Ulam Stabilities and Instabilities of Euler–Lagrange-Rassias Quadratic Functional Equation in Non-Archimedean IFN Spaces
Abstract
:1. Introduction
2. Preliminaries
- (i)
- if, and only if ;
- (ii)
- , and ;
- (iii)
- the strong triangle inequality
- (1)
- If or , then
- (2)
- If T is of Hadžić-type, thenfor all in , such that
- (a)
- Boundary condition
- (b)
- Commutativity
- (c)
- Associativity
- (d)
- Monotonicity
- (IFN1)
- for all ;
- (IFN2)
- ;
- (IFN3)
- ;
- (IFN4)
- .
- (IFN5)
- .
- (i)
- ;
- (ii)
- the sequence converges to a fixed-point of M;
- (iii)
- is the unique fixed-point of M in ;
- (iv)
- , for every .
3. Hyers-Ulam Stability: Direct Technique
4. Hyers–Ulam Stability: Fixed-Point Technique
5. Counterexample
- (1)
- and .
- (2)
- if the function ϕ is continuous.
6. Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulam, S.M. A Collection of Mathematical Problems; Interscience Tracts in Pure and Applied Mathematics, No. 8; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Abbas, M.I. Existence results and the Ulam Stability for fractional differential equations with hybrid proportional-Caputo derivatives. J. Nonlinear Funct. Anal. 2020, 2020, 48. [Google Scholar] [CrossRef]
- Bae, J.-H.; Park, W.-G. On the generalized Hyers-Ulam-Rassias stability in Banach modules over a C*-algebra. J. Math. Anal. Appl. 2004, 294, 196–205. [Google Scholar] [CrossRef]
- Guariglia, E.; Tamilvanan, K. On the stability of radical septic functional equations. Mathematics 2020, 8, 2229. [Google Scholar] [CrossRef]
- Kim, S.O.; Tamilvanan, K. Fuzzy stability results of generalized quartic functional equations. Mathematics 2021, 9, 120. [Google Scholar] [CrossRef]
- Park, C.; Tamilvanan, K.; Noori, B.; Moghimi, M.B.; Najati, A. Fuzzy normed spaces and stability of a generalized quadratic functional equation. AIMS Math. 2020, 5, 7161–7174. [Google Scholar] [CrossRef]
- Rassias, T.M.; Shibata, K. Variational problem of some quadratic functionals in complex analysis. J. Math. Anal. Appl. 1998, 228, 234–253. [Google Scholar] [CrossRef]
- Taieb, A. Existence of solutions and the ulam stability for a class of singular nonlinear fractional integro-differential equations. Commun. Optim. Theory 2019. [Google Scholar] [CrossRef]
- Tamilvanan, K.; Lee, J.R.; Park, C. Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Math. 2021, 6, 908–924. [Google Scholar] [CrossRef]
- Skof, F. Local properties and approximation of operators. Rend. Sem. Mat. Fis. Milano 1983, 53, 113–129. [Google Scholar] [CrossRef]
- Cholewa, P.W. Remarks on the stability of functional equations. Aequ. Math. 1984, 27, 76–86. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K.; Mirzavaziri, M.; Moslehian, M.S. Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst. 2008, 159, 730–738. [Google Scholar] [CrossRef]
- Miheţ, D. The fixed-point method for fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst 2009, 160, 1663–1667. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K.; Moslehian, M.S. Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst. 2008, 159, 720–729. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K.; Moslehian, M.S. Stability of additive mappings in non-Archimedean fuzzy normed spaces. Fuzzy Sets Syst. 2009, 160, 1643–1652. [Google Scholar] [CrossRef]
- Rassias, J.M. On the stability of the Euler–Lagrange functional equation. Chin. J. Math. 1992, 20, 185–190. [Google Scholar]
- Jun, K.-W.; Kim, H.-M. On the stability of Euler–Lagrange-type cubic mappings in quasi-Banach spaces. J. Math. Anal. Appl. 2007, 332, 1335–1350. [Google Scholar] [CrossRef] [Green Version]
- Ciepliński, K. On the generalized Hyers-Ulam stability of multi-quadratic mappings. Comput. Math. Appl. 2011, 62, 3418–3426. [Google Scholar] [CrossRef] [Green Version]
- Jun, K.-W.; Kim, H.-M.; Chang, I.-S. On the Hyers-Ulam stability of an Euler–Lagrange-type cubic functional equation. J. Comput. Anal. Appl. 2005, 7, 21–33. [Google Scholar]
- Kim, H.-M.; Kim, M.-Y. Generalized stability of Euler–Lagrange quadratic functional equation. Abstr. Appl. Anal. 2012, 2012, 219435. [Google Scholar] [CrossRef]
- Najati, A.; Moradlou, F. Stability of an Euler–Lagrange-type cubic functional equation. Turkish J. Math. 2009, 33, 65–73. [Google Scholar]
