ge 0$, $\alpha ,\beta ,k>0$ |

Dagum | dagum1 | $f\left(x\right)=\frac{\alpha k{\left(\frac{x}{\beta}\right)}^{\alpha k-1}}{\beta {\left[1+{\left(\frac{x}{\beta}\right)}^{\alpha}\right]}^{k+1}}$ | $x\ge 0$, $\alpha ,\beta ,k>0$ |

Gumbel | gumbel | $f\left(x\right)=\frac{1}{\sigma}{e}^{-(\frac{x-\mu}{\sigma}+{e}^{-\frac{x-\mu}{\sigma}})}$ | $\mu \in \mathbb{R}$, $\sigma >0$ |

Logistic | logis | $f\left(x\right)=\frac{{e}^{-\frac{x-\mu}{\sigma}}}{\sigma {\left(1+{e}^{-\frac{x-\mu}{\sigma}}\right)}^{2}}$ | $\mu \in \mathbb{R}$, $\sigma >0$ |

Log-Logistic | llogis | $f\left(x\right)=\frac{\beta {\left(\frac{x}{\alpha}\right)}^{\beta -1}}{\alpha {\left[1+{\left(\frac{x}{\alpha}\right)}^{\beta}\right]}^{2}}$ | $\alpha ,\beta >0$ |

Gamma | gamma | $f\left(x\right)=\frac{1}{\Gamma \left(\alpha \right){\beta}^{\alpha}}{x}^{\alpha -1}{e}^{-\frac{x}{\beta}}$ | $\alpha ,\beta >0$ |

Pareto 1 | pareto1 | $f\left(x\right)=\alpha \frac{{\beta}^{\alpha}}{{x}^{\alpha +1}}$ | $x>\beta $, $\alpha ,\beta >0$ |

Weibull | weibull | $f\left(x\right)=\frac{\alpha}{\beta}{\left(\frac{x}{\beta}\right)}^{\alpha -1}{e}^{-{\left(\frac{x}{\beta}\right)}^{\alpha}},\phantom{\rule{0.166667em}{0ex}}x>0$ | $\alpha ,\beta >0$ |

Inverse Weibull | invweibull | $f\left(x\right)=\alpha {\left(\frac{\beta}{x}\right)}^{\alpha}\frac{{e}^{-{\left(\frac{\beta}{x}\right)}^{\alpha}}}{x},\phantom{\rule{0.166667em}{0ex}}x>0$ | $\alpha ,\beta >0$ |

Normal | norm | $f\left(x\right)=\frac{1}{\sqrt{2\pi}\sigma}{e}^{-\frac{{(x-\mu )}^{2}}{2{\sigma}^{2}}}$ | $\mu \in \mathbb{R}$, $\sigma >0$ |

Log-Normal | lnorm | $f\left(x\right)=\frac{1}{x\sigma \sqrt{2\pi}}{e}^{-\frac{{(logx-\mu )}^{2}}{2{\sigma}^{2}}}$ | $\mu ,\sigma >0$ |

Generalized Extreme Value | gev | $f\left(x\right)=\left\{\begin{array}{cc}\frac{1}{\sigma}{e}^{-{(1+\xi \frac{x-\mu}{\sigma})}^{-\frac{1}{\xi}}}{(1+\xi \frac{x-\mu}{\sigma})}^{-1-\frac{1}{\xi}},\hfill & \xi \ne 0\hfill \\ \frac{1}{\sigma}{e}^{-\frac{x-\mu}{\sigma}-{e}^{-\frac{x-\mu}{\sigma}}},\hfill & \xi =0\hfill \end{array}\right.$ | $\left\{\begin{array}{cc}1+\xi \frac{x-\mu}{\sigma}>0,\hfill & \xi \ne 0\hfill \\ x\in \mathbb{R},\hfill & \xi =0\hfill \end{array}\right.$; $\mu ,\xi \in \mathbb{R}$, $\sigma >0$ |

Nakagami | naka | $f\left(x\right)=\frac{2{m}^{m}}{\Gamma \left(m\right){\Omega}^{m}}{x}^{2m-1}{e}^{-\frac{m}{\Omega}{x}^{2}}$ | $x\ge 0$, $m\ge 0.5$, $\Omega >0$ |

Rayleigh | rayleigh | $f\left(x\right)=\frac{x}{{\sigma}^{2}}{e}^{-\frac{{x}^{2}}{2{\sigma}^{2}}}$ | $x\ge 0$, $\sigma >0$ |

#### Appendix A.2. Table of Top Ranked Fitted Distributions

**Table A2.**Top five fitted distributions according to Anderson–Darling statistic on each of the four central zones and the entire assembly differentiated by the initial distribution of the rod length.

