Approximation of Analytic Functions by Shifts of Certain Compositions
Abstract
:1. Introduction
2. Proof of Theorem 2
3. Probabilistic Background
4. Proof of Theorems 3–6
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Voronin, S.M. Theorem on the “universality” of the Riemann zeta-function. Math. USSR Izv. 1975, 9, 443–453. [Google Scholar] [CrossRef]
- Laurinčikas, A. Limit Theorems for the Riemann Zeta-Function; Kluwer Academic Publishers: Dordrecht, The Netherland; Boston, MA, USA; London, UK, 1996. [Google Scholar]
- Laurinčikas, A.; Meška, L. Sharpening of the universality inequality. Math. Notes 2014, 96, 971–976. [Google Scholar] [CrossRef]
- Reich, A. Werteverteilung von Zetafunktionen. Arch. Math. 1980, 34, 440–451. [Google Scholar] [CrossRef]
- Bagchi, B. The Statistical Behaviour and Universality Properties of the Riemann Zeta-Function and Other Allied Dirichlet Series. Ph. D. Thesis, Indian Statistical Institute, Calcutta, India, 1981.
- Gonek, S.M. Analytic Properties of Zeta and L-functions. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 1975. [Google Scholar]
- Laurinčikas, A.; Rašytė, J. Generalization of a discrete universality theorem for Hurwitz zeta-functions. Lith. Math. J. 2012, 52, 172–180. [Google Scholar] [CrossRef]
- Matsumoto, K. A survey on the theory of universality for zeta and L-functions. In Number Theory: Plowing and Starring through High Wave Forms, Proceedings of the 7th China-Japan Seminar (Fukuoka 2013), Series on Number Theory and Its Applications, Fukuoka, Japan, 28 October–1 November 2013; Kaneko, M., Kanemitsu, S., Liu, J., Eds.; World Scientific Publishing Co.: Singapore, 2015; pp. 95–144. [Google Scholar]
- Steuding, J. On Dirichlet series with periodic coefficients. Ramanujan J. 2002, 6, 295–306. [Google Scholar] [CrossRef]
- Steuding, J. Value-Distribution of L-Functions; Lecture Notes Math; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2007; Volume 1877. [Google Scholar]
- Kaczorowski, J. Some remarks on the universality of periodic L-functions. In New Directions in Value-Distribution Theory of Zeta and L-Functions, Proceedings of the Würzburg Conference, Würzburg, Germany, 6–10 October 2008; Steuding, R., Steuding, J., Eds.; Shaker Verlag: Aachen, Germany, 2009; pp. 113–120.L-functions. In New Directions in Value-Distribution Theory of Zeta and L-Functions, Proceedings of the Würzburg Conference, Würzburg, Germany, 6–10 October 2008; Steuding, R., Steuding, J., Eds.; Shaker Verlag: Aachen, Germany, 2009; pp. 113–120. [Google Scholar]
- Laurinčikas, A.; Šiaučiūnas, D. Remarks on the universality of the periodic zeta-functions. Math. Notes 2006, 80, 532–538. [Google Scholar] [CrossRef]
- Voronin, S.M. On the functional independence of Dirichlet L-functions. Acta Arith. 1975, 27, 493–503. (In Russian) [Google Scholar]
- Karatsuba, A.A.; Voronin, S.M. The Riemann Zeta-Function; Walter de Gruiter: Berlin, Germany; New York, NY, USA, 1992. [Google Scholar]
- Kačinskaitė, R.; Laurinčikas, A. The joint distribution of periodic zeta-functions. Stud. Sci. Math. Hung 2011, 48, 257–279. [Google Scholar] [CrossRef]
- Laurinčikas, A. Joint universality of zeta-functions with periodic coefficients. Izv. Math. 2010, 74, 515–539. [Google Scholar] [CrossRef]
- Laurinčikas, A. Universality of composite functions of periodic zeta functions. Sbornik Math. 2012, 203, 1631–1646. [Google Scholar] [CrossRef]
- Laurinčikas, A. Extension of the universality of zeta-functions with periodic coefficients. Sib. Math. J. 2016, 57, 330–339. [Google Scholar] [CrossRef]
