On the Existence and Uniqueness of Solutions for Multidimensional Fractional Stochastic Differential Equations with Variable Order
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Example
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Atangana, A.; Algahtani, R.T. Stability analysis of nonlinear thin viscous fluid sheet flow equation with local fractional variable order derivative. J. Comput. Theor. Nanosci. 2016, 13, 1–8. [Google Scholar] [CrossRef]
- Zhang, S. The uniqueness result of solution to initial value problems of differential equations of variable-order. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2018, 112, 407–423. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, L. Unique existence result of approximate solution to initial value problem for fractional differential equation of variable order involving the derivative arguments on the half-axis. J. Math. 2019, 7, 1–23. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H. An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM J. Numer. Anal. 2020, 58, 330–352. [Google Scholar] [CrossRef]
- Mei, R.; Xu, Y.; Kurths, J. Transport and escape in a deformable channel driven by fractional Gaussian noise. Phys. Rev. E 2019, 100, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Xu, Y.; Pei, B. Mixed stochastic differential equations: Averaging principle result. Appl. Math. Lett. 2021, 112, 106705. [Google Scholar] [CrossRef]
- Liu, Q.; Xu, Y.; Kurths, J. Bistability and stochastic jumps in an airfoil system with viscoelastic material property and random fluctuations. Comm. Nonlinear Sci. Numer. Simul. 2020, 84, 1–16. [Google Scholar] [CrossRef]
- Baños, D.; Ortiz-Latorre, S.; Pilipenko, A.; Proske, F. Strong solutions of stochastic differential equations with generalized drift and multidimensional fractional Brownian initial noise. J. Theor. Prob. 2021. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, X.; Li, Y. Nonlocal problem for fractional stochastic evolution equations with solution operators. Fract. Calc. Appl. Anal. 2016, 6, 1507–1526. [Google Scholar] [CrossRef]
- El-Borai, M.M.; El-Nadi, K.E.S.; Ahmed, H.M.; El-Owaidy, H.M.; Ghanem, A.S.; Sakthivel, R. Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition. Cogent Math. Stat. 2018, 5, 1460030. [Google Scholar] [CrossRef]
- Xu, Y.; Zan, W.; Jia, W.; Kurths, J. Path integral solutions of the governing equation of SDEs excited by Lévy white noise. J. Comput. Phys. 2019, 394, 41–55. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, S.; Guo, Z.; Yan, X. A note on the continuity for Caputo fractional stochastic differential equations. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 073106. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, K.; Ravikumar, K.; Varshini, S. Fractional neutral stochastic differential equations with Caputo fractional derivative: Fractional Brownian motion, Poisson jumps, and optimal control. Stoch. Anal. Appl. 2020, 39, 157–176. [Google Scholar] [CrossRef]
- Ahmadova, A.; Mahmudov, N. Existence and uniqueness results for a class of fractional stochastic neutral differential equations. Chaos Solitons Fractals 2020, 139, 110253. [Google Scholar] [CrossRef]
- Pei, B.; Xu, Y.; Wu, J.L. Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion. Appl. Math. Lett. 2020, 100, 106006. [Google Scholar] [CrossRef]
- Guo, Z.; Hu, J.; Wang, W. Caratheodory’s approximation for a type of Caputo fractional stochastic differential equations. Adv. Differ. Equ. 2020, 100, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, J.; Kloeden, P.E. Asymptotic behavior of stochastic lattice systems with a Caputo fractional time derivative. Nonlinear Anal. Theory Methods Appl. 2016, 135, 205–222. [Google Scholar] [CrossRef]
- Prohorov, Y.V. Convergence of Random Processes and Limit Theorems in Probability Theory. Theory Probab. Its Appl. 1956, 1, 157–214. [Google Scholar] [CrossRef]
- Billingsley, P. Weak Convergence of Measures: Application in Probability; CBMS-NSF Regional Conference Series in Applied Mathematics; SIAM: Philadelphia, PA, USA, 1971. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moualkia, S.; Xu, Y. On the Existence and Uniqueness of Solutions for Multidimensional Fractional Stochastic Differential Equations with Variable Order. Mathematics 2021, 9, 2106. https://doi.org/10.3390/math9172106
Moualkia S, Xu Y. On the Existence and Uniqueness of Solutions for Multidimensional Fractional Stochastic Differential Equations with Variable Order. Mathematics. 2021; 9(17):2106. https://doi.org/10.3390/math9172106
Chicago/Turabian StyleMoualkia, Seyfeddine, and Yong Xu. 2021. "On the Existence and Uniqueness of Solutions for Multidimensional Fractional Stochastic Differential Equations with Variable Order" Mathematics 9, no. 17: 2106. https://doi.org/10.3390/math9172106
APA StyleMoualkia, S., & Xu, Y. (2021). On the Existence and Uniqueness of Solutions for Multidimensional Fractional Stochastic Differential Equations with Variable Order. Mathematics, 9(17), 2106. https://doi.org/10.3390/math9172106