Distribution | Zones | Rank_Dist_1 | Rank_Dist_2 | Rank_Dist_3 | Rank_Dist_4 | Rank_Dist_5 |
---|---|---|---|---|---|---|

Uniform | z6 | gumbel | gev | lnorm | beta | dagum1 |

Uniform | z7 | dagum1 | burr | gumbel | llogis | lnorm |

Uniform | z10 | burr | dagum1 | gev | gumbel | llogis |

Uniform | z11 | gumbel | dagum1 | lnorm | burr | llogis |

Uniform | all | gamma | lnorm | nakagami | burr | normal |

Geometric (RS) | z6 | burr | llogis | dagum1 | gumbel | lnorm |

Geometric (RS) | z7 | gev | dagum1 | burr | gumbel | llogis |

Geometric (RS) | z10 | lnorm | gev | dagum1 | llogis | burr |

Geometric (RS) | z11 | dagum1 | gumbel | gev | burr | llogis |

Geometric (RS) | all | burr | dagum1 | gumbel | llogis | invweibull |

Geometric (LS) | z6 | gev | gumbel | dagum1 | lnorm | burr |

Geometric (LS) | z7 | gev | lnorm | gumbel | gamma | dagum1 |

Geometric (LS) | z10 | burr | gumbel | dagum1 | llogis | lnorm |

Geometric (LS) | z11 | llogis | burr | dagum1 | lnorm | gamma |

Geometric (LS) | all | gamma | lnorm | nakagami | normal | burr |

Binomial | z6 | dagum1 | burr | llogis | gumbel | gev |

Binomial | z7 | gumbel | gev | lnorm | dagum1 | burr |

Binomial | z10 | gumbel | gev | lnorm | dagum1 | burr |

Binomial | z11 | dagum1 | gumbel | lnorm | burr | llogis |

Binomial | all | gumbel | dagum1 | invweibull | burr | lnorm |

Beta-binomial | z6 | gev | lnorm | gamma | dagum1 | llogis |

Beta-binomial | z7 | burr | dagum1 | gev | invweibull | gumbel |

Beta-binomial | z10 | burr | dagum1 | gumbel | llogis | lnorm |

Beta-binomial | z11 | gev | lnorm | gumbel | dagum1 | llogis |

Beta-binomial | all | gev | lnorm | burr | llogis | dagum1 |

## References

- Ding, L.; Wei, Y.; Li, L.; Zhang, T.; Wang, H.; Xue, J.; Ding, L.X.; Wang, S.; Caro, J.; Gogotsi, Y. MXene molecular sieving membranes for highly efficient gas separation. Nat. Commun.
**2018**, 9, 155. [Google Scholar] [CrossRef] - Xiong, G.; He, P.; Lyu, Z.; Chen, T.; Huang, B.; Chen, L.; Fisher, T.S. Bioinspired leaves-on-branchlet hybrid carbon nanostructure for supercapacitors. Nat. Commun.
**2018**, 9, 790. [Google Scholar] [CrossRef][Green Version] - Zhang, K.; Lin, S.; Feng, Q.; Dong, C.; Yang, Y.; Li, G.; Bian, L. Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration. Acta Biomater.
**2017**, 64, 389–400. [Google Scholar] [CrossRef] - Jang, Y.; Choi, W.T.; Johnson, C.T.; García, A.J.; Singh, P.M.; Breedveld, V.; Hess, D.W.; Champion, J.A. Inhibition of Bacterial Adhesion on Nanotextured Stainless Steel 316L by Electrochemical Etching. ACS Biomater. Sci. Eng.
**2018**, 4, 90–97. [Google Scholar] [CrossRef][Green Version] - Chen, W.T.; Zhu, A.Y.; Sanjeev, V.; Khorasaninejad, M.; Shi, Z.; Lee, E.; Capasso, F. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol.
**2018**, 13, 220–226. Available online: https://www.nature.com/articles/s41565-017-0034-6 (accessed on 8 February 2021). [CrossRef] [PubMed][Green Version] - Park, J.H.; Rutledge, G.C. Ultrafine high performance polyethylene fibers. J. Mater. Sci.
**2018**, 53, 3049–3063. [Google Scholar] [CrossRef][Green Version] - Ware, C.S.; Smith-Palmer, T.; Peppou-Chapman, S.; Scarratt, L.R.; Humphries, E.M.; Balzer, D.; Neto, C. Marine Antifouling Behavior of Lubricant-Infused Nanowrinkled Polymeric Surfaces. ACS Appl. Mater. Interfaces
**2018**, 10, 4173–4182. [Google Scholar] [CrossRef] - Snow, R.J.; Bhatkar, H.; Diaye, A.T.N.; Arenholz, E.; Idzerda, Y.U.; Snow, R.J.; Bhatkar, H.; Diaye, A.T.N.; Arenholz, E.; Idzerda, Y.U. Large moments in bcc Fe
_{x}Co_{y}Mn_{z}ternary alloy thin films. Appl. Phys. Lett.**2018**, 112, 1–5. [Google Scholar] [CrossRef] - Picker, A.; Nicoleau, L.; Burghard, Z.; Bill, J.; Zlotnikov, I.; Labbez, C.; Nonat, A.; Cölfen, H. Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials. Sci. Adv.