- Laurinčikas, A. Joint discrete universality for periodic zeta-functions. Quaest. Math. 2019, 42, 687–699. [Google Scholar] [CrossRef]
- Laurinčikas, A. Joint discrete universality for periodic zeta-functions. III. Quaest. Math. 2020. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Tekorė, M. Joint universality of periodic zeta-functions with multiplicative coefficients. Nonlinear Anal. Model. Control 2020, 25, 860–883. [Google Scholar]
- Laurinčikas, A.; Šiaučiūnas, D.; Tekorė, M. Joint universality of periodic zeta-functions with multiplicative coefficients. II. Nonlinear Anal. Model. Control 2021, 26, 550–564. [Google Scholar] [CrossRef]
- Laurinčikas, A. Universality of composite functions. RIMS Kôkyûroku Bessatsu 2012, B34, 191–204. [Google Scholar]
- Laurinčikas, A. Distribution modulo 1 and universality of the Hurwitz zeta-function. J. Number Theory 2016, 167, 303–394. [Google Scholar] [CrossRef]
- Laurinčikas, A.; Matsumoto, K.; Steuding, J. Universality of some functions related to zeta-functions of certain cusp forms. Osaka J. Math. 2016, 50, 1021–1037. [Google Scholar]
- Montgomery, H.L. The pair correlation of zeros of the zeta-function. In Analytic Number Theory; Diamond, H.G., Ed.; American Mathematical Society: Providence, RI, USA, 1973; pp. 181–193. [Google Scholar]
- Garunkštis, R.; Laurinčikas, A.; Macaitienė, R. Zeros of the Riemann zeta-function and its universality. Acta Arith. 2017, 181, 127–142. [Google Scholar] [CrossRef]
- Garunkštis, R.; Laurinčikas, A. The Riemann hypothesis and universality of the Riemann zeta-function. Math. Slovaca 2018, 68, 741–748. [Google Scholar] [CrossRef]
- Garunkštis, R.; Laurinčikas, A. Discrete mean square of the Riemann zeta-function over imaginary parts of its zeros. Period. Math. Hung. 2018, 76, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Laurinčikas, A. Zeros of the Riemann zeta-function in the discrete universality of the Hurwitz zeta-function. Stud. Sci. Math. Hung. 2020, 57, 147–164. [Google Scholar] [CrossRef]
- Macaitienė, R.; Šiaučiūnas, D. Joint universality of Hurwitz zeta-functions and non-trivial zeros of the Riemann zeta-function. II. Lith. Math. J. 2021, 61, 382–390. [Google Scholar] [CrossRef]
- Laurinčikas, A. Non-trivial zeros of the Riemann zeta-function and joint universality theorems. J. Math. Anal. Appl. 2019, 475, 385–402. [Google Scholar] [CrossRef]
- Mergelyan, S.N. Uniform approximations to functions of a complex variable. In American Mathematical Society Translations; Series and Approximation; American Mathematical Society: Providence, RI, USA, 1962; pp. 294–391. [Google Scholar]
- Billingsley, P. Convergence of Probability Measures; Willey: New York, NY, USA, 1968. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šiaučiūnas, D.; Šimėnas, R.; Tekorė, M. Approximation of Analytic Functions by Shifts of Certain Compositions. Mathematics 2021, 9, 2583. https://doi.org/10.3390/math9202583
Šiaučiūnas D, Šimėnas R, Tekorė M. Approximation of Analytic Functions by Shifts of Certain Compositions. Mathematics. 2021; 9(20):2583. https://doi.org/10.3390/math9202583
Chicago/Turabian StyleŠiaučiūnas, Darius, Raivydas Šimėnas, and Monika Tekorė. 2021. "Approximation of Analytic Functions by Shifts of Certain Compositions" Mathematics 9, no. 20: 2583. https://doi.org/10.3390/math9202583
APA StyleŠiaučiūnas, D., Šimėnas, R., & Tekorė, M. (2021). Approximation of Analytic Functions by Shifts of Certain Compositions. Mathematics, 9(20), 2583. https://doi.org/10.3390/math9202583