The Stability Analysis of A-Quartic Functional Equation
Abstract
:1. Introduction
2. General Solution of the Additive Functional Equation (3) (When h Is Odd)
3. General Solution of the Functional Equation (3) (When h Is Even)
4. Stability Results for (3) (Direct Method)
5. Stability Result for (3) (Fixed Point Method)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulam, S.M. Problems in Modern Mathematics; JohnWiley & Sons: New York, NY, USA, 1964. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, T. On the stability of the linear transformation in Banach spaces. J. Math. Soc. Jpn. 1950, 2, 64–66. [Google Scholar] [CrossRef]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Mihet, D.; Radu, V. On the stability of the additive Cauchy functional equation in random normed spaces. J. Math. Anal. Appl. 2008, 343, 567–572. [Google Scholar] [CrossRef] [Green Version]
- Mirmostafaee, A.K.; Moslehian, M.S. Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst. 2008, 159, 720–729. [Google Scholar] [CrossRef]
- Cholewa, P.W. Remarks on the stability of functional equations. Aequ. Math. 1984, 27, 76–86. [Google Scholar] [CrossRef]
- Czerwik, S. On the stability of the quadratic mapping in normed spaces. Abh. Math. Semin. Univ. Hambg. 1992, 62, 59–64. [Google Scholar] [CrossRef]
- Czerwik, S. Stability of Functional Equations of Ulam-Hyers-Rassias Type; Hadronic Press: Palm Harbor, FL, USA, 2003. [Google Scholar]
- Hyers, D.H.; Rassias, T.M. Approximate homomorphisms. Aequ. Math. 1992, 44, 125–153. [Google Scholar] [CrossRef]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis; Hadronic Press: Palm Harbor, FL, USA, 2001. [Google Scholar]
- Jung, S.-M. Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, vol. 48 of Springer Optimization and Its Applications; Springer: New York, NY, USA, 2011. [Google Scholar]
- Jun, K.-W.; Kim, H.-M. The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J. Math. Anal. Appl. 2002, 274, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Im, S.M.; Hwang, I.S. Quartic functional equations. J. Math. Anal. Appl. 2005, 307, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Rassias, T.M. On the stability of functional equations in Banach spaces. J. Math. Anal. Appl. 2000, 251, 264–284. [Google Scholar] [CrossRef] [Green Version]
- Rassias, T.M. On the stability of functional equations originated by a problem of Ulam. Mathematica 2002, 44, 39–75. [Google Scholar]
- Rassias, T.M. Functional Equations, Inequalities and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Radu, V. The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4, 91–96. [Google Scholar]
- Castro, L.P.; Ramos, A. Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations. Banach J. Math. Anal. 2009, 3, 36–43. [Google Scholar] [CrossRef]
- Park, C.; Rassias, T.M. Fixed points and generalized Hyers-Ulam stability of quadratic functional equations. J. Math. Inequal. 2007, 1, 515–528. [Google Scholar] [CrossRef]
- Batool, A.; Nawaz, S.; Ozgur, E.; Sen, M. Hyers–Ulam stability of functional inequalities: A fixed point approach. J. Inequal. Appl. 2020, 2020, 1–18. [Google Scholar] [CrossRef]
- Akkouchi, M. Generalized Ulam-Hyers-Rassias stability of a Cauchy type functional equation. Proyecc. J. Math. 2013, 32, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Santra, S.S.; Khedher, K.M.; Moaaz, O.; Muhib, A.; Yao, S.-W. Second-order impulsive delay differential systems: Necessary and sufficient conditions for oscillatory or asymptotic behavior. Symmetry 2021, 13, 722. [Google Scholar] [CrossRef]
- Santra, S.S.; Khedher, K.M.; Yao, S.-W. New aspects for oscillation of differential systems with mixed delays and impulses. Symmetry 2021, 13, 780. [Google Scholar] [CrossRef]
- Santra, S.S.; Sethi, A.K.; Moaaz, O.; Khedher, K.M.; Yao, S.-W. New oscillation theorems for second-order differential equations with canonical and non-canonical operator via riccati transformation. Mathematics 2021, 9, 1111. [Google Scholar] [CrossRef]
- Santra, S.S.; Bazighifan, O.; Postolache, M. New conditions for the oscillation of second-order differential equations with sublinear neutral terms. Mathematics 2021, 9, 1159. [Google Scholar] [CrossRef]
- Santra, S.S.; Khedher, K.M.; Nonlaopon, K.; Ahmad, H. New results on qualitative behavior of second order nonlinear neutral impulsive differential systems with canonical and non-canonical conditions. Symmetry 2021, 13, 934. [Google Scholar] [CrossRef]
- Santra, S.S.; Dassios, I.; Ghosh, T. On the asymptotic behavior of a class of second-order non-linear neutral differential Equations with multiple delays. Axioms 2020, 9, 134. [Google Scholar] [CrossRef]
- Choonkil, P.; Kandhasamy, T.; Ganapathy, B.; Batool, N.; Abbas, N. On a functional equation that has the quadratic-multiplicative property. Open Math. 2020, 18, 837–845. [Google Scholar]
- Mohammad Maghsoudi and Abasalt Bodaghi, On the stability of multi m-Jensen mappings. Casp. J. Math. Sci. (CJMS) Univ. Maz. Iran 2020, 9, 199–209.
- Badora, R.; Brzdek, J.; Cieplinski, K. Applications of Banach Limit in Ulam Stability. Symmetry 2021, 13, 841. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Park, C.; Rassias, J.M. Stability of quartic functional equation in paranormed spaces. Math. Anal. Contemp. Appl. 2021, 3, 48–58. [Google Scholar]
- Xu, T.Z.; Rassias, J.M.; Xu, W.X. Intuitionistic fuzzy stability of a general mixed additive-cubic equation. J. Math. Phys. 2010, 51, 063519. [Google Scholar] [CrossRef]
- Xu, T.Z.; Rassias, J.M.; Xu, W.X. Generalized Hyers-Ulam stability of a general mixed additive-cubic functional equation in quasi-Banach spaces. Acta Math. Sin.-Eng. Ser. 2012, 28, 529–560. [Google Scholar] [CrossRef]
- Xu, T.Z.; Rassias, J.M.; Xu, W.X. On the stability of a general mixed additive-cubic functional equation in random normed spaces. J. Inequal. Appl. 2010, 2010, 1–16. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muthamilarasi, C.; Santra, S.S.; Balasubramanian, G.; Govindan, V.; El-Nabulsi, R.A.; Khedher, K.M. The Stability Analysis of A-Quartic Functional Equation. Mathematics 2021, 9, 2881. https://doi.org/10.3390/math9222881
Muthamilarasi C, Santra SS, Balasubramanian G, Govindan V, El-Nabulsi RA, Khedher KM. The Stability Analysis of A-Quartic Functional Equation. Mathematics. 2021; 9(22):2881. https://doi.org/10.3390/math9222881
Chicago/Turabian StyleMuthamilarasi, Chinnaappu, Shyam Sundar Santra, Ganapathy Balasubramanian, Vediyappan Govindan, Rami Ahmad El-Nabulsi, and Khaled Mohamed Khedher. 2021. "The Stability Analysis of A-Quartic Functional Equation" Mathematics 9, no. 22: 2881. https://doi.org/10.3390/math9222881
APA StyleMuthamilarasi, C., Santra, S. S., Balasubramanian, G., Govindan, V., El-Nabulsi, R. A., & Khedher, K. M. (2021). The Stability Analysis of A-Quartic Functional Equation. Mathematics, 9(22), 2881. https://doi.org/10.3390/math9222881