Periodic Points of Modular Firmly Mappings in the Variable Exponent Sequence Spaces ℓp(·)
Abstract
:1. Introduction
2. Basic Definitions & Results
- (i)
- if and only if ;
- (ii)
- ;
- (iii)
- , for all ,
- A sequence is ϱ-convergent to if and only if . It is obvious that, if ϱ-limit exists, then it must be unique;
- A sequence is ϱ-Cauchy if as ;
- A set is said to be ϱ-closed if for any sequence that ϱ-converges to u, it follows that ;
- A set is ϱ-bounded if ;
- Let and . We define the ϱ-ball centered at u with radius R as
3. Main Results
- (1)
- Assume that has the fixed point property for ϱ-nonexpansive self-mappings. If for some , is λ-ϱ-firmly nonexpansive, then T has a fixed point in C.
- (2)
- Assume that is ϱ-bounded, convex and has the property (R). If for some , is λ-ϱ-firmly nonexpansive, then T has a fixed point in C.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | linear dichroism |
References
- Aoyama, K.; Kimura, Y.; Takahashi, W. Maximal monotone operators and maximal monotone functions for equilibrium problems. J. Convex Anal. 2008, 15, 395–409. [Google Scholar]
- Ariza-Ruiz, D.; López-Acedo, G.; Martin-Marquez, V. Firmly nonexpansive mappings. J. Nonlinear Convex Anal. 2014, 15, 1–27. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: New York, NY, USA, 2011. [Google Scholar]
- Bruck, R.E.; Reich, S. Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houst. J. Math. 1977, 3, 459–470. [Google Scholar]
- Reich, S. Extension problems for accretive sets in Banach spaces. J. Funct. Anal. 1977, 26, 378–395. [Google Scholar] [CrossRef] [Green Version]
- Minty, G.J. Monotone (nonlinear) Oper. Hilbert Space. Duke Math J. 1962, 29, 341–346. [Google Scholar] [CrossRef]
- Minty, G.J. Monotonicity Gradient A Convex Function. Pac. J. Math. 1964, 14, 243–247. [Google Scholar] [CrossRef]
- Bruck, R.E. Nonexpansive projections on subsets of Banach spaces. Pac. J. Math. 1973, 47, 341–355. [Google Scholar] [CrossRef]
- Kaczor, W. Fixed Points of λ-firmly Nonexpansive Mappings on Nonconvex Sets. Nonlinear Anal. 2001, 47, 2787–2792. [Google Scholar] [CrossRef]
- Smarzewski, R. On Firmly Nonexpansive Mappings. Proceeding AMS 1991, 113, 723–725. [Google Scholar] [CrossRef]
- Khan, S.H. Approximating fixed points of (λ, ρ)-firmly nonexpansive mappings in modular function spaces. Arab. J. Math. 2018, 7, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Orlicz, W. Über Konjugierte Exponentenfolgen. Stud. Math. 1931, 3, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Klee, V. Summability in ℓ(p11, p21,⋯) Spaces. Stud. Math. 1965, 25, 277–280. [Google Scholar] [CrossRef]
- Nakano, H. Topology of Linear Topological Spaces; Maruzen Co. Ltd.: Tokyo, Japan, 1951. [Google Scholar]
- Sundaresan, K. Uniform convexity of Banach spaces ℓ({pi}). Stud. Math. 1971, 39, 227–231. [Google Scholar] [CrossRef]
- Waterman, D.; Ito, T.; Barber, F.; Ratti, J. Reflexivity and Summability: The Nakano ℓ(pi) Spaces. Stud. Math. 1969, 331, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Nakano, H. Modulared Semi-Ordered Linear Spaces; Maruzen Co.: Tokyo, Japan, 1950. [Google Scholar]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Note in Mathematics 2017; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Rajagopal, K.; Ružička, M. On the modeling of electrorheological materials. Mech. Res. Comm. 1996, 23, 401–407. [Google Scholar] [CrossRef]
- Ružička, M. Electrorheological Fluids: Modeling and Mathematical Theory; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1748. [Google Scholar]
- Bansevicius, R.; Virbalis, J.A. Two-dimensional Braille readers based on electrorheological fluid valves controlled by electric field. Mechatronics 2007, 17, 570–577. [Google Scholar] [CrossRef]
- Chen, J.Z.; Liao, W.H. Design, testing and control of a magnetorheological actuator for assistive knee braces. Smart Mater. Struct. 2010, 19, 035029. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, S.; Kim, P.; Park, J.; Choi, S.B. A new visual feedback-based magnetorheological haptic master for 174 robot-assisted minimally invasive surgery. Smart Mater. Struct. 2015, 24, 065015. [Google Scholar] [CrossRef]
- Spencer, B.; Yang, G.; Carlson, J.; Sain, M. Smart Dampers for Seismic Protection of Structures: A Full-Scale Study. In Proceedings of the Second World Conference on Structural Control, Kyoto, Japan, 28 June–1 July 1998. [Google Scholar]
- Abdou, A.A.; Khamsi, M.A. On modular firmly nonexpansive mappings in the variable exponent sequence spaces ℓp(.). J. Fixed Point Theory Appl. 2021, 23, 8. [Google Scholar] [CrossRef]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1984. [Google Scholar]
- Khamsi, M.A.; Kirk, W.A. An Introduction to Metric Spaces and Fixed Point Theory; John Wiley: New York, NY, USA, 2001. [Google Scholar]
- Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhauser: New York, NY, USA, 2015. [Google Scholar]
- Nakano, H. Modulared sequence spaces. Proc. Jpn. Acad. 1951, 27, 508–512. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Kozlowski, W.M.; Reich, S. Fixed point theory in modular functions spaces. Nonlinear Anal. 1990, 14, 935–953. [Google Scholar] [CrossRef] [Green Version]
- Bachar, M.; Bounkhel, M.; Khamsi, M.A. Uniform Convexity in ℓp(·). J. Nonlinear Sci. Appl. 2017, 10, 5292–5299. [Google Scholar] [CrossRef] [Green Version]
- Bachar, M.; Khamsi, M.A.; Mendez, O.; Bounkhel, M. A geometric property in ℓp(·) and its applications. Math. Nachrichten 2019, 292, 1931–1940. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdou, A.A.N.; Khamsi, M.A. Periodic Points of Modular Firmly Mappings in the Variable Exponent Sequence Spaces ℓp(·). Mathematics 2021, 9, 2418. https://doi.org/10.3390/math9192418
Abdou AAN, Khamsi MA. Periodic Points of Modular Firmly Mappings in the Variable Exponent Sequence Spaces ℓp(·). Mathematics. 2021; 9(19):2418. https://doi.org/10.3390/math9192418
Chicago/Turabian StyleAbdou, Afrah A. N., and Mohamed A. Khamsi. 2021. "Periodic Points of Modular Firmly Mappings in the Variable Exponent Sequence Spaces ℓp(·)" Mathematics 9, no. 19: 2418. https://doi.org/10.3390/math9192418
APA StyleAbdou, A. A. N., & Khamsi, M. A. (2021). Periodic Points of Modular Firmly Mappings in the Variable Exponent Sequence Spaces ℓp(·). Mathematics, 9(19), 2418. https://doi.org/10.3390/math9192418