**2017**, 3. Available online: https://advances.sciencemag.org/content/3/11/e1701216 (accessed on 8 February 2021). [CrossRef] [PubMed][Green Version] - Yuan, C.; Wu, Q.; Li, Q.; Duan, Q.; Li, Y.; Wang, H.G. Nanoengineered Ultralight Organic Cathode Based on Aromatic Carbonyl Compound/Graphene Aerogel for Green Lithium and Sodium Ion Batteries. ACS Sustain. Chem. Eng.
**2018**, 6, 8392–8399. [Google Scholar] [CrossRef] - Kuzyk, A.; Laitinen, K.T.; Törmä, P. DNA origami as a nanoscale template for protein assembly. Nanotechnology
**2009**, 20, 235305:1–235305:5. [Google Scholar] [CrossRef] - Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.M.; Högele, A.; Simmel, F.C.; Govorov, A.O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature
**2012**, 483, 311–314. Available online: https://www.nature.com/articles/nature10889 (accessed on 8 February 2021). [CrossRef][Green Version] - Tikhomirov, G.; Petersen, P.; Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature
**2017**, 552, 67–71. Available online: https://www.nature.com/articles/nature24655 (accessed on 8 February 2021). [CrossRef] [PubMed][Green Version] - Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.; Orponen, P.; Högberg, B. DNA rendering of polyhedral meshes at the nanoscale. Nature
**2015**, 523, 441–444. Available online: https://www.nature.com/articles/nature14586 (accessed on 8 February 2021). [CrossRef] [PubMed][Green Version] - Zhang, X.; Ding, X.; Zou, J.; Gu, H. A proximity-based programmable DNA nanoscale assembly line. Methods Mol. Biol.
**2017**, 1500, 257–268. Available online: https://pubmed.ncbi.nlm.nih.gov/27813014/ (accessed on 8 February 2021). - Lund, K.; Manzo, A.J.; Dabby, N.; Michelotti, N.; Johnson-Buck, A.; Nangreave, J.; Taylor, S.; Pei, R.; Stojanovic, M.N.; Walter, N.G.; et al. Molecular robots guided by prescriptive landscapes. Nature
**2010**, 465, 206–209. [Google Scholar] [CrossRef][Green Version] - Koh, L.D.; Cheng, Y.; Teng, C.P.; Khin, Y.W.; Loh, X.J.; Tee, S.Y.; Low, M.; Ye, E.; Yu, H.D.; Zhang, Y.W.; et al. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci.
**2015**, 46, 86–110. [Google Scholar] [CrossRef] - Charrier, E.E.; Janmey, P.A. Chapter Two—Mechanical Properties of Intermediate Filament Proteins. Methods Enzymol.
**2016**, 568, 35–57. [Google Scholar] [CrossRef][Green Version] - Pal, S.; Deng, Z.; Ding, B.; Yan, H.; Liu, Y. DNA-Origami-Directed Self-Assembly of Discrete Silver-Nanoparticle Architectures. Angew. Chem. Int. Ed.
**2010**, 49, 2700–2704. [Google Scholar] [CrossRef] - Scharnweber, D.; Bierbaum, S.; Wolf-Brandstetter, C. Utilizing DNA for functionalization of biomaterial surfaces. FEBS Lett.
**2018**, 592, 2181–2196. [Google Scholar] [CrossRef][Green Version] - Alarcon, L.P.; Baena, Y.; Manzo, R.H. Interaction between DNA and Drugs Having Protonable Basic Groups: Characterization through Affinity Constants, Drug Release Kinetics, and Conformational Changes. Sci. Pharm.
