Generalizations of the Jensen–Mercer Inequality via Fink’s Identity
Abstract
:1. Introduction
2. Main Results
3. Related Results for -Convex Functions at a Point
- (i)
- If , and
- (ii)
- If , and
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Mitrinović, D.S.; Pečarić, J.E.; Fink, A.M. Classical and New Inequalities in Analysis. In Mathematics and Its Applications (East European Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993; Volume 61, ISBN 0-7923-2064-6. [Google Scholar]
- Pečarić, J.E.; Tong, Y.L. Convex functions, partial orderings, and statistical applications. In Mathematics in Science and Engineering; Academic Press, Inc.: Boston, MA, USA, 1992; Volume 187, ISBN 0-12-549250-2. [Google Scholar]
- Mercer, A.M. A variant of Jensen’s inequality. J. Inequal. Pure Appl. Math. 2003, 4, 73. [Google Scholar]
- Barić, J.; Matković, A.; Pečarić, J. A variant of the Jensen-Mercer operator inequality for superquadratic functions. Math. Comput. Model. 2010, 51, 1230–1239. [Google Scholar] [CrossRef]
- Matković, A.; Pečarić, J.; Perić, I. A variant of Jensen’s inequality of Mercer’s type for operators with applications. Linear Algebra Appl. 2006, 418, 551–564. [Google Scholar] [CrossRef] [Green Version]
- Matković, A.; Pečarić, J.; Perić, I. Refinements of Jensen’s inequality of Mercer’s type for operator convex functions. Math. Inequal. Appl. 2008, 11, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Matković, A.; Pečarić, J.; Perić, J. A refinement of the Jessen-Mercer inequality and a generalization on convex hulls in Rk. J. Math. Inequal. 2015, 9, 1093–1114. [Google Scholar] [CrossRef] [Green Version]
- Barić, J.; Matković, A. Bounds for the normalized Jensen-Mercer functional. J. Math. Inequal. 2009, 3, 529–541. [Google Scholar] [CrossRef] [Green Version]
- Popoviciu, T. Les Fonctions Convexes; Hermann et Cie: Paris, France, 1944; 76p. [Google Scholar]
- Fink, A.M. Bounds of the deviation of a function from its averages. Czechoslov. Math. J. 1992, 42, 289–310. [Google Scholar] [CrossRef]
- Matković, A. Generalization of the Jensen-Mercer inequality by Taylor’s polynomial. Math. Inequal. Appl. 2016, 19, 1387–1398. [Google Scholar] [CrossRef]
- Matković, A.; Pečarić, J. Note on generalization of the Jensen-Mercer inequality by Taylor’s polynomial. Math. Inequal. Appl. 2019, 22, 1379–1384. [Google Scholar] [CrossRef] [Green Version]
- Pečarić, J.; Praljak, M.; Witkowski, A. Linear operator inequality for n-convex functions at a point. Math. Inequal. Appl. 2015, 18, 1201–1217. [Google Scholar] [CrossRef] [Green Version]
- Jakšetić, J.; Pečarić, J. Exponential convexity method. J. Convex Anal. 2013, 20, 181–197. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matković, A. Generalizations of the Jensen–Mercer Inequality via Fink’s Identity. Mathematics 2021, 9, 2406. https://doi.org/10.3390/math9192406
Matković A. Generalizations of the Jensen–Mercer Inequality via Fink’s Identity. Mathematics. 2021; 9(19):2406. https://doi.org/10.3390/math9192406
Chicago/Turabian StyleMatković, Anita. 2021. "Generalizations of the Jensen–Mercer Inequality via Fink’s Identity" Mathematics 9, no. 19: 2406. https://doi.org/10.3390/math9192406
APA StyleMatković, A. (2021). Generalizations of the Jensen–Mercer Inequality via Fink’s Identity. Mathematics, 9(19), 2406. https://doi.org/10.3390/math9192406