- Park, C.-G. Multi-quadratic mappings in Banach spaces. Proc. Am. Math. Soc. 2003, 131, 2501–2504. [Google Scholar] [CrossRef]
- Park, C.-G.; Rassias, J.M. Hyers-Ulam stability of an Euler–Lagrange-type additive mapping. Int. J. Appl. Math. Stat. 2007, 7, 112–125. [Google Scholar] [CrossRef]
- Rassias, J.M. On the stability of the non-linear Euler–Lagrange functional equation in real normed linear spaces. J. Math. Phys. Sci. 1994, 28, 231–235. [Google Scholar]
- Xu, T.Z.; Rassias, J.M. Stability of general multi-Euler–Lagrange quadratic functional equations in non-Archimedean fuzzy normed spaces. Adv. Diff. Equ. 2012, 2012, 119. [Google Scholar] [CrossRef] [Green Version]
- Zivari-Kazempour, A.; Gordji, M.E. Generalized Hyers-Ulam stabilities of an Euler–Lagrange-Rassias quadratic functional equation. Asian-Eur. J. Math. 2012, 5, 1250014. [Google Scholar] [CrossRef]
- Koh, H.; Kang, D. Solution and stability of Euler–Lagrange–Rassias quartic functional equations in various quasinormed spaces. Abstr. Appl. Anal. 2013. [Google Scholar] [CrossRef]
- Miheţ, D. The stability of the additive Cauchy functional equation in non-Archimedean fuzzy normed spaces. Fuzzy Sets Syst. 2010, 161, 2206–2212. [Google Scholar] [CrossRef]
- Mohiuddine, S.A.; Alotaibi, A.; Obaid, M. Stability of various functional equations in non-Archimedean intuitionistic fuzzy normed spaces. Discrete Dyn. Nat. Soc. 2012. [Google Scholar] [CrossRef]
- Deschrijver, G.; Kerre, E.E. On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 2003, 133, 227–235. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Shakeri, S. Intuitionistic fuzzy stability of Jensen type mapping. J. Nonlinear Sci. Appl. 2009, 2, 105–112. [Google Scholar] [CrossRef]
- Xu, T.Z.; Rassias, J.M.; Xu, W.X. Stability of a general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces. J. Math. Phys. 2010, 51, 093508. [Google Scholar] [CrossRef]
- Kayal, N.C.; Samanta, T.K.; Saha, P.; Choudhury, B.S. A Hyers-Ulam-Rassias stability result for functional equations in intuitionistic fuzzy Banach spaces. Iran. J. Fuzzy Syst. 2016, 13, 87–96. [Google Scholar]
- Diaz, J.B.; Margolis, B. A fixed-point theorem of the alternative, for contractions on a generalized complete metric space. Bullbut. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.-M. A fixed-point approach to the stability of the equation f(x+y)=f(x)f(y)f(x)+f(y). Aust. J. Math. Anal. Appl. 2009, 6, 8. [Google Scholar]
- Hyers, D.H.; Isac, G.; Rassias, T.M. Stability of Functional Equations in Several Variables; Progress in Nonlinear Differential Equations and Their Applications, 34; Birkhäuser Boston, Inc.: Boston, MA, USA, 1998. [Google Scholar]
- Găvruţa, L.; Găvruţa, P. On a problem of John M. Rassias concerning the stability in Ulam sense of Euler–Lagrange equation. In Functional Equations, Difference Inequalities and Ulam Stability Notions (F.U.N.); Rassias, J.M., Ed.; Nova Science Publishers: New York, NY, USA, 2010; Chapter 4; pp. 47–53. [Google Scholar]
- Gajda, Z. On stability of additive mappings. Int. J. Math. Math. Sci. 1991, 14, 431–434. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamilvanan, K.; Alanazi, A.M.; Rassias, J.M.; Alkhaldi, A.H. Ulam Stabilities and Instabilities of Euler–Lagrange-Rassias Quadratic Functional Equation in Non-Archimedean IFN Spaces. Mathematics 2021, 9, 3063. https://doi.org/10.3390/math9233063
Tamilvanan K, Alanazi AM, Rassias JM, Alkhaldi AH. Ulam Stabilities and Instabilities of Euler–Lagrange-Rassias Quadratic Functional Equation in Non-Archimedean IFN Spaces. Mathematics. 2021; 9(23):3063. https://doi.org/10.3390/math9233063
Chicago/Turabian StyleTamilvanan, Kandhasamy, Abdulaziz Mohammed Alanazi, John Michael Rassias, and Ali H. Alkhaldi. 2021. "Ulam Stabilities and Instabilities of Euler–Lagrange-Rassias Quadratic Functional Equation in Non-Archimedean IFN Spaces" Mathematics 9, no. 23: 3063. https://doi.org/10.3390/math9233063
APA StyleTamilvanan, K., Alanazi, A. M., Rassias, J. M., & Alkhaldi, A. H. (2021). Ulam Stabilities and Instabilities of Euler–Lagrange-Rassias Quadratic Functional Equation in Non-Archimedean IFN Spaces. Mathematics, 9(23), 3063. https://doi.org/10.3390/math9233063