**2017**, 85, 1. [Google Scholar] [CrossRef][Green Version] - Inoue, Y.; Fukushima, T.; Hayakawa, T.; Takeuchi, H.; Kaminishi, H.; Miyazaki, K.; Okahata, Y. Antibacterial characteristics of newly developed amphiphilic lipids and DNA–lipid complexes against bacteria. J. Biomed. Mater. Res. Part A
**2003**, 65A, 203–208. [Google Scholar] [CrossRef] - Maune, H.T.; Han, S.P.; Barish, R.D.; Bockrath, M.; Iii, W.A.; Rothemund, P.W.; Winfree, E. Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat. Nanotechnol.
**2010**, 5, 61–66. [Google Scholar] [CrossRef][Green Version] - Eskelinen, A.P.; Kuzyk, A.; Kaltiaisenaho, T.K.; Timmermans, M.Y.; Nasibulin, A.G.; Kauppinen, E.I.; Törmä, P. Assembly of single-walled carbon nanotubes on DNA-origami templates through streptavidin-biotin interaction. Small
**2011**, 7, 746–750. [Google Scholar] [CrossRef] - Amărioarei, A.; Barad, G.; Czeizler, E.; Dobre, A.M.; Iţcuş, C.; Mitrana, V.; Păun, A.; Păun, M.; Spencer, F.; Trandafir, R.; et al. DNA-Guided Assembly of Nanocellulose Meshes. In Theory and Practice of Natural Computing; Fagan, D., Martín-Vide, C., O’Neill, M., Vega-Rodríguez, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 253–265. [Google Scholar]
- Faeder, J.R.; Blinov, M.L.; Goldstein, B.; Hlavacek, W.S. Rule-based modeling of biochemical networks. Complexity
**2005**, 10, 22–41. [Google Scholar] [CrossRef] - Faeder, J.R.; Blinov, M.L.; Hlavacek, W.S. Rule-based modeling of biochemical systems with BioNetGen. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2009; Volume 500, pp. 113–167. Available online: https://pubmed.ncbi.nlm.nih.gov/19399430/ (accessed on 8 February 2021).
- Rothemund, P.W. Folding DNA to create nanoscale shapes and patterns. Nature
**2006**, 440, 297–302. Available online: https://www.nature.com/articles/nature04586 (accessed on 8 February 2021). [CrossRef] [PubMed][Green Version] - Woo, S.; Rothemund, P.W.K. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem.
**2011**, 3, 620–627. [Google Scholar] [CrossRef] - Sneddon, M.W.; Faeder, J.R.; Emonet, T. Efficient modeling, simulation and coarse-graining of biological complexity with NFsim. Nat. Methods
**2011**, 8, 177–183. [Google Scholar] [CrossRef] [PubMed] - Smith, A.M. Rulebender: Integrated Modeling, Simulation and Visualization for Rule-Based Intracellular Biochemistry. BMC J. Bioinform.
**2012**, 13, 1–39. [Google Scholar] [CrossRef] [PubMed][Green Version] - Hogg, R.V.; McKean, J.; Craig, A.T. Introduction to Mathematical Statistics, 7th ed.; Pearson: Boston, MA, USA, 2012. [Google Scholar]
- D’Agostino, R.; Stephens, M. Goodness-of-Fit Techniques, 1st ed.; Marcel Dekker, Inc.: New York, NY, USA, 1986. [Google Scholar]
- Luceno, A. Fitting the Generalized Pareto Distribution to Data Using Maximum Goodness-of-fit Estimators. Comput. Stat. Data Anal.
**2006**, 51, 904–917. [Google Scholar] [CrossRef] - Delignette-Muller, M.; Pouillot, R.; Denis, J.; Dutang, C. Fitdistrplus: An R Package for Fitting Distributions. J. Stat. Softw.
**2015**, 64, 1–34. [Google Scholar] [CrossRef][Green Version] - Dutang, C.; Goulet, V.; Pigeon, M. Actuar: An R Package for Actuarial Science. J. Stat. Softw.
**2008**, 25, 1–37. [Google Scholar] - Yee, T. Vector Generalized Linear and Additive Models: With an Implementation in R; Springer: New York, NY, USA, 2015. [Google Scholar]
- Qi, Y.; Wang, H.; Wei, K.; Yang, Y.; Zheng, R.Y.; Kim, I.S.; Zhang, K.Q. A Review of Structure Construction of Silk Fibroin Biomaterials from Single Structures to Multi-Level Structures. Int. J. Mol. Sci.
**2017**, 18, 237. [Google Scholar] [CrossRef]

**Figure 1.**DNA origami functionalized by orthogonally aligned specific aptamers, placed on opposite sides, and connected to rod-like structures.

**Figure 2.**Possible origami positioning along a fibril: (

**a**) both origamis are positioned on the same side of the fibril, in which case a minimum (one-origami wide) inter-fibril gap has to be present, and (

**b**) the origamis are positioned on opposite sides of the fibril, in which case, in between two parallel fibrils, there could be almost no space at all.

**Figure 3.**Results of the coarse-grained model: (

**a**) dynamics of the assembly averaged gap size per $O/R$ and rod length variation. Each data point is a median of approximately 30 independent runs. The horizontal axes represents the $O/R$ parameter, and the vertical one is the average size of the hole. (

**b**) The heat map of the 2D matrix representations of the R object interconnections generated within one run instance of the coarse-grained model for the case when $O/R=0.1$ and $l=10$. All assemblies contain 1000 rods.

**Figure 4.**The five initial rod lengths distributions. From left to right: uniform, truncated right skewed geometric (geometric (RS)), truncated left skewed geometric (geometric (LS)), binomial, and beta-binomial.

**Figure 5.**Loess tendency of the trimmed mean gap size for all $O/R$ ratios differentiated by initial distribution of the rod lengths and all models characterized by the minimum gap d allowed in between two consecutive docking positions.

**Figure 6.**Heat maps of 2D representations of the mesh structure for each model and each initial rod length distribution in the case of $O/R=5$ colored with respect to the intersection degree of R objects.

**Figure 7.**Time-dependent evolution of the trimmed mean gap size for the mesh assembly in the case of $d=2$ and $O/R=5$, when the dynamics of the system is frozen once the total number of rods in the structure reaches 1000. The evolution is spitted for each initial distribution of the rod lengths and each of the four central zones.

**Figure 8.**Histogram representation of the trimmed mean gap size for each of the four central zones and the entire assembly along with the top three corresponding fitted distributions.

**Table 1.**Trimmed mean gap size values of 100 independent runs of the in silico experiments in the case of $d=2$ and $O/R=5$ evaluated for each initial rod length distribution, for each of the four central zones, as well as for the entire assembly.

Distribution | z6 | z7 | z10 | z11 | All |
---|---|---|---|---|---|

Uniform | 3.2675 | 3.4093 | 3.2805 | 3.5288 | 3.5151 |

Geometric (RS) | 2.7425 | 3.0276 | 2.1810 | 2.5424 | 2.6354 |

Geometric (LS) | 3.5283 | 3.3386 | 3.4199 | 3.3275 | 3.6453 |

Binomial | 3.1354 | 2.9235 | 3.1980 | 3.0020 | 3.2363 |

Beta-binomial | 3.3983 | 3.4945 | 3.5101 | 3.4127 | 3.5035 |

**Table 2.**The most representative fitted distributions for each initial rod length distribution evaluated by employing a linear weighting scheme on the top five fitted distributions for all four central zones and for the entire structure, as presented in Table A2.

Distribution | Model | O/R Ratio | Fitted Distribution |
---|---|---|---|

Beta-binomial | 2 | 5 | gev |

Binomial | 2 | 5 | gumbel |

Geometric (LS) | 2 | 5 | lnorm |

Geometric (RS) | 2 | 5 | dagum1 |

Uniform | 2 | 5 | gumbel |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Amărioarei, A.; Spencer, F.; Barad, G.; Gheorghe, A.-M.; Iţcuş, C.; Tuşa, I.; Prelipcean, A.-M.; Păun, A.; Păun, M.; Rodriguez-Paton, A.; Trandafir, R.; Czeizler, E. DNA-Guided Assembly for Fibril Proteins. *Mathematics* **2021**, *9*, 404.
https://doi.org/10.3390/math9040404

**AMA Style**

Amărioarei A, Spencer F, Barad G, Gheorghe A-M, Iţcuş C, Tuşa I, Prelipcean A-M, Păun A, Păun M, Rodriguez-Paton A, Trandafir R, Czeizler E. DNA-Guided Assembly for Fibril Proteins. *Mathematics*. 2021; 9(4):404.
https://doi.org/10.3390/math9040404

**Chicago/Turabian Style**

Amărioarei, Alexandru, Frankie Spencer, Gefry Barad, Ana-Maria Gheorghe, Corina Iţcuş, Iris Tuşa, Ana-Maria Prelipcean, Andrei Păun, Mihaela Păun, Alfonso Rodriguez-Paton, Romică Trandafir, and Eugen Czeizler. 2021. "DNA-Guided Assembly for Fibril Proteins" *Mathematics* 9, no. 4: 404.
https://doi.org/10.3390/